Bases: pyspark.mllib.classification.LinearBinaryClassificationModel
A linear binary classification model derived from logistic regression.
>>> data = [
... LabeledPoint(0.0, [0.0, 1.0]),
... LabeledPoint(1.0, [1.0, 0.0]),
... ]
>>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(data))
>>> lrm.predict([1.0, 0.0])
1
>>> lrm.predict([0.0, 1.0])
0
>>> lrm.predict(sc.parallelize([[1.0, 0.0], [0.0, 1.0]])).collect()
[1, 0]
>>> lrm.clearThreshold()
>>> lrm.predict([0.0, 1.0])
0.123...
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(0.0, SparseVector(2, {0: 1.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
... ]
>>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(sparse_data))
>>> lrm.predict(array([0.0, 1.0]))
1
>>> lrm.predict(array([1.0, 0.0]))
0
>>> lrm.predict(SparseVector(2, {1: 1.0}))
1
>>> lrm.predict(SparseVector(2, {0: 1.0}))
0
Bases: object
Train a logistic regression model on the given data.
Parameters: |
|
---|
Bases: object
Train a logistic regression model on the given data.
Parameters: |
|
---|
>>> data = [
... LabeledPoint(0.0, [0.0, 1.0]),
... LabeledPoint(1.0, [1.0, 0.0]),
... ]
>>> lrm = LogisticRegressionWithLBFGS.train(sc.parallelize(data))
>>> lrm.predict([1.0, 0.0])
1
>>> lrm.predict([0.0, 1.0])
0
Bases: pyspark.mllib.classification.LinearBinaryClassificationModel
A support vector machine.
>>> data = [
... LabeledPoint(0.0, [0.0]),
... LabeledPoint(1.0, [1.0]),
... LabeledPoint(1.0, [2.0]),
... LabeledPoint(1.0, [3.0])
... ]
>>> svm = SVMWithSGD.train(sc.parallelize(data))
>>> svm.predict([1.0])
1
>>> svm.predict(sc.parallelize([[1.0]])).collect()
[1]
>>> svm.clearThreshold()
>>> svm.predict(array([1.0]))
1.25...
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {0: -1.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
... ]
>>> svm = SVMWithSGD.train(sc.parallelize(sparse_data))
>>> svm.predict(SparseVector(2, {1: 1.0}))
1
>>> svm.predict(SparseVector(2, {0: -1.0}))
0
Bases: object
Train a support vector machine on the given data.
Parameters: |
|
---|
Bases: object
Model for Naive Bayes classifiers.
Contains two parameters: - pi: vector of logs of class priors (dimension C) - theta: matrix of logs of class conditional probabilities (CxD)
>>> data = [
... LabeledPoint(0.0, [0.0, 0.0]),
... LabeledPoint(0.0, [0.0, 1.0]),
... LabeledPoint(1.0, [1.0, 0.0]),
... ]
>>> model = NaiveBayes.train(sc.parallelize(data))
>>> model.predict(array([0.0, 1.0]))
0.0
>>> model.predict(array([1.0, 0.0]))
1.0
>>> model.predict(sc.parallelize([[1.0, 0.0]])).collect()
[1.0]
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {1: 0.0})),
... LabeledPoint(0.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(1.0, SparseVector(2, {0: 1.0}))
... ]
>>> model = NaiveBayes.train(sc.parallelize(sparse_data))
>>> model.predict(SparseVector(2, {1: 1.0}))
0.0
>>> model.predict(SparseVector(2, {0: 1.0}))
1.0
Bases: object
Train a Naive Bayes model given an RDD of (label, features) vectors.
This is the Multinomial NB (U{http://tinyurl.com/lsdw6p}) which can handle all kinds of discrete data. For example, by converting documents into TF-IDF vectors, it can be used for document classification. By making every vector a 0-1 vector, it can also be used as Bernoulli NB (U{http://tinyurl.com/p7c96j6}).
Parameters: |
|
---|
Bases: object
A clustering model derived from the k-means method.
>>> from numpy import array
>>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4,2)
>>> model = KMeans.train(
... sc.parallelize(data), 2, maxIterations=10, runs=30, initializationMode="random")
>>> model.predict(array([0.0, 0.0])) == model.predict(array([1.0, 1.0]))
True
>>> model.predict(array([8.0, 9.0])) == model.predict(array([9.0, 8.0]))
True
>>> model = KMeans.train(sc.parallelize(data), 2)
>>> sparse_data = [
... SparseVector(3, {1: 1.0}),
... SparseVector(3, {1: 1.1}),
... SparseVector(3, {2: 1.0}),
... SparseVector(3, {2: 1.1})
... ]
>>> model = KMeans.train(sc.parallelize(sparse_data), 2, initializationMode="k-means||")
>>> model.predict(array([0., 1., 0.])) == model.predict(array([0, 1.1, 0.]))
True
>>> model.predict(array([0., 0., 1.])) == model.predict(array([0, 0, 1.1]))
True
>>> model.predict(sparse_data[0]) == model.predict(sparse_data[1])
True
>>> model.predict(sparse_data[2]) == model.predict(sparse_data[3])
True
>>> type(model.clusterCenters)
<type 'list'>
Python package for feature in MLlib.
Bases: pyspark.mllib.feature.VectorTransformer
:: Experimental
Normalizes samples individually to unit Lp norm
For any 1 <= p < float(‘inf’), normalizes samples using sum(abs(vector) p) (1/p) as norm.
For p = float(‘inf’), max(abs(vector)) will be used as norm for normalization.
>>> v = Vectors.dense(range(3))
>>> nor = Normalizer(1)
>>> nor.transform(v)
DenseVector([0.0, 0.3333, 0.6667])
>>> rdd = sc.parallelize([v])
>>> nor.transform(rdd).collect()
[DenseVector([0.0, 0.3333, 0.6667])]
>>> nor2 = Normalizer(float("inf"))
>>> nor2.transform(v)
DenseVector([0.0, 0.5, 1.0])
Bases: pyspark.mllib.feature.JavaVectorTransformer
:: Experimental
Represents a StandardScaler model that can transform vectors.
Bases: object
:: Experimental
Standardizes features by removing the mean and scaling to unit variance using column summary statistics on the samples in the training set.
>>> vs = [Vectors.dense([-2.0, 2.3, 0]), Vectors.dense([3.8, 0.0, 1.9])]
>>> dataset = sc.parallelize(vs)
>>> standardizer = StandardScaler(True, True)
>>> model = standardizer.fit(dataset)
>>> result = model.transform(dataset)
>>> for r in result.collect(): r
DenseVector([-0.7071, 0.7071, -0.7071])
DenseVector([0.7071, -0.7071, 0.7071])
Bases: object
:: Experimental
Maps a sequence of terms to their term frequencies using the hashing trick.
Note: the terms must be hashable (can not be dict/set/list...).
>>> htf = HashingTF(100)
>>> doc = "a a b b c d".split(" ")
>>> htf.transform(doc)
SparseVector(100, {1: 1.0, 14: 1.0, 31: 2.0, 44: 2.0})
Bases: pyspark.mllib.feature.JavaVectorTransformer
Represents an IDF model that can transform term frequency vectors.
Transforms term frequency (TF) vectors to TF-IDF vectors.
If minDocFreq was set for the IDF calculation, the terms which occur in fewer than minDocFreq documents will have an entry of 0.
Parameters: | dataset – an RDD of term frequency vectors |
---|---|
Returns: | an RDD of TF-IDF vectors |
Bases: object
:: Experimental
Inverse document frequency (IDF).
The standard formulation is used: idf = log((m + 1) / (d(t) + 1)), where m is the total number of documents and d(t) is the number of documents that contain term t.
This implementation supports filtering out terms which do not appear in a minimum number of documents (controlled by the variable minDocFreq). For terms that are not in at least minDocFreq documents, the IDF is found as 0, resulting in TF-IDFs of 0.
>>> n = 4
>>> freqs = [Vectors.sparse(n, (1, 3), (1.0, 2.0)),
... Vectors.dense([0.0, 1.0, 2.0, 3.0]),
... Vectors.sparse(n, [1], [1.0])]
>>> data = sc.parallelize(freqs)
>>> idf = IDF()
>>> model = idf.fit(data)
>>> tfidf = model.transform(data)
>>> for r in tfidf.collect(): r
SparseVector(4, {1: 0.0, 3: 0.5754})
DenseVector([0.0, 0.0, 1.3863, 0.863])
SparseVector(4, {1: 0.0})
Bases: object
Word2Vec creates vector representation of words in a text corpus. The algorithm first constructs a vocabulary from the corpus and then learns vector representation of words in the vocabulary. The vector representation can be used as features in natural language processing and machine learning algorithms.
We used skip-gram model in our implementation and hierarchical softmax method to train the model. The variable names in the implementation matches the original C implementation.
For original C implementation, see https://code.google.com/p/word2vec/ For research papers, see Efficient Estimation of Word Representations in Vector Space and Distributed Representations of Words and Phrases and their Compositionality.
>>> sentence = "a b " * 100 + "a c " * 10
>>> localDoc = [sentence, sentence]
>>> doc = sc.parallelize(localDoc).map(lambda line: line.split(" "))
>>> model = Word2Vec().setVectorSize(10).setSeed(42L).fit(doc)
>>> syms = model.findSynonyms("a", 2)
>>> [s[0] for s in syms]
[u'b', u'c']
>>> vec = model.transform("a")
>>> syms = model.findSynonyms(vec, 2)
>>> [s[0] for s in syms]
[u'b', u'c']
Computes the vector representation of each word in vocabulary.
Parameters: | data – training data. RDD of list of string |
---|---|
Returns: | Word2VecModel instance |
Sets number of iterations (default: 1), which should be smaller than or equal to number of partitions.
Bases: pyspark.mllib.feature.JavaVectorTransformer
class for Word2Vec model
MLlib utilities for linear algebra. For dense vectors, MLlib uses the NumPy array type, so you can simply pass NumPy arrays around. For sparse vectors, users can construct a SparseVector object from MLlib or pass SciPy scipy.sparse column vectors if SciPy is available in their environment.
Bases: pyspark.mllib.linalg.Vector
A dense vector represented by a value array.
Compute the dot product of two Vectors. We support (Numpy array, list, SparseVector, or SciPy sparse) and a target NumPy array that is either 1- or 2-dimensional. Equivalent to calling numpy.dot of the two vectors.
>>> dense = DenseVector(array.array('d', [1., 2.]))
>>> dense.dot(dense)
5.0
>>> dense.dot(SparseVector(2, [0, 1], [2., 1.]))
4.0
>>> dense.dot(range(1, 3))
5.0
>>> dense.dot(np.array(range(1, 3)))
5.0
>>> dense.dot([1.,])
Traceback (most recent call last):
...
AssertionError: dimension mismatch
>>> dense.dot(np.reshape([1., 2., 3., 4.], (2, 2), order='F'))
array([ 5., 11.])
>>> dense.dot(np.reshape([1., 2., 3.], (3, 1), order='F'))
Traceback (most recent call last):
...
AssertionError: dimension mismatch
Squared distance of two Vectors.
>>> dense1 = DenseVector(array.array('d', [1., 2.]))
>>> dense1.squared_distance(dense1)
0.0
>>> dense2 = np.array([2., 1.])
>>> dense1.squared_distance(dense2)
2.0
>>> dense3 = [2., 1.]
>>> dense1.squared_distance(dense3)
2.0
>>> sparse1 = SparseVector(2, [0, 1], [2., 1.])
>>> dense1.squared_distance(sparse1)
2.0
>>> dense1.squared_distance([1.,])
Traceback (most recent call last):
...
AssertionError: dimension mismatch
>>> dense1.squared_distance(SparseVector(1, [0,], [1.,]))
Traceback (most recent call last):
...
AssertionError: dimension mismatch
Bases: pyspark.mllib.linalg.Vector
A simple sparse vector class for passing data to MLlib. Users may alternatively pass SciPy’s {scipy.sparse} data types.
Dot product with a SparseVector or 1- or 2-dimensional Numpy array.
>>> a = SparseVector(4, [1, 3], [3.0, 4.0])
>>> a.dot(a)
25.0
>>> a.dot(array.array('d', [1., 2., 3., 4.]))
22.0
>>> b = SparseVector(4, [2, 4], [1.0, 2.0])
>>> a.dot(b)
0.0
>>> a.dot(np.array([[1, 1], [2, 2], [3, 3], [4, 4]]))
array([ 22., 22.])
>>> a.dot([1., 2., 3.])
Traceback (most recent call last):
...
AssertionError: dimension mismatch
>>> a.dot(np.array([1., 2.]))
Traceback (most recent call last):
...
AssertionError: dimension mismatch
>>> a.dot(DenseVector([1., 2.]))
Traceback (most recent call last):
...
AssertionError: dimension mismatch
>>> a.dot(np.zeros((3, 2)))
Traceback (most recent call last):
...
AssertionError: dimension mismatch
Squared distance from a SparseVector or 1-dimensional NumPy array.
>>> a = SparseVector(4, [1, 3], [3.0, 4.0])
>>> a.squared_distance(a)
0.0
>>> a.squared_distance(array.array('d', [1., 2., 3., 4.]))
11.0
>>> a.squared_distance(np.array([1., 2., 3., 4.]))
11.0
>>> b = SparseVector(4, [2, 4], [1.0, 2.0])
>>> a.squared_distance(b)
30.0
>>> b.squared_distance(a)
30.0
>>> b.squared_distance([1., 2.])
Traceback (most recent call last):
...
AssertionError: dimension mismatch
>>> b.squared_distance(SparseVector(3, [1,], [1.0,]))
Traceback (most recent call last):
...
AssertionError: dimension mismatch
Bases: object
Factory methods for working with vectors. Note that dense vectors are simply represented as NumPy array objects, so there is no need to covert them for use in MLlib. For sparse vectors, the factory methods in this class create an MLlib-compatible type, or users can pass in SciPy’s scipy.sparse column vectors.
Create a dense vector of 64-bit floats from a Python list. Always returns a NumPy array.
>>> Vectors.dense([1, 2, 3])
DenseVector([1.0, 2.0, 3.0])
Create a sparse vector, using either a dictionary, a list of (index, value) pairs, or two separate arrays of indices and values (sorted by index).
Parameters: |
|
---|
>>> print Vectors.sparse(4, {1: 1.0, 3: 5.5})
(4,[1,3],[1.0,5.5])
>>> print Vectors.sparse(4, [(1, 1.0), (3, 5.5)])
(4,[1,3],[1.0,5.5])
>>> print Vectors.sparse(4, [1, 3], [1.0, 5.5])
(4,[1,3],[1.0,5.5])
Python package for random data generation.
Bases: object
Generator methods for creating RDDs comprised of i.i.d samples from some distribution.
Generates an RDD comprised of i.i.d. samples from the standard normal distribution.
To transform the distribution in the generated RDD from standard normal to some other normal N(mean, sigma^2), use RandomRDDs.normal(sc, n, p, seed) .map(lambda v: mean + sigma * v)
Parameters: |
|
---|---|
Returns: | RDD of float comprised of i.i.d. samples ~ N(0.0, 1.0). |
>>> x = RandomRDDs.normalRDD(sc, 1000, seed=1L)
>>> stats = x.stats()
>>> stats.count()
1000L
>>> abs(stats.mean() - 0.0) < 0.1
True
>>> abs(stats.stdev() - 1.0) < 0.1
True
Generates an RDD comprised of vectors containing i.i.d. samples drawn from the standard normal distribution.
Parameters: |
|
---|---|
Returns: | RDD of Vector with vectors containing i.i.d. samples ~ N(0.0, 1.0). |
>>> import numpy as np
>>> mat = np.matrix(RandomRDDs.normalVectorRDD(sc, 100, 100, seed=1L).collect())
>>> mat.shape
(100, 100)
>>> abs(mat.mean() - 0.0) < 0.1
True
>>> abs(mat.std() - 1.0) < 0.1
True
Generates an RDD comprised of i.i.d. samples from the Poisson distribution with the input mean.
Parameters: |
|
---|---|
Returns: | RDD of float comprised of i.i.d. samples ~ Pois(mean). |
>>> mean = 100.0
>>> x = RandomRDDs.poissonRDD(sc, mean, 1000, seed=2L)
>>> stats = x.stats()
>>> stats.count()
1000L
>>> abs(stats.mean() - mean) < 0.5
True
>>> from math import sqrt
>>> abs(stats.stdev() - sqrt(mean)) < 0.5
True
Generates an RDD comprised of vectors containing i.i.d. samples drawn from the Poisson distribution with the input mean.
Parameters: |
|
---|---|
Returns: | RDD of Vector with vectors containing i.i.d. samples ~ Pois(mean). |
>>> import numpy as np
>>> mean = 100.0
>>> rdd = RandomRDDs.poissonVectorRDD(sc, mean, 100, 100, seed=1L)
>>> mat = np.mat(rdd.collect())
>>> mat.shape
(100, 100)
>>> abs(mat.mean() - mean) < 0.5
True
>>> from math import sqrt
>>> abs(mat.std() - sqrt(mean)) < 0.5
True
Generates an RDD comprised of i.i.d. samples from the uniform distribution U(0.0, 1.0).
To transform the distribution in the generated RDD from U(0.0, 1.0) to U(a, b), use RandomRDDs.uniformRDD(sc, n, p, seed) .map(lambda v: a + (b - a) * v)
Parameters: |
|
---|---|
Returns: | RDD of float comprised of i.i.d. samples ~ U(0.0, 1.0). |
>>> x = RandomRDDs.uniformRDD(sc, 100).collect()
>>> len(x)
100
>>> max(x) <= 1.0 and min(x) >= 0.0
True
>>> RandomRDDs.uniformRDD(sc, 100, 4).getNumPartitions()
4
>>> parts = RandomRDDs.uniformRDD(sc, 100, seed=4).getNumPartitions()
>>> parts == sc.defaultParallelism
True
Generates an RDD comprised of vectors containing i.i.d. samples drawn from the uniform distribution U(0.0, 1.0).
Parameters: |
|
---|---|
Returns: | RDD of Vector with vectors containing i.i.d samples ~ U(0.0, 1.0). |
>>> import numpy as np
>>> mat = np.matrix(RandomRDDs.uniformVectorRDD(sc, 10, 10).collect())
>>> mat.shape
(10, 10)
>>> mat.max() <= 1.0 and mat.min() >= 0.0
True
>>> RandomRDDs.uniformVectorRDD(sc, 10, 10, 4).getNumPartitions()
4
Bases: pyspark.mllib.common.JavaModelWrapper
A matrix factorisation model trained by regularized alternating least-squares.
>>> r1 = (1, 1, 1.0)
>>> r2 = (1, 2, 2.0)
>>> r3 = (2, 1, 2.0)
>>> ratings = sc.parallelize([r1, r2, r3])
>>> model = ALS.trainImplicit(ratings, 1, seed=10)
>>> model.predict(2,2)
0.4473...
>>> testset = sc.parallelize([(1, 2), (1, 1)])
>>> model = ALS.train(ratings, 1, seed=10)
>>> model.predictAll(testset).collect()
[Rating(user=1, product=1, rating=1.0471...), Rating(user=1, product=2, rating=1.9679...)]
>>> model = ALS.train(ratings, 4, seed=10)
>>> model.userFeatures().collect()
[(2, array('d', [...])), (1, array('d', [...]))]
>>> first_user = model.userFeatures().take(1)[0]
>>> latents = first_user[1]
>>> len(latents) == 4
True
>>> model.productFeatures().collect()
[(2, array('d', [...])), (1, array('d', [...]))]
>>> first_product = model.productFeatures().take(1)[0]
>>> latents = first_product[1]
>>> len(latents) == 4
True
>>> model = ALS.train(ratings, 1, nonnegative=True, seed=10)
>>> model.predict(2,2)
3.735...
>>> model = ALS.trainImplicit(ratings, 1, nonnegative=True, seed=10)
>>> model.predict(2,2)
0.4473...
Bases: object
The features and labels of a data point.
Parameters: |
|
---|
Bases: object
A linear model that has a vector of coefficients and an intercept.
Bases: pyspark.mllib.regression.LinearRegressionModelBase
A linear regression model derived from a least-squares fit.
>>> from pyspark.mllib.regression import LabeledPoint
>>> data = [
... LabeledPoint(0.0, [0.0]),
... LabeledPoint(1.0, [1.0]),
... LabeledPoint(3.0, [2.0]),
... LabeledPoint(2.0, [3.0])
... ]
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), initialWeights=np.array([1.0]))
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
True
>>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
True
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
True
>>> data = [
... LabeledPoint(0.0, SparseVector(1, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(1, {0: 1.0})),
... LabeledPoint(3.0, SparseVector(1, {0: 2.0})),
... LabeledPoint(2.0, SparseVector(1, {0: 3.0}))
... ]
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
>>> abs(lrm.predict(array([0.0])) - 0) < 0.5
True
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
True
Bases: pyspark.mllib.regression.LinearRegressionModelBase
A linear regression model derived from a least-squares fit with an l_2 penalty term.
>>> from pyspark.mllib.regression import LabeledPoint
>>> data = [
... LabeledPoint(0.0, [0.0]),
... LabeledPoint(1.0, [1.0]),
... LabeledPoint(3.0, [2.0]),
... LabeledPoint(2.0, [3.0])
... ]
>>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
True
>>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
True
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
True
>>> data = [
... LabeledPoint(0.0, SparseVector(1, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(1, {0: 1.0})),
... LabeledPoint(3.0, SparseVector(1, {0: 2.0})),
... LabeledPoint(2.0, SparseVector(1, {0: 3.0}))
... ]
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
True
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
True
Bases: object
Train a linear regression model on the given data.
Parameters: |
|
---|
Python package for statistical functions in MLlib.
Bases: pyspark.mllib.common.JavaModelWrapper
Trait for multivariate statistical summary of a data matrix.
Bases: pyspark.mllib.common.JavaModelWrapper
:: Experimental
Object containing the test results for the chi-squared hypothesis test.
Returns the degree(s) of freedom of the hypothesis test. Return type should be Number(e.g. Int, Double) or tuples of Numbers.
Bases: object
:: Experimental
If observed is Vector, conduct Pearson’s chi-squared goodness of fit test of the observed data against the expected distribution, or againt the uniform distribution (by default), with each category having an expected frequency of 1 / len(observed). (Note: observed cannot contain negative values)
If observed is matrix, conduct Pearson’s independence test on the input contingency matrix, which cannot contain negative entries or columns or rows that sum up to 0.
If observed is an RDD of LabeledPoint, conduct Pearson’s independence test for every feature against the label across the input RDD. For each feature, the (feature, label) pairs are converted into a contingency matrix for which the chi-squared statistic is computed. All label and feature values must be categorical.
Parameters: |
|
---|---|
Returns: | ChiSquaredTest object containing the test statistic, degrees of freedom, p-value, the method used, and the null hypothesis. |
>>> from pyspark.mllib.linalg import Vectors, Matrices
>>> observed = Vectors.dense([4, 6, 5])
>>> pearson = Statistics.chiSqTest(observed)
>>> print pearson.statistic
0.4
>>> pearson.degreesOfFreedom
2
>>> print round(pearson.pValue, 4)
0.8187
>>> pearson.method
u'pearson'
>>> pearson.nullHypothesis
u'observed follows the same distribution as expected.'
>>> observed = Vectors.dense([21, 38, 43, 80])
>>> expected = Vectors.dense([3, 5, 7, 20])
>>> pearson = Statistics.chiSqTest(observed, expected)
>>> print round(pearson.pValue, 4)
0.0027
>>> data = [40.0, 24.0, 29.0, 56.0, 32.0, 42.0, 31.0, 10.0, 0.0, 30.0, 15.0, 12.0]
>>> chi = Statistics.chiSqTest(Matrices.dense(3, 4, data))
>>> print round(chi.statistic, 4)
21.9958
>>> data = [LabeledPoint(0.0, Vectors.dense([0.5, 10.0])),
... LabeledPoint(0.0, Vectors.dense([1.5, 20.0])),
... LabeledPoint(1.0, Vectors.dense([1.5, 30.0])),
... LabeledPoint(0.0, Vectors.dense([3.5, 30.0])),
... LabeledPoint(0.0, Vectors.dense([3.5, 40.0])),
... LabeledPoint(1.0, Vectors.dense([3.5, 40.0])),]
>>> rdd = sc.parallelize(data, 4)
>>> chi = Statistics.chiSqTest(rdd)
>>> print chi[0].statistic
0.75
>>> print chi[1].statistic
1.5
Computes column-wise summary statistics for the input RDD[Vector].
Parameters: | rdd – an RDD[Vector] for which column-wise summary statistics are to be computed. |
---|---|
Returns: | MultivariateStatisticalSummary object containing column-wise summary statistics. |
>>> from pyspark.mllib.linalg import Vectors
>>> rdd = sc.parallelize([Vectors.dense([2, 0, 0, -2]),
... Vectors.dense([4, 5, 0, 3]),
... Vectors.dense([6, 7, 0, 8])])
>>> cStats = Statistics.colStats(rdd)
>>> cStats.mean()
array([ 4., 4., 0., 3.])
>>> cStats.variance()
array([ 4., 13., 0., 25.])
>>> cStats.count()
3L
>>> cStats.numNonzeros()
array([ 3., 2., 0., 3.])
>>> cStats.max()
array([ 6., 7., 0., 8.])
>>> cStats.min()
array([ 2., 0., 0., -2.])
Compute the correlation (matrix) for the input RDD(s) using the specified method. Methods currently supported: pearson (default), spearman.
If a single RDD of Vectors is passed in, a correlation matrix comparing the columns in the input RDD is returned. Use method= to specify the method to be used for single RDD inout. If two RDDs of floats are passed in, a single float is returned.
Parameters: |
|
---|---|
Returns: | Correlation matrix comparing columns in x. |
>>> x = sc.parallelize([1.0, 0.0, -2.0], 2)
>>> y = sc.parallelize([4.0, 5.0, 3.0], 2)
>>> zeros = sc.parallelize([0.0, 0.0, 0.0], 2)
>>> abs(Statistics.corr(x, y) - 0.6546537) < 1e-7
True
>>> Statistics.corr(x, y) == Statistics.corr(x, y, "pearson")
True
>>> Statistics.corr(x, y, "spearman")
0.5
>>> from math import isnan
>>> isnan(Statistics.corr(x, zeros))
True
>>> from pyspark.mllib.linalg import Vectors
>>> rdd = sc.parallelize([Vectors.dense([1, 0, 0, -2]), Vectors.dense([4, 5, 0, 3]),
... Vectors.dense([6, 7, 0, 8]), Vectors.dense([9, 0, 0, 1])])
>>> pearsonCorr = Statistics.corr(rdd)
>>> print str(pearsonCorr).replace('nan', 'NaN')
[[ 1. 0.05564149 NaN 0.40047142]
[ 0.05564149 1. NaN 0.91359586]
[ NaN NaN 1. NaN]
[ 0.40047142 0.91359586 NaN 1. ]]
>>> spearmanCorr = Statistics.corr(rdd, method="spearman")
>>> print str(spearmanCorr).replace('nan', 'NaN')
[[ 1. 0.10540926 NaN 0.4 ]
[ 0.10540926 1. NaN 0.9486833 ]
[ NaN NaN 1. NaN]
[ 0.4 0.9486833 NaN 1. ]]
>>> try:
... Statistics.corr(rdd, "spearman")
... print "Method name as second argument without 'method=' shouldn't be allowed."
... except TypeError:
... pass
Bases: pyspark.mllib.common.JavaModelWrapper
A decision tree model for classification or regression.
Bases: object
Learning algorithm for a decision tree model for classification or regression.
Train a DecisionTreeModel for classification.
Parameters: |
|
---|---|
Returns: | DecisionTreeModel |
Example usage:
>>> from numpy import array
>>> from pyspark.mllib.regression import LabeledPoint
>>> from pyspark.mllib.tree import DecisionTree
>>>
>>> data = [
... LabeledPoint(0.0, [0.0]),
... LabeledPoint(1.0, [1.0]),
... LabeledPoint(1.0, [2.0]),
... LabeledPoint(1.0, [3.0])
... ]
>>> model = DecisionTree.trainClassifier(sc.parallelize(data), 2, {})
>>> print model, # it already has newline
DecisionTreeModel classifier of depth 1 with 3 nodes
>>> print model.toDebugString(), # it already has newline
DecisionTreeModel classifier of depth 1 with 3 nodes
If (feature 0 <= 0.0)
Predict: 0.0
Else (feature 0 > 0.0)
Predict: 1.0
>>> model.predict(array([1.0]))
1.0
>>> model.predict(array([0.0]))
0.0
>>> rdd = sc.parallelize([[1.0], [0.0]])
>>> model.predict(rdd).collect()
[1.0, 0.0]
Train a DecisionTreeModel for regression.
Parameters: |
|
---|---|
Returns: | DecisionTreeModel |
Example usage:
>>> from pyspark.mllib.regression import LabeledPoint
>>> from pyspark.mllib.tree import DecisionTree
>>> from pyspark.mllib.linalg import SparseVector
>>>
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
... ]
>>>
>>> model = DecisionTree.trainRegressor(sc.parallelize(sparse_data), {})
>>> model.predict(SparseVector(2, {1: 1.0}))
1.0
>>> model.predict(SparseVector(2, {1: 0.0}))
0.0
>>> rdd = sc.parallelize([[0.0, 1.0], [0.0, 0.0]])
>>> model.predict(rdd).collect()
[1.0, 0.0]
Bases: pyspark.mllib.common.JavaModelWrapper
Represents a random forest model.
Bases: object
Learning algorithm for a random forest model for classification or regression.
Method to train a decision tree model for binary or multiclass classification.
Parameters: |
|
---|---|
Returns: | RandomForestModel that can be used for prediction |
Example usage:
>>> from pyspark.mllib.regression import LabeledPoint
>>> from pyspark.mllib.tree import RandomForest
>>>
>>> data = [
... LabeledPoint(0.0, [0.0]),
... LabeledPoint(0.0, [1.0]),
... LabeledPoint(1.0, [2.0]),
... LabeledPoint(1.0, [3.0])
... ]
>>> model = RandomForest.trainClassifier(sc.parallelize(data), 2, {}, 3, seed=42)
>>> model.numTrees()
3
>>> model.totalNumNodes()
7
>>> print model,
TreeEnsembleModel classifier with 3 trees
>>> print model.toDebugString(),
TreeEnsembleModel classifier with 3 trees
Tree 0:
Predict: 1.0
Tree 1:
If (feature 0 <= 1.0)
Predict: 0.0
Else (feature 0 > 1.0)
Predict: 1.0
Tree 2:
If (feature 0 <= 1.0)
Predict: 0.0
Else (feature 0 > 1.0)
Predict: 1.0
>>> model.predict([2.0])
1.0
>>> model.predict([0.0])
0.0
>>> rdd = sc.parallelize([[3.0], [1.0]])
>>> model.predict(rdd).collect()
[1.0, 0.0]
Method to train a decision tree model for regression.
Parameters: |
|
---|---|
Returns: | RandomForestModel that can be used for prediction |
Example usage:
>>> from pyspark.mllib.regression import LabeledPoint
>>> from pyspark.mllib.tree import RandomForest
>>> from pyspark.mllib.linalg import SparseVector
>>>
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {0: 1.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(0.0, SparseVector(2, {0: 1.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
... ]
>>>
>>> model = RandomForest.trainRegressor(sc.parallelize(sparse_data), {}, 2, seed=42)
>>> model.numTrees()
2
>>> model.totalNumNodes()
4
>>> model.predict(SparseVector(2, {1: 1.0}))
1.0
>>> model.predict(SparseVector(2, {0: 1.0}))
0.5
>>> rdd = sc.parallelize([[0.0, 1.0], [1.0, 0.0]])
>>> model.predict(rdd).collect()
[1.0, 0.5]
Bases: object
Helper methods to load, save and pre-process data used in MLlib.
Load labeled points saved using RDD.saveAsTextFile.
Parameters: |
|
---|---|
Returns: | labeled data stored as an RDD of LabeledPoint |
>>> from tempfile import NamedTemporaryFile
>>> from pyspark.mllib.util import MLUtils
>>> examples = [LabeledPoint(1.1, Vectors.sparse(3, [(0, -1.23), (2, 4.56e-7)])), LabeledPoint(0.0, Vectors.dense([1.01, 2.02, 3.03]))]
>>> tempFile = NamedTemporaryFile(delete=True)
>>> tempFile.close()
>>> sc.parallelize(examples, 1).saveAsTextFile(tempFile.name)
>>> MLUtils.loadLabeledPoints(sc, tempFile.name).collect()
[LabeledPoint(1.1, (3,[0,2],[-1.23,4.56e-07])), LabeledPoint(0.0, [1.01,2.02,3.03])]
Loads labeled data in the LIBSVM format into an RDD of LabeledPoint. The LIBSVM format is a text-based format used by LIBSVM and LIBLINEAR. Each line represents a labeled sparse feature vector using the following format:
label index1:value1 index2:value2 ...
where the indices are one-based and in ascending order. This method parses each line into a LabeledPoint, where the feature indices are converted to zero-based.
Parameters: |
|
---|---|
Returns: | labeled data stored as an RDD of LabeledPoint |
>>> from tempfile import NamedTemporaryFile
>>> from pyspark.mllib.util import MLUtils
>>> tempFile = NamedTemporaryFile(delete=True)
>>> tempFile.write("+1 1:1.0 3:2.0 5:3.0\n-1\n-1 2:4.0 4:5.0 6:6.0")
>>> tempFile.flush()
>>> examples = MLUtils.loadLibSVMFile(sc, tempFile.name).collect()
>>> tempFile.close()
>>> type(examples[0]) == LabeledPoint
True
>>> print examples[0]
(1.0,(6,[0,2,4],[1.0,2.0,3.0]))
>>> type(examples[1]) == LabeledPoint
True
>>> print examples[1]
(-1.0,(6,[],[]))
>>> type(examples[2]) == LabeledPoint
True
>>> print examples[2]
(-1.0,(6,[1,3,5],[4.0,5.0,6.0]))
Save labeled data in LIBSVM format.
Parameters: |
|
---|
>>> from tempfile import NamedTemporaryFile
>>> from fileinput import input
>>> from glob import glob
>>> from pyspark.mllib.util import MLUtils
>>> examples = [LabeledPoint(1.1, Vectors.sparse(3, [(0, 1.23), (2, 4.56)])), LabeledPoint(0.0, Vectors.dense([1.01, 2.02, 3.03]))]
>>> tempFile = NamedTemporaryFile(delete=True)
>>> tempFile.close()
>>> MLUtils.saveAsLibSVMFile(sc.parallelize(examples), tempFile.name)
>>> ''.join(sorted(input(glob(tempFile.name + "/part-0000*"))))
'0.0 1:1.01 2:2.02 3:3.03\n1.1 1:1.23 3:4.56\n'