
Package ‘NHPoisson’
January 26, 2026

Type Package

Title Modelling and Validation of Non Homogeneous Poisson Processes

Version 3.4

Date 2026-01-25

Author Ana C. Cebrian [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9052-9674>)

Maintainer Ana C. Cebrian <acebrian@unizar.es>

Imports car, parallel

Depends R (>= 2.10), methods, stats4

Description Tools for modelling, ML estimation, validation analysis and simulation of non homoge-
neous Poisson processes in time.

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2026-01-26 06:30:40 UTC

Contents
NHPoisson-package . 2
addAIC.fun . 3
BarTxTn . 4
CalcRes.fun . 5
CalcResD.fun . 7
CIdelta.fun . 9
CItran.fun . 10
confintAsin.fun . 11
dropAIC.fun . 13
emplambda.fun . 14
emplambdaD.fun . 15
extractAIC-methods . 17
fitPP.fun . 17
GenEnv.fun . 20

1

https://orcid.org/0000-0002-9052-9674

2 NHPoisson-package

globalval.fun . 21
graphrate.fun . 24
graphres.fun . 26
graphResCov.fun . 28
graphresU.fun . 30
graphResX.fun . 31
LRTpv.fun . 33
mlePP-class . 34
POTevents.fun . 36
profile-methods . 37
resQQplot.fun . 38
simNHP.fun . 39
stepAICmle.fun . 41
testlik.fun . 42
transfH.fun . 44
unifres.fun . 45
VARbeta.fun . 46

Index 48

NHPoisson-package Statistical modelling of non homogeneous Poisson processes

Description

NHPoisson provides tools for the modelling and maximum likelihood estimation of non homo-
geneous Poisson processes (NHPP) in time, where the intensity is formulated as a function of
(time-dependent) covariates. A comprehensive toolkit for model selection, residual analysis and
diagnostic of the fitted model is also provided. Finally, it permits random generation of NHPP.

Details

Package: NHPoisson
Type: Package
Version: 3.4
Date: 2026-01-25
License: GPL (>=2)

Author(s)

Ana C. Cebrian <acebrian@unizar.es>

See Also

evir, extRemes, POT, ppstat, spatstat, yuima

addAIC.fun 3

addAIC.fun Calculate the AIC for all one-covariate additions to the current model

Description

This function fits all models that differ from the current model by adding a single covariate from
those supplied, and calculates their AIC value. It selects the best covariate to be added to the model,
according to the AIC.

Usage

addAIC.fun(mlePP, covariatesAdd, startAdd = NULL, modSim = FALSE,...)

Arguments

mlePP A "mlePP"-class object; usually the output from fitPP.fun. It defines the cur-
rent model. The fitted model cannot include fixed parameters.

covariatesAdd Matrix of the potential covariates to be added to the model; each column must
contain a covariate.

startAdd Optional. The vector of initial values for the estimation algorithm of the coef-
ficients of each potential covariate. If it is NULL, initial values equal to 0 are
used. Remark that in contrast to argument start of fitPP.fun, startAdd is a
numeric vector not a list.

modSim Logical flag. If it is FALSE, information about the process is shown on the
screen. For automatic selection processes, the option TRUE should be preferred.

... Further arguments to pass to AIC, for example the constant k for the AIC calcu-
lation.

Details

The definition of AIC uses constant k=2, but a different value k can be passed as an additional
argument. The best covariate to be added is the one which leads to the model with the lowest AIC
value and it improves the current model if the new AIC is lower than the current one.

Value

A list with the following components

AICadd Vector of the AIC values obtained from adding to the current model each covari-
ate in covariatesAdd.

posminAIC An integer indicating the number of the column of covariatesAdd with the co-
variate leading to the minimum AIC.

namecov Name of the covariate leading to the minimum AIC.

AICcurrent AIC value of the current (initial) model.

newCoef A (named) list with the initial value for the coefficient of the best covariate to be
added. It is used in stepAICmle.fun.

4 BarTxTn

See Also

dropAIC.fun, stepAICmle.fun, LRTpv.fun

Examples

data(BarTxTn)

BarEv<-POTevents.fun(T=BarTxTn$Tx,thres=318,
date=cbind(BarTxTn$ano,BarTxTn$mes,BarTxTn$dia))

#The initial model contains only the intercept
mod1Bind<-fitPP.fun(covariates=NULL, posE=BarEv$Px, inddat=BarEv$inddat,

tit='BAR Intercept ', start=list(b0=1))
#the potential covariates
covB<-cbind(cos(2*pi*BarTxTn$dia/365), sin(2*pi*BarTxTn$dia/365),
BarTxTn$TTx,BarTxTn$Txm31,BarTxTn$Txm31**2)
dimnames(covB)<-list(NULL,c('cos','sin','TTx','Txm31', 'Txm31**2'))

aux<-addAIC.fun(mod1Bind, covariatesAdd=covB)

BarTxTn Barcelona temperature data

Description

Barcelona daily temperature series during the summer months (May, June, July, August and Septem-
ber) from 1951 to 2004.

Usage

data(BarTxTn)

Details

Variables

dia: Postion of the day in the year, from 121 (1st of May) to 253 (30th of September).

mes: Month of the year, from 5 to 9.

ano: Year, from 1951 to 2004.

diames: Position of the day in the month, from 1 to 30 or 31.

Tx: Daily maximum temperature.

Tn: Daily minimum temperature.

Txm31: Local maximum temperature signal. Lowess of Tx with a centered window of 31 days.

Txm15: Local maximum temperature signal. Lowess of Tx with a centered window of 15 days.

Tnm31: Local minimum temperature signal. Lowess of Tn with a centered window of 31 days.

Tnm15: Local minimum temperature signal. Lowess of Tn with a centered window of 15 days.

CalcRes.fun 5

TTx: Long term maximum temperature signal. Lowess of Tx with a centered 40% window.

TTn: Long term minimum temperature signal. Lowess of Tn with a centered 40% window.

References

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

Examples

data(BarTxTn)

CalcRes.fun Calculate NHPP residuals on overlapping intervals

Description

This function calculates raw and scaled residuals of a NHPP based on overlapping intervals. The
scaled residuals can be Pearson or any other type of scaled residuals defined by the function h(t).

Usage

CalcRes.fun(mlePP, lint, h = NULL, typeRes = NULL)

Arguments

mlePP An object of class mlePP-class; usually, the output from fitPP.fun.

lint Length of the intervals to calculate the residuals.

h Optional. Weight function to calculate the scaled residuals. By default, Pearson

residuals with h(t) = 1/

√
λ̂(t) are calculated.

typeRes Optional. Label indicating the type of scaled residuals. By default, Pearson
residuals are calculated and label is ’Pearson’.

Details

The raw residuals are based on the increments of the raw process R(t) = Nt −
∫ t

0
λ̂(u)du in

overlapping intervals (l1, l2) centered on t:

r′(l1, l2) = R(l2)−R(l1) =
∑

ti∈(l1,l2)

Iti −
∫ l2

l1

λ̂(u)du.

Residuals r′(l1, l2) are made ’instantaneous’ dividing by the length of the intervals (specified by
the argument lint), r(l1, l2) = r′(l1, l2)/(l2 − l1). A residual is calculated for each time in the
observation period.

The function also calculates the residuals scaled with the function h(t)

6 CalcRes.fun

rsca(l1, l2) =
∑

ti∈(l1,l2)

h(ti)−
∫ l2

l1

h(u)λ̂(u)du.

By default, Pearson residuals with h(t) = 1/

√
λ̂(t) are calculated.

Value

A list with elements

RawRes Numeric vector of the raw residuals.

ScaRes A list with elements ScaRes (vector of the scaled residuals) and typeRes (name
of the type of scaled residuals).

emplambda Numeric vector of the empirical estimator of the PP intensity on the considered
intervals.

fittedlambda Numeric vector of the sum of the intensities λ̂(t) on the considered intervals,
divided by the length of the interval.

lintV Numeric vector of the exact length of each interval. The exact length is defined
as the number of observations in each interval used in the estimation (observa-
tions with inddat=1).

lint Input argument.

typeI Label indicating the type of intervals used to calculate the residuals, ’Overlap-
ping’.

h Input argument.

mlePP Input argument.

References

Abaurrea, J., Asin, J., Cebrian, A.C. and Centelles, A. (2007). Modeling and forecasting extreme
heat events in the central Ebro valley, a continental-Mediterranean area. Global and Planetary
Change, 57(1-2), 43-58.

Baddeley, A., Turner, R., Moller, J. and Hazelton, M. (2005). Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67,617-666.

Brillinger, D. (1994). Time series, point processes and hybrids. Can. J. Statist., 22, 177-206.

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

Lewis, P. (1972). Recent results in the statistical analysis of univariate point processes. In Stochastic
point processes (Ed. P. Lewis), 1-54. Wiley.

See Also

unifres.fun, graphres.fun

CalcResD.fun 7

Examples

X1<-rnorm(1000)
X2<-rnorm(1000)

modE<-fitPP.fun(tind=TRUE,covariates=cbind(X1,X2),
posE=round(runif(40,1,1000)), inddat=rep(1,1000),
tim=c(1:1000), tit="Simulated example",start=list(b0=1,b1=0,b2=0),
dplot=FALSE,modCI=FALSE,modSim=TRUE)

#Residuals, based on overlapping intervals of length 50, from the fitted NHPP modE

ResE<-CalcRes.fun(mlePP=modE, lint=50)

CalcResD.fun Calculate NHPP residuals on disjoint intervals

Description

This function calculates raw and scaled residuals of a NHPP based on disjoint intervals. The scaled
residuals can be Pearson or any other type of scaled residuals defined by the function h(t).

Usage

CalcResD.fun(mlePP, h = NULL, nint = NULL, lint = NULL, typeRes = NULL,
modSim = "FALSE")

Arguments

mlePP An object of class mlePP-class; usually, the output from fitPP.fun.

lint Optional. Length of the intervals to calculate the residuals.

h Optional. Weight function to calculate the scaled residuals. By default, Pearson

residuals with h(t) = 1/

√
λ̂(t) are calculated.

typeRes Optional. Label indicating the type of scaled residuals. By default, Pearson
residuals are calculated and label is ’Pearson’.

modSim Logical flag. If it is FALSE, some information on the intervals is shown on the
screen.

nint Number of intervals used to calculate the residuals. Intervals with the same
length are considered. Only one of lint or nint must be specified.

8 CalcResD.fun

Details

The intervals used to calculate the residuals can be specified either by nint or lint; only one of the
arguments must be provided. If nint is specified, intervals of equal length are calculated.

The raw residuals are based on the increments of the raw process R(t) = Nt−
∫ t

0
λ̂(u)du in disjoint

intervals (l1, l2) centered on t:

r′(l1, l2) = R(l2)−R(l1) =
∑

ti∈(l1,l2)

Iti −
∫ l2

l1

λ̂(u)du.

Residuals r′(l1, l2) are made ’instantaneous’ dividing by the length of the intervals (specified by
the argument lint), r(l1, l2) = r′(l1, l2)/(l2 − l1).

The function also calculates the residuals scaled with the function h(t)

rsca(l1, l2) =
∑

ti∈(l1,l2)

hti −
∫ l2

l1

h(u)λ̂(u)du.

By default, Pearson residuals with h(t) = 1/

√
λ̂(t) are calculated.

Value

A list with elements

RawRes Numeric vector of the raw residuals.

ScaRes A list with elements ScaRes (vector of the scaled residuals) and typeRes (name
of the type of scaled residuals).

emplambda Numeric vector of the empirical estimator of the PP intensity on the considered
intervals.

fittedlambda Numeric vector of the sum of the intensities λ̂(t) on the considered intervals,
divided by the length of the interval.

lintV Numeric vector of the exact length of each interval. The exact length is defined
as the number of observations in each interval used in the estimation (observa-
tions with inddat=1).

lint Input argument.

nint Input argument.

pm Numeric vector of the mean point of the intervals.

typeI Label indicating the type of intervals used to calculate the residuals, ’Disjoint’ .

h Input argument.

mlePP Input argument.

CIdelta.fun 9

References

Abaurrea, J., Asin, J., Cebrian, A.C. and Centelles, A. (2007). Modeling and forecasting extreme
heat events in the central Ebro valley, a continental-Mediterranean area. Global and Planetary
Change, 57(1-2), 43-58.

Baddeley, A., Turner, R., Moller, J. and Hazelton, M. (2005). Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67,617-666.

Brillinger, D. (1994). Time series, point processes and hybrids. Can. J. Statist., 22, 177-206.

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

Lewis, P. (1972). Recent results in the statistical analysis of univariate point processes. In Stochastic
point processes (Ed. P. Lewis), 1-54. Wiley.

See Also

CalcRes.fun, unifres.fun, graphres.fun

Examples

X1<-rnorm(1000)
X2<-rnorm(1000)

modE<-fitPP.fun(tind=TRUE,covariates=cbind(X1,X2),
posE=round(runif(40,1,1000)), inddat=rep(1,1000),
tim=c(1:1000), tit="Simulated example",start=list(b0=1,b1=0,b2=0),
dplot=FALSE,modCI=FALSE,modSim=TRUE)

#Residuals, based on 20 disjoint intervals of length 50, from the fitted NHPP modE

ResDE<-CalcResD.fun(mlePP=modE,lint=50)

CIdelta.fun Confidence intervals for λ(t) using delta method

Description

Given the β̂ covariance matrix (or its estimation), an approximate confidence interval for each λ(t)
is calculated using the delta method.

Usage

CIdelta.fun(VARbeta, lambdafit, covariates, clevel = 0.95)

10 CItran.fun

Arguments

VARbeta (Estimated) Covariance matrix of the β̂ parameter vector.

lambdafit Numeric vector of fitted values of the PP intensity λ̂(t).

covariates Matrix of covariates to estimate the PP intensity.

clevel Confidence level of the confidence intervals. A value in the interval (0,1).

Value

A list with elements

LIlambda Numeric vector of the lower values of the intervals.

UIlambda Numeric vector of the upper values of the intervals.

lambdafit Input argument.

Note

fitPP.fun calls CIdelta.fun when the argument is CIty=’Delta’.

References

Casella, G. and Berger, R.L., (2002). Statistical inference. Brooks/Cole.

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

See Also

CItran.fun, fitPP.fun, VARbeta.fun

Examples

aux<-CIdelta.fun(VARbeta=0.01, lambdafit=exp(rnorm(100)), covariates=matrix(rep(1,100)),
clevel=0.95)

CItran.fun Confidence intervals for λ(t) based on transformation

Description

Given the β̂ covariance matrix (or its estimation), an approximate confidence interval for each
λ(t) = exp(ν(t)) is calculated using a transformation of the confidence interval for the linear
predictor ν(t) = X(t)β. The transformation is exp(Ii), where Ii are the confidence limits of ν(t).

Usage

CItran.fun(VARbeta, lambdafit, covariates, clevel = 0.95)

confintAsin.fun 11

Arguments

VARbeta (Estimated) Coariance matrix of the β̂ parameter vector.

lambdafit Numeric vector of fitted values of the PP intensity λ̂(t).

covariates Matrix of covariates to estimate the PP intensity.

clevel Confidence level of the confidence intervals. A value in the interval (0,1).

Value

A list with elements

LIlambda Numeric vector of the lower values of the intervals.

UIlambda Numeric vector of the upper values of the intervals.

lambdafit Input argument.

Note

fitPP.fun calls CItran.fun when the argument is CIty=’Transf’.

References

Casella, G. and Berger, R.L., (2002). Statistical inference. Brooks/Cole.

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

See Also

CIdelta.fun, fitPP.fun, VARbeta.fun

Examples

aux<-CItran.fun(VARbeta=0.01, lambdafit=exp(rnorm(100)), covariates=matrix(rep(1,100)),
clevel=0.95)

confintAsin.fun Compute confidence intervals for the β parameters

Description

This function computes confidence intervals for the β parameters.

Usage

confintAsin.fun(mlePP, level = 0.95)

12 confintAsin.fun

Arguments

mlePP A "mlePP"-class object; usually the output from fitPP.fun.

level The confidence level required for the intervals.

Details

The confidence intervals calculated by this function are based on the asymptotic normal approx-
imation of th MLE of the β parameters, that is (β̂ − z(1−α/2)s.e.(β̂), β̂ + z(1−α/2)s.e.(β̂)) with
α = 1− level

Value

A matrix with two columns, the first contains the lower limits of the confidence intervals of all the
parameters and the second the upper limits.

References

Casella, G. and Berger, R.L., (2002). Statistical inference. Brooks/Cole.

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

See Also

confint, VARbeta.fun

Examples

data(BarTxTn)

covB<-cbind(cos(2*pi*BarTxTn$dia/365), sin(2*pi*BarTxTn$dia/365),
BarTxTn$TTx,BarTxTn$Txm31,BarTxTn$Txm31**2)

BarEv<-POTevents.fun(T=BarTxTn$Tx,thres=318,
date=cbind(BarTxTn$ano,BarTxTn$mes,BarTxTn$dia))

mod1B<-fitPP.fun(covariates=covB,
posE=BarEv$Px, inddat=BarEv$inddat,
tit="BAR Tx; cos, sin, TTx, Txm31, Txm31**2",
start=list(b0=-100,b1=1,b2=-1,b3=0,b4=0,b5=0))

confintAsin.fun(mod1B)

dropAIC.fun 13

dropAIC.fun Calculate the AIC for all one-covariate deletions from the current
model

Description

This function fits all models obtained from the current model by deleting one covariate (except the
intercept), and calculates their AIC value. It selects the best covariate to be deleted, according to
the AIC value.

Usage

dropAIC.fun(mlePP, modSim = FALSE,...)

Arguments

mlePP A "mlePP"-class object; usually the output from fitPP.fun. It defines the cur-
rent model. The fitted model cannot include fixed parameters.

modSim Logical flag. If it is FALSE, information about the process is shown on the
screen. For automatic selection processes, the option TRUE should be preferred.

... Further arguments to pass to AIC, for example the constant k for the AIC calcu-
lation.

Details

The definition of AIC uses constant k=2, but a different value k can be passed as an additional
argument. The best covariate to be deleted is the one whose deletion leads to the model with the
lowest AIC value and it improves the current model if the new AIC is lower than the current one.

Value

A list with the following components

AICadd Vector of the AIC values obtained from deleting each covariate of the current
model.

posminAIC An integer indicating the number of the column of the covariates matrix with
the covariate leading to the minimum AIC.

namecov Name of the covariate leading to the minimum AIC.

AICcurrent AIC value of the current (initial) model.

References

Casella, G. and Berger, R.L., (2002). Statistical inference. Brooks/Cole.

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Fourth edition.
Springer.

14 emplambda.fun

See Also

addAIC.fun, stepAICmle.fun, LRTpv.fun

Examples

data(BarTxTn)

BarEv<-POTevents.fun(T=BarTxTn$Tx,thres=318,
date=cbind(BarTxTn$ano,BarTxTn$mes,BarTxTn$dia))

covB<-cbind(cos(2*pi*BarTxTn$dia/365), sin(2*pi*BarTxTn$dia/365),
BarTxTn$TTx,BarTxTn$Txm31,BarTxTn$Txm31**2)

dimnames(covB)<-list(NULL,c('cos','sin','TTx','Txm31', 'Txm31**2'))

mod1B<-fitPP.fun(covariates=covB, posE=BarEv$Px, inddat=BarEv$inddat,
tit="BAR Tx; cos, sin, TTx, Txm31, Txm31**2",
start=list(b0=-100,b1=1,b2=10,b3=0,b4=0,b5=0))

aux<-dropAIC.fun(mod1B)

emplambda.fun Empirical occurrence rates of a NHPP on overlapping intervals

Description

This function calculates the empirical occurrence rates of a point process on overlapping intervals.
The empirical rate centered in each time of the observation period is calculated using intervals of a
given length. A plot of the empirical rate over time can be performed optionally.

Usage

emplambda.fun(posE, t, lint, plotEmp = TRUE, inddat = NULL, tit ="",
scax = NULL, scay = NULL)

Arguments

posE Numeric vector of the position of the occurrence points of the NHPP (or any
point process in time).

t Time index of the observation period. The simplest option is 1,...,n with n the
length of the period.

lint Length of the intervals used to calculate the rates.

plotEmp Logical flag. If it is TRUE, a plot of the empirical rate is carried out.

inddat Optional. Index vector equal to 1 for the observations used in the estimation
process By default, all the observations are considered, see POTevents.fun.

tit Character string. A title for the plot.

emplambdaD.fun 15

scax Optional. A two element vector indicating the x-scale for the plot.

scay Optional. A two element vector indicating the y-scale for the plot.

Value

A list with elements

emplambda Vector of the empirical rates.

lint Input argument.

See Also

emplambdaD.fun, fitPP.fun, POTevents.fun

Examples

data(BarTxTn)

BarEv<-POTevents.fun(T=BarTxTn$Tx,thres=318,
date=cbind(BarTxTn$ano,BarTxTn$mes,BarTxTn$dia))

empirical rate based on overlapping intervals
emplambdaB<-emplambda.fun(posE=BarEv$Px,inddat=BarEv$inddat, t=c(1:8415),
lint=153, tit="Barcelona")

emplambdaD.fun Empirical occurrence rates of a NHPP on disjoint intervals

Description

This function calculates the empirical occurrence rates of a point process using disjoint intervals.
The rate is assigned to the mean point of the interval. A plot of the empirical rate over time can be
performed optionally.

Usage

emplambdaD.fun(posE, t, lint=NULL, nint = NULL, plotEmp = TRUE, inddat = NULL,
tit = "", scax = NULL, scay = NULL)

Arguments

posE Numeric vector of the position of the occurrence points of the NHPP (or any
point process in time).

t Time index of the observation period. The simplest option is 1,...,n with n the
length of the period.

16 emplambdaD.fun

lint Optional (alternative argument to nint). Length of the intervals used to calculate
the rates.

nint Optional (alternative argument to lint). Number of intervals (of equal length)
used to to calculate the rates. It is an alternative way to lint for identifying the
intervals.

plotEmp Logical flag. If it is TRUE, a plot of the empirical rate is carried out.

inddat Optional. Index vector equal to 1 for the observations used in the estimation
process. By default, all the observations are considered, see POTevents.fun.

tit Character string. A title for the plot.

scax Optional. A two element vector indicating the x-scale for the plot.

scay Optional. A two element vector indicating the y-scale for the plot.

Details

The intervals can be specified either by nint or lint; only one of the arguments must be provided.

Value

A list with elements

emplambda Vector of the empirical rates.

lint Input argument.

nint Input argument.

See Also

emplambda.fun, fitPP.fun, POTevents.fun

Examples

data(BarTxTn)

BarEv<-POTevents.fun(T=BarTxTn$Tx,thres=318,
date=cbind(BarTxTn$ano,BarTxTn$mes,BarTxTn$dia))

empirical rate based on disjoint intervals using nint to specify the intervals
emplambdaDB<-emplambdaD.fun(posE=BarEv$Px,inddat=BarEv$inddat, t=c(1:8415),
nint=55)

empirical rate based on disjoint intervals using lint to specify the intervals
emplambdaDB<-emplambdaD.fun(posE=BarEv$Px,inddat=BarEv$inddat, t=c(1:8415),
lint=153)

extractAIC-methods 17

extractAIC-methods Method mle for Function extractAIC

Description

Method for generic function extractAIC for objects of the S4-class mle or mlePP. It is the same
method as in stats4 (that method is not available outside that package).

Methods

signature(fit = "ANY")

signature(fit = "mle")

fitPP.fun Fit a non homogeneous Poisson Process

Description

This function fits by maximum likelihood a NHPP where the intensity λ(t) is formulated as a
function of covariates. It also calculates and plots approximate confidence intervals for λ(t).

Usage

fitPP.fun(covariates = NULL, start, fixed=list(), posE = NULL, inddat = NULL,
POTob = NULL, nobs = NULL, tind = TRUE, tim = NULL, minfun="nlminb",
modCI = "TRUE", CIty = "Transf", clevel = 0.95,
tit = "", modSim = "FALSE", dplot = TRUE, xlegend = "topleft",

lambdaxlim=NULL,lambdaylim=NULL,...)

Arguments

covariates Matrix of the covariates to be included in the linear predictor of the PP intensity
(each column is a covariate). It is advisable to give names to the columns of this
matrix (using dimnames), since they will be used in the output. Otherwise the
default names ’Covariate i’ are used. The offset covariates must be included in
this matrix. A maximum of 50 covariates are allowed.

start Named list of the initial values for the estimation of the β parameters (including
fixed parameters). The names of the list must be (compulsory): b0 (for the
intercept), b1 (for the first column in covariates), b2 (for the second column),
b3 (for the third column), etc.

fixed Named list of the fixed β parameters. The elements of this list must be elements
of the list start.

posE Optional (see Details section). Numeric vector of the position of the PP occur-
rence points.

18 fitPP.fun

inddat Optional (see Details section). Index vector equal to 1 for the observations used
in the estimation process By default, all the observations are considered.

POTob Optional (see Details section). List with elements T and thres that defines the
PP resulting from a POT approach; see POTevents.fun for more details.

nobs Optional. Number of observations in the observation period; it is only necces-
sary if POTob, inddat and covariates are NULL.

tind Logical flag. If it is TRUE, an independent term is fitted in the linear predictor.
It cannot be a character string, so TRUE and not’TRUE’ should be used.

tim Optional. Time vector of the observation period. By default, a vector 1,...n is
considered.

minfun Label indicating the function to minimize the negative of the loglikelihood func-
tion. There are two possible values: "nlminb" (the default option) and "optim".
In the last case, the method of optimization can be chosen with an additional
method argument.

modCI Logical flag. If it is TRUE, confidence intervals for λ(t) values are calculated.

CIty Label indicating the method to calculate the approximate confidence intervals
for λ(t). It can be "Transf" for transformed asymptotic intervals (default) or
"Delta" for the delta method; see CItran.fun and CIdelta.fun for details.

clevel Confidence level of the confidence intervals.

tit Character string. A title for the plot.

modSim Logical flag. If it is FALSE, information on the estimation process is shown on
the screen. For simulation process, the option TRUE should be preferred.

dplot Logical flag. If it is TRUE, the fitted intensity is plotted.

xlegend Label indicating the position where the legend on the graph will be located.

lambdaxlim Optional. Numeric vector of length 2, giving the lowest and highest values
which determine the x range.

lambdaylim Optional. Numeric vector of length 2, giving the lowest and highest values
which determine the y range.

... Further arguments to pass to optim or to nlminb (depending on the value of the
minfun argument).

Details

A Poisson process (PP) is usually specified by a vector containing the occurrence points of the pro-
cess (ti)ki=1, (argument posE). Since PP are often used in the framework of POT models, fitPP.fun
also provides the possibility of using as input the series of the observed values in a POT model
(xi)

n
i=1 and the threshold used to define the extreme events (argument POTob).

In the case of PP defined by a POT approach, the observations of the extreme events which are
not defined as the occurrence point are not considered in the estimation. This is done through the
argument inddat, see POTevents.fun. If the input is provided via argument POTob, index inddat is
calculated automatically. See Coles (2001) for more details on the POT approach.

The maximization of the loglikelihood function can be done using two different optimization rou-
tines, optim or nlminb, selected in the argument minfun. Depending on the covariates included in
the function, one routine can succeed to converge when the other fails.

fitPP.fun 19

This function allows us to keep fixed some β parameters (offset terms). This can be used to specify
an a priori known component to be included in the linear predictor during fitting. The fixed pa-
rameters must be specified in the fixed argument (and also in start); the fixed covariates must be
included as columns of covariates.

The estimation of the β̂ covariance matrix is based on the asymptotic distribution of the MLE β̂,
and calculated as the inverse of the negative of the hessian matrix. Confidence intervals for λ(t) can
be calculated using two approaches specified in the argument CIty. See Casella (2002) for more
details on ML theory and delta method.

Value

An object of class mlePP, which is a subclass of mle. Consequently, many of the generic functions
with mle methods, such as logLik or summary, can be applied to the output of this function. Some
other generic functions related to fitted models, such as AIC or BIC, can also be applied to mlePP
objects.

Note

A homogeneous Poisson process (HPP) can be fitted as a particular case, using an intensity defined
by only an intercept and no covariate.

References

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

Coles, S. (2001). An introduction to statistical modelling of extreme values. Springer.

Casella, G. and Berger, R.L., (2002). Statistical inference. Brooks/Cole.

Kutoyants Y.A. (1998).Statistical inference for spatial Poisson processes. Lecture notes in Statistics
134. Springer.

See Also

POTevents.fun, globalval.fun, VARbeta.fun, CItran.fun, CIdelta.fun

Examples

#model fitted using as input posE and inddat and no confidence intervals

data(BarTxTn)
covB<-cbind(cos(2*pi*BarTxTn$dia/365), sin(2*pi*BarTxTn$dia/365),
BarTxTn$TTx,BarTxTn$Txm31,BarTxTn$Txm31**2)
BarEv<-POTevents.fun(T=BarTxTn$Tx,thres=318,
date=cbind(BarTxTn$ano,BarTxTn$mes,BarTxTn$dia))

mod1B<-fitPP.fun(covariates=covB,
posE=BarEv$Px, inddat=BarEv$inddat,
tit="BAR Tx; cos, sin, TTx, Txm31, Txm31**2",
start=list(b0=-100,b1=1,b2=-1,b3=0,b4=0,b5=0))

20 GenEnv.fun

#model fitted using as input a list from POTevents.fun and with confidence intervals

tiempoB<-BarTxTn$ano+rep(c(0:152)/153,55)

mod2B<-fitPP.fun(covariates=covB,
POTob=list(T=BarTxTn$Tx, thres=318),
tim=tiempoB, tit="BAR Tx; cos, sin, TTx, Txm31, Txm31**2",
start=list(b0=-100,b1=1,b2=-1,b3=0,b4=0,b5=0),CIty="Delta",modCI=TRUE,
modSim=TRUE)

#model with a fixed parameter (b0)

mod1BF<-fitPP.fun(covariates=covB,
posE=BarEv$Px, inddat=BarEv$inddat,
tit="BAR Tx; cos, sin, TTx, Txm31, Txm31**2",
start=list(b0=-89,b1=1,b2=10,b3=0,b4=0,b5=0),
fixed=list(b0=-100))

GenEnv.fun Calculation of simulated envelopes

Description

This function calculates a point estimation and an envelope for a given statistic using a Monte Carlo
approach. The statistic must be a function of the occurrence points of a NHPP.

It calls the auxiliary function funSim.fun (not intended for the users), see Details section.

Usage

GenEnv.fun(nsim, lambda, fun.name, fun.args = NULL, clevel = 0.95,
cores = 1, fixed.seed=NULL)

Arguments

nsim Number of simulations for the calculations.

lambda Numeric vector of the intensity λ(t) (or λ̂(t)) of the NHPP.

fun.name Name of the function defining the statistic to be estimated.

fun.args Additional arguments for the function fun.name.

clevel Confidence level of the envelope.

cores Optional. Number of cores of the computer to be used in the calculations. De-
fault: one core is used.

fixed.seed An integer or NULL. If it is an integer, that is the value used to set the seed in
random generation processes. It it is NULL, a random seed is used.

globalval.fun 21

Details

The auxiliary function funSim.fun generates a simulated sample of the occurrence points in a
NHPP and calculates the corresponding statistic using the simulated points.

Value

A list with elements

valmed Point estimation (mean value) of the statistic to be calculated.
valinf Lower value of the simulated CI.
valsup Upper value of the simulated CI.
lambda Input argument.
nsim Input argument.
nsimval Number of valid simulations (used in the calculation of the CI and the point

estimation).
fixed.seed Input argument.

See Also

simNHP.fun, resQQplot.fun

Examples

Calculation of the point estimation and a 95% CI based on 100 simulations
#for the second occurrence time of a NHPP with intensity lambdat.
#posk.fun(x, k) is a function that returns the value in the row k of vector x.

lambdat<-runif(1000,0.01,0.02)
aux<-GenEnv.fun(lambda=lambdat,fun.name="posk.fun",fun.args=2,nsim=100)

#if we want reproducible results, we can fixed the seed in the generation process
#(the number of cores used in the calculations must also be the same to reproduce
#the result)

aux<-GenEnv.fun(lambda=lambdat,fun.name="posk.fun",fun.args=2,nsim=100,fixed.seed=123)

#the result (with 1 core): Lower interval: 25.55; Mean value: 136.06; Upper interval: 288

globalval.fun Perform a global validation analysis for a NHPP

Description

This function performs a thorough validation analysis for a fitted NHPP. It calculates the (general-
ized) uniform and the raw (or scaled) residuals, performs residual plots for the uniform residuals,
and time residual and lurking variable plots for the raw or scaled residuals. It also plots the fitted
and empirical estimations of the NHPP intensity. Optionally, it also performs a residual QQplot.

22 globalval.fun

Usage

globalval.fun(mlePP, lint = NULL, nint = NULL, Xvar = NULL,
namXvar = NULL, Xvart = NULL, namXvart = NULL, h = NULL, typeRes = NULL,
typeResLV="Pearson",typeI = "Disjoint", nsim = 100, clevel = 0.95,
resqqplot = FALSE, nintLP = 100, tit = "", flow = 0.5, addlow = FALSE,
histWgraph=TRUE,plotDisp=c(2,2), indgraph = FALSE, scax = NULL, scay = NULL,
legcex = 0.5, cores = 1, xlegend = "topleft", fixed.seed=NULL)

Arguments

mlePP An object of class mlePP-class; usually, the output from fitPP.fun.

lint Length of the intervals used to calculate the residuals.

nint Number of intervals used to calculate the residuals. Intervals of equal length
are considered. Only used if typeI="Disjoint". In that case, only one of the
arguments lint or nint must be specified.

Xvar Optional. Matrix of the lurking variables (each column is a variable).

namXvar Optional. Vector of names of the variables in Xvar.

Xvart Optional. Matrix of the variables for the residual plots (each column is a vari-
able). A time plot is performed in all the cases.

namXvart Optional. Vector of names of the variables in Xvart.

h Optional. Weight function to calculate the scaled residuals. By default, Pearson
residuals with

h(t) = 1/

√
λ̂(t)

are calculated. This function is used to calculate both the scaled residuals and
the residuals for the lurking variables (except if typeResLV="Raw").

typeRes Optional. Label indicating the type of scaled residuals. By default, Pearson
residuals are calculated and label is "Pearson".

typeResLV Label indicating the type of residuals ("Raw" or any type of scaled residuals
such as "Pearson") to calculate the residuals for the lurking variable plots.

typeI Label indicating the type ("Overlapping" or "Disjoint") of intervals used to cal-
culate the residuals.

clevel Confidence level of the residual envelopes.

resqqplot Logical flag. It is is TRUE, a residual qqplot is carried out.

nsim Number of simulations for the residual qqplot.

nintLP Number of levels considered in the lurking variables. It is used as argument nint
in the call of the function graphResCov.fun.

tit Character string. A title for the plot.

flow Argument f for the lowess smoother of the raw (or scaled) residual plots, see
lowess.

addlow Logical flag. If it is TRUE, a lowess is added in the residual plots.

globalval.fun 23

histWgraph Logical flag. If it is TRUE, a new graphical device is opened with the option
record=TRUE, so that the history of all plots is recorded in the new device. This
option may not work on some platforms; for example, RStudio does not allow
the user to open new graphical devices.

plotDisp A vector of the form c(nr, nc). The residual plots in graphresU.fun, graphres.fun
and graphResCov.fun will be drawn in a nr×nc layout. It is used as argument
mfrow in par. By default, a 2 × 2 layout is used.

indgraph Logical flag. If it is TRUE, the validation plots (except the residual versus vari-
ables plots) in graphresU.fun are carried out in four 1 × 1 layouts. By default,
a 2 × 2 layout is used.

scax Optional. Vector of two values indicating the range of values for the x-axis in
the fitted and empirical rate plot. An adequate range is selected by default.

scay Optional. Vector of two values indicating the range of values for the x-axis in
the fitted and empirical rate plot. An adequate range is selected by default.

legcex cex argument for the legend in the residual time plots (see par for details).

cores Optional. Number of cores of the computer to be used in the calculations. De-
fault: one core is used.

xlegend Argument xlegend used in the call of the function graphrate.fun; see that
function for details.

fixed.seed An integer or NULL. It is the argument for resQQplot.fun.

Details

If typeI="Overlapping", argument lint is compulsory. If typeI="Disjoint", only one of the arguments
lint or nlint must be specified.

Value

A list with the same elements that CalcRes.fun or CalcResD.fun (depending on the value of the
argument typeI).

References

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

See Also

graphres.fun, graphrate.fun, resQQplot.fun, graphResCov.fun, graphresU.fun

Examples

data(BarTxTn)

covB<-cbind(cos(2*pi*BarTxTn$dia/365), sin(2*pi*BarTxTn$dia/365),
BarTxTn$TTx,BarTxTn$Txm31,BarTxTn$Txm31**2)

24 graphrate.fun

modB<-fitPP.fun(tind=TRUE,covariates=covB,
POTob=list(T=BarTxTn$Tx, thres=318),
tit="BAR Tx; cos, sin, TTx, Txm31, Txm31**2",
start=list(b0=-100,b1=1,b2=10,b3=0,b4=0,b5=0),CIty="Transf",modCI=TRUE,
modSim=TRUE,dplot=FALSE)

#Since only one graphical device is opened and the argument histWgraph is TRUE
#by default, the different plots can be scrolled up and down with the "Page Up"
#and "Page Down" keys.

aux<-globalval.fun(mlePP=modB,lint=153,typeI="Disjoint",
typeRes="Raw",typeResLV="Raw",resqqplot=FALSE)

#If typeRes and typeResLV are not specified, Pearson residuals are calculated
#by default.

aux<-globalval.fun(mlePP=modB,lint=153,typeI="Disjoint",
resqqplot=FALSE)

graphrate.fun Plot fitted and empirical PP occurrence rates

Description

This function calculates the empirical and the cumulative fitted occurrence rate of a PP on overlap-
ping or disjoint intervals and plot them versus time.

Usage

graphrate.fun(objres = NULL, fittedlambda = NULL, emplambda = NULL, t = NULL,
lint = NULL, typeI = "Disjoint", tit = "", scax = NULL, scay = NULL,
xlegend = "topleft",histWgraph=TRUE)

Arguments

objres Optional. A list with (at least) elements fittedlambda, emplambda, t, and typeI.
For example, the output from CalcRes.fun or CalcResD.fun; see those func-
tions for details.

fittedlambda Optional. Numeric vector of the cumulative fitted intensities λ̂(t) over the con-
sidered intervals (and usually divided by the length of the interval).

emplambda Optional. Numeric vector of the empirical PP occurrence rates estimated over
the considered intervals (usually divided by the length of the interval).

t Optional. Time vector of the PP observation period.

lint Optional. Length of the intervals used to calculate the empirical and the (cumu-
lative) fitted occurrence intensities.

graphrate.fun 25

typeI Label indicating the type (’Overlapping’ or ’Disjoint’) of the intervals.

tit Character string. A title for the plot.

scax Optional. Vector of two values giving the range of values for the x-axis. An
adequate range is selected by default.

scay Optional. Vector of two values giving the range of values for the y-axis. An
adequate range is selected by default.

xlegend Label indicating the position where the legend on the graph will be located.

histWgraph Logical flag. If it is TRUE, a new graphical device is opened with the option
record=TRUE. This option may not work on some platforms; for example, RStu-
dio does not allow the user to open new graphical devices.

Details

Either the argument objres or the set of arguments (fittedlambda, emplambda, t) must be specified.
If objres is provided, fittedlambda, emplambda, t,lint and typeI are ignored.

In order to make comparable the empirical and the fitted occurrence rates, a cumulative fitted rate
must be used. That means that argument fittedlambda must be the sum of the intensities fitted by
the model over the same interval where the empirical rates have been calculated.

See Also

CalcRes.fun, CalcResD.fun

Examples

##plot of rates based on overlapping intervals
graphrate.fun(emplambda=runif(500,0,1), fittedlambda=runif(500,0,1),
t=c(1:500), lint=100, tit="Example", typeI="Overlapping")

#plot of rates based on disjoint intervals
graphrate.fun(emplambda=runif(50,0,1), fittedlambda=runif(50,0,1),
t=c(1:50), lint=10, tit="Example", typeI="Disjoint")

#Example using objres as input. In this example X1 has no influence on the rate;
#consequently the fitted rate is almost a constant.

X1<-rnorm(1000)

modE<-fitPP.fun(tind=TRUE,covariates=cbind(X1),
posE=round(runif(40,1,1000)), inddat=rep(1,1000),
tim=c(1:1000), tit="Simulated example", start=list(b0=1,b1=0),
modCI=FALSE,modSim=TRUE,dplot=FALSE)

ResDE<-CalcResD.fun(mlePP=modE,lint=50)

graphrate.fun(ResDE, tit="Example")

26 graphres.fun

graphres.fun Plot NHPP residuals versus time or monotonous variables

Description

This function plots residuals of a NHPP (raw or scaled, overlapping or disjoint) versus time or other
variables which are monotonous functions.

Usage

graphres.fun(objres = NULL, typeRes = "Raw", t = NULL, res = NULL, lint = NULL,
posE = NULL, fittedlambda = NULL, typeI = "Disjoint", Xvariables = NULL,
namXv = NULL, histWgraph=TRUE, plotDisp=c(2,2), addlow = FALSE, lwd = 2,
tit = "", flow = 0.5, xlegend = "topleft", legcex = 0.5)

Arguments

objres Optional. A list with (at least) elements t, typeI and Rawres and/or ScaRes, de-
pending on the value of typeRes. For example, the output list from the functions
CalcRes.fun or CalcResD.fun; see those functions for details.

typeRes Label indicating the type of residuals ("Raw" or any type of scaled residuals
such as "Pearson").

t Optional. Time vector of the PP observation period.
res Optional. Vector of residuals.
lint Optional. Length of the intervals used to calculate the residuals.
posE Optional. Numeric vector of the PP occurrence times. Only used when typeI =

"Overlapping".
fittedlambda Optional. Vector of the cumulative fitted PP intensity over the intervals. Used to

calculate the envelopes when typeRes="Raw".
typeI Label indicating the type ("Overlapping" or "Disjoint") of intervals.
Xvariables Optional. Matrix of the variables for the residual plots (each column is a vari-

able).
namXv Optional. Vector of the names of the variables in Xvariables.
histWgraph Logical flag. If it is TRUE, a new graphical device is opened with the option

record=TRUE, so that the history of all plots is recorded in the new device. This
option may not work on some platforms; for example, RStudio does not allow
the user to open new graphical devices.

plotDisp A vector of the form c(nr, nc). The residual plots will be drawn in a nr×nc
array. It is used as argument mfrow in par. By default, a 2 × 2 window is used.

tit Character string. A title for the plots.
addlow Logical flag. If it is TRUE, a lowess is added to the residual plots.
lwd Argument lwd for plotting the lowess lines, see par for details.
flow Argument f for the lowess, see lowess for details.
xlegend Label giving the position of the graph where the legend will be located.
legcex Argument cex for the legend, see par for details.

graphres.fun 27

Details

Either argument objres or pair of arguments (t,res) must be specified. If objres is provided, argu-
ments t,res, typeRes, typeI, posE and fittedlambda are ignored.

A residual plot versus time is always performed. These plots are intended for time or variables
which are monotonous functions, since residuals are calculated over a given time interval and plot-
ted versus the value of the variables in the mean point of the interval.

A smoother (lowess) of the residuals can be optionally added to the plots. In the case of overlapping
intervals, the residuals of the occurrence points are marked differently from the rest. In the case
typeRes="Raw" (if argument fittedlambda is available) or typeRes="Pearson", envelopes for the
residuals are also plotted. The envelopes are based on an approach analogous to the one shown in
Baddeley et al. (2005) for spatial Poisson processes. The envelopes for raw residuals are,

± 2

l2 − l1

√ ∑
i∈(l1,l2)

λ̂(i)

where index i runs over the integers in the interval (l1, l2). The envelopes for the Pearson residuals
are,

±2/
√
l2 − l1.

These plots allow us to analyze the effect on the intensity, of the covariates included in the model
or other potentially influent variables. They show if the mean or the dispersion of the residuals vary
sistematically, see for example residual analysis in Atkinson (1985) or Collett (1994).

References

Atkinson, A. (1985). Plots, transformations and regression. Oxford University Press.

Baddeley, A., Turner, R., Moller, J. and Hazelton, M. (2005). Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B, 67, 617-666.

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

Collett, D. (1994). Modelling survival data in medical research. Chapman & Hall.

See Also

graphrate.fun

Examples

#Example using objres as input

X1<-c(1:1000)**0.5

modE<-fitPP.fun(tind=TRUE,covariates=cbind(X1),
posE=round(runif(40,1,1000)), inddat=rep(1,1000),
tim=c(1:1000), tit="Simulated example", start=list(b0=1,b1=0),
modSim = TRUE, dplot = FALSE)

ResDE<-CalcResD.fun(mlePP=modE,lint=50)

28 graphResCov.fun

graphres.fun(objres=ResDE, typeRes="Raw", Xvariables=cbind(X1),
namXv=c("X1"), plotDisp=c(2,1), addlow=TRUE,tit="Example")

#Example using the set of arguments res, t and fittedlambda as input
#In this case, with typeI="Disjoint", only values of t, fittedlambda and Xvariables
#in the midpoint of the intervals must be provided.

#Since a 1X1 layout is specified in plotDisp and only one
#graphical device is opened by default, the two resulting plots can be scrolled
#up and down with the "Page Up" and "Page Down" keys.

X1<-c(1:500)**0.5
graphres.fun(res=rnorm(50),posE=round(runif(50,1,500)),
fittedlambda=runif(500,0,1)[seq(5,495,10)],
t=seq(5,495,10), typeRes="Raw", typeI="Disjoint",Xvariables=X1[seq(5,495,10)],
namXv=c("X1"), plotDisp=c(1,1), tit="Example 2",lint=10)

graphResCov.fun Perform lurking variable plots for a set of variables

Description

This function performs lurking variable plots for a set of variables. The function graphResX.fun
performs the lurking variable plot for one variable and graphResCov.fun calls this function for a
set of variables; see graphResX.fun for details.

Usage

graphResCov.fun(Xvar, nint, mlePP, h = NULL, typeRes = "Pearson", namX = NULL,
histWgraph=TRUE, plotDisp=c(2,2), tit = "")

Arguments

Xvar Matrix of variables (each column is a variable).

nint Number of intervals each covariate is divided into to perform the lurking variable
plot.

mlePP An object of class mlePP-class; usually, the output from fitPP.fun.

typeRes Label indicating the type of residuals ("Raw" or any type of scaled residuals
such as "Pearson") used in the plots.

h Optional. Weight function used to calculate the scaled residuals (if typeRes is

not equal to "Raw"). By default, Pearson residuals with h(t) = 1/

√
λ̂(t) are

calculated. λ̂(t) is provided by element lambdafit in mlePP.

namX Optional. Vector of the names of the variables in Xvar.

graphResCov.fun 29

histWgraph Logical flag. If it is TRUE, a new graphical device is opened with the option
record=TRUE, so that the history of all plots is recorded in the new device. This
option may not work on some platforms; for example, RStudio does not allow
the user to open new graphical devices.

plotDisp A vector of the form c(nr, nc). The lurking variable plots will be drawn in a
nr×nc array. It is used as argument mfrow in par. By default, a 2 × 2 window
is used.

tit Character string. A title for the plot.

Value

A list with elements

mXres Matrix of residuals (each column contains the residuals of a variable).

mXm Matrix of mean values (each column contains the mean values of a variable in
each interval).

mXpc Matrix of the quantiles that define the intervals of each variable (each column
contains the quantiles of one variable).

nint Input argument.

mlePP Input argument.

References

Atkinson, A. (1985). Plots, transformations and regression. Oxford University Press.

Baddeley, A., Turner, R., Moller, J. and Hazelton, M. (2005). Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67,617-666.

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

See Also

graphResX.fun, graphres.fun

Examples

#Simulated process without any relationship with variables Y1 and Y2
#The plots are performed dividing the variables into 50 intervals
#Raw residuals.

X1<-rnorm(500)
X2<-rnorm(500)
auxmlePP<-fitPP.fun(posE=round(runif(50,1,500)), inddat=rep(1,500),
covariates=cbind(X1,X2),start=list(b0=1,b1=0,b2=0))

Y1<-rnorm(500)
Y2<-rnorm(500)

30 graphresU.fun

res<-graphResCov.fun(mlePP=auxmlePP, Xvar=cbind(Y1,Y2), nint=50,
typeRes="Raw",namX=c("Y1","Y2"),plotDisp=c(2,1))

#If more variables were specified in the argument Xvar, with
#the same 2X1 layout specified in plotDisp, the resulting plots could be
#scrolled up and down with the "Page Up" and "Page Down" keys.

graphresU.fun Validation analysis of PP uniform (generalized) residuals

Description

This function checks the properties that must be fulfilled by the uniform (generalized) residuals of
a PP: uniform character and uncorrelation. Optionally, the existence of patterns versus covariates
or potentially influent variables can be graphically analyzed.

Usage

graphresU.fun(unires, posE, Xvariables = NULL, namXv = NULL, flow = 0.5,
tit = "", addlow = TRUE, histWgraph=TRUE, plotDisp=c(2,2), indgraph = FALSE)

Arguments

unires Numeric vector of the uniform residuals.

posE Numeric vector of the occurrence times of the PP.

Xvariables Matrix of variables to perform the residual plots (each column is a variable).

namXv Optional. Vector of names of the variables in Xvariables.

tit Character string. A title for the plot.

addlow Logical flag. If it is TRUE, a lowess is added to the plots.

flow Argument f for the lowess smoother; see lowess for details.

histWgraph Logical flag. If it is TRUE, a new graphical device is opened with the option
record=TRUE, so that the history of all plots is recorded in the new device. This
option may not work on some platforms; for example, RStudio does not allow
the user to open new graphical devices.

plotDisp A vector of the form c(nr, nc). The residual versus variables plots will be
drawn in a nr×nc array. It is used as argument mfrow in par. By default, a 2 ×
2 layout is used.

indgraph Logical flag. If it is TRUE, the validation plots (except the residuals versus
variables plots) are carried out in four1 × 1 layouts. By default, a 2 × 2 layout
is used.

graphResX.fun 31

Details

The validation analysis of the uniform character consists in a uniform Kolmogorov-Smirnov test
and a qqplot with a 95% confidence band based on a beta distribution. The analysis of the serial
correlation is based on the Pearson correlation coefficient, Ljung-Box tests and a lagged serial
correlation plot. An index plot of the residuals and residual plots versus the variables in argument
Xvariables are performed to analyze the effect of covariates or other potentially influent variables.
These plots will show if the mean or dispersion of the residuals vary sistematically, see model
diagnostic of Cox-Snell residuals in Collett (1994) for more details.

References

Abaurrea, J., Asin, J., Cebrian, A.C. and Centelles, A. (2007). Modeling and forecasting extreme
heat events in the central Ebro valley, a continental-Mediterranean area. Global and Planetary
Change, 57(1-2), 43-58.

Baddeley, A., Turner, R., Moller, J. and Hazelton, M. (2005). Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B, 67, 617-666.

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

Collett, D. (1994). Modelling survival data in medical research. Chapman and Hall.

Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point
processes. Journal of the American Statistical Association, 83(401), 9-27.

See Also

unifres.fun, transfH.fun

Examples

#Since only one graphical device is opened and the argument histWgraph
#is TRUE by default, the resulting residual plots (three pages with the
#considered 1X2 layout for the residual versus variables plot)
#can be scrolled up and down with the "Page Up" and "Page Down" keys.

X1<-rnorm(500)
X2<-rnorm(500)

graphresU.fun(unires=runif(30,0,1),posE=round(runif(30,0,500)),
Xvariables=cbind(X1,X2), namXv=c("X1","X2"),tit="Example",flow=0.7,plotDisp=c(1,2))

graphResX.fun Perform a lurking variable plot

Description

This function performs a lurking variable plot to analyze the residuals in terms of different levels of
the variable.

32 graphResX.fun

Usage

graphResX.fun(X, nint, mlePP, typeRes = "Pearson", h = NULL, namX = NULL)

Arguments

X Numeric vector, the variable for the lurking variable plot.

nint Number of intervals or levels the variable is divided into.

mlePP An object of class mlePP-class; usually, the output from fitPP.fun.

typeRes Label indicating the type of residuals (’Raw’ or any type of scaled residuals such
as ’Pearson’).

h Optional. Weight function used to calculate the scaled residuals (if typeRes is

not equal to ’Raw’). By default, Pearson residuals with h(t) = 1/

√
λ̂(t) are

calculated. λ̂(t) is provided by the lambdafit slot in mlePP.

namX Optional. Name of variable X.

Details

The residuals for different levels of the variable are analyzed. For a variable X(t), the considered
levels are

W (PX,j , PX,j+1) = {t : PX,j ≤ X(t) < PX,j+1}
where PX,i is the sample j-percentile of X. This type of plot is specially useful for variables which
are not a monotonous function of time.

In the case typeRes=’Raw’ or typeRes=’Pearson’, envelopes for the residuals are also plotted. The
envelopes are based on an approach analogous to the one in Baddeley et al. (2005) for spatial
Poisson processes. The envelopes for raw residuals are

± 2

lW

√∑
i

λ̂(i)

where index i runs over the integers in the level W (PX,j , PX,j+1), and lW is its length (number of
observations in W). The envelopes for the Pearson residuals are,

±2/
√

lW .

Value

A list with elements

Xres Vector of residuals.

xm Vector of the mean value of the variable in each interval.

pc Vector of the quantiles that define the levels of the variable.

typeRes Input argument.

namX Input argument.

lambdafit Input argument.

posE Input argument.

LRTpv.fun 33

References

Atkinson, A. (1985). Plots, transformations and regression. Oxford University Press.

Baddeley, A., Turner, R., Moller, J. and Hazelton, M. (2005). Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617-666.

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

See Also

graphResCov.fun, graphres.fun

Examples

##Simulated process not related to variable X
##Plots dividing the variable into 50 levels

X1<-rnorm(500)
X2<-rnorm(500)
auxmlePP<-fitPP.fun(posE=round(runif(50,1,500)), inddat=rep(1,500),
covariates=cbind(X1,X2),start=list(b0=1,b1=0,b2=0))

##Raw residuals
res<-graphResX.fun(X=rnorm(500),nint=50,mlePP=auxmlePP,typeRes="Raw")

##Pearson residuals
res<-graphResX.fun(X=rnorm(500),nint=50,mlePP=auxmlePP,typeRes="Pearson")

LRTpv.fun Calculate the p-value of a likelihood ratio test for each covariate in
the model

Description

This function calculates, for each covariate in the model (except the intercept), the p-value of a
likelihood ratio test comparing the original fitted NHPP with the model excluding that covariate
from the linear predictor.

Usage

LRTpv.fun(mlePP)

Arguments

mlePP An object of class mlePP-class; usually, the output from fitPP.fun. The fitted
model cannot include fixed parameters.

34 mlePP-class

Details

A LRT is carried for all the covariates in the linear predictor except the intercept. If the model has
not an intercept and there is only one covariate, no test can be carried out.

Value

A matrix with one column, which contains the LRT p-values for all the covariates in the model
(except the intercept)

See Also

fitPP.fun, testlik.fun, dropAIC.fun, addAIC.fun

Examples

data(BarTxTn)
covB<-cbind(cos(2*pi*BarTxTn$dia/365), sin(2*pi*BarTxTn$dia/365),
BarTxTn$TTx,BarTxTn$Txm31,BarTxTn$Txm31**2)
BarEv<-POTevents.fun(T=BarTxTn$Tx,thres=318,
date=cbind(BarTxTn$ano,BarTxTn$mes,BarTxTn$dia))

mod1B<-fitPP.fun(tind=TRUE,covariates=covB,
posE=BarEv$Px, inddat=BarEv$inddat,
tit="BAR Tx; cos, sin, TTx, Txm31, Txm31**2",
start=list(b0=-100,b1=1,b2=10,b3=0,b4=0,b5=0),dplot=FALSE, modCI=FALSE)

LRTpv.fun(mod1B)

mlePP-class Class "mlePP" for results of maximum likelihood estimation of Poisson
processes with covariates

Description

This class encapsulates the output from the maximum likelihood estimation of a Poisson process
where the intensity is modeled as a linear function of covariates.

Objects from the Class

Objects can be created by calls of the form new("mlePP", ...), but most often as the result of a
call to fitPP.fun.

Slots

call: Object of class "language". The call to fitPP.fun.

coef: Object of class "numeric". The estimated coefficientes of the model.

mlePP-class 35

fullcoef: Object of class "numeric". The full coefficient vector, including the fixed parameters
of the model. It has an attribute, called ’TypeCoeff’ which shows the names of the fixed
parameters.

vcov: Object of class "matrix". Approximate variance-covariance matrix of the estimated coef-
ficients. It has an attribute, called ’CalMethod’ which shows the method used to calcualte
the inverse of the information matrix: ’Solve function’, ’Cholesky’, ’Not possible’ or ’Not
required’ if modCI=FALSE.

min: Object of class "numeric". Minimum value of objective function, that is the negative of the
loglikelihood function.

details: Object of class "list". The output returned from optim. If nlminb is used to minimize
the function, it is NULL.

minuslogl: Object of class "function". The negative of the loglikelihood function.

nobs: Object of class "integer". The number of observations.

method: Object of class "character". It is a bit different from the slot in the extended class mle:
here, it is the input argument minfun of fitPP.fun instead of the method used in optim (this
information already appears in details).

detailsb: Object of class "list".The output returned from nlminb. If optim is used to minimize
the function, it is NULL.

npar: Object of class "integer". Number of estimated parameters.

inddat: Object of class "numeric". Input argument of fitPP.fun.

lambdafit: Object of class "numeric". Vector of the fitted intensity λ̂(t).

LIlambda: Object of class "numeric". Vector of lower limits of the CI.

UIlambda: Object of class "numeric". Vector of upper limits of the CI.

convergence: Object of class "integer". A code of convergence. 0 indicates successful conver-
gence.

posE: Object of class "numeric". Input argument of fitPP.fun.

covariates: Object of class "matrix". Input argument of fitPP.fun.

tit: Object of class "character". Input argument of fitPP.fun.

tind: Object of class "logical". Input argument of fitPP.fun.

t: Object of class "numeric". Input argument of fitPP.fun.

Extends

Class "mle", directly.

Methods

Most of the S4 methods in stats4 for the S4-class mle can be used. Also a mle method for the generic
function extractAIC and a version of the profile mle method adapted to the mlePP objects are
available:

coef signature(object = "mle")

logLik signature(object = "mle")

36 POTevents.fun

nobs signature(object = "mle")

show signature(object = "mle")

summary signature(object = "mle")

update signature(object = "mle")

vcov signature(object = "mle")

confint signature(object = "mle")

extractAIC signature(object = "mle")

profile signature(fitted = "mlePP")

Some other generic functions related to fitted models, such as AIC or BIC, can also be applied to
mlePP objects.

Note

Let us remind that, as in all the S4-classes, the symbol @ must be used instead of $ to name the
slots: mlePP@covariates, mlepp@lambdafit, etc.

See Also

fitPP.fun, mle

Examples

showClass("mlePP")

POTevents.fun Calculate extreme events using a POT approach

Description

This function calculates the characteristics of the extreme events of a series (xi) defined using a peak
over threshold (POT) method with an extreme threshold. The initial and the maximum intensity
positions, the mean excess, the maximum excess and the length of each event are calculated.

Usage

POTevents.fun(T, thres, date = NULL)

Arguments

T Numeric vector, the series (xi) to calculate the extreme events.

thres Threshold value used to define the extreme events.

date Optional. A vector or matrix indicating the date of each observation.

profile-methods 37

Details

One of the elements of the output from this function is a vector (inddat) which marks the obser-
vations that should be used in the estimation of a point process, resulting from a POT approach.
The observations to be considered in the estimation are marked with 1 and correspond to the non
occurrence observations and to a single occurrence point per event. The occurence point is defined
as the point where maximum intensity of the event occurs.The observations in an extreme event
which are not the occurrence point are marked with 0 and treated as non observed.

Value

A list with components

Pi Vector of the initial points of the extreme events.

datePi Date of the initial points Pi.

Px Vector of the points of maximum excess of the extreme events.

datePx Vector of the date of the maximum excess points Px.

Im Vector of the mean excesses (over the threshold) of the extreme events.

Ix Vector of the maximum excesses (over the threshold) of the extreme events.

L Vector of the lengths of the extreme events.

inddat Index equal to 1 in the observations used in the estimation process and to 0 in
the others.

See Also

fitPP.fun

Examples

data(BarTxTn)
dateB<-cbind(BarTxTn$ano,BarTxTn$mes,BarTxTn$diames)
BarEv<-POTevents.fun(T=BarTxTn$Tx,thres=318, date=dateB)

profile-methods Method mlePP for Function profile

Description

Method for generic function profile for objects of the S4-class mlePP. It is almost identical to the
method mle for this function in stats4, but small changes have to be done due to the differences in
the arguments of the functions mle and fitPP.fun. In order to profile an mlePP object, its vcov
slot cannot be missing. That means that if the function fitPP.fun is used to create the object, the
argument modCI=TRUE must be used.

Methods

signature(fitted = "mlePP")

38 resQQplot.fun

resQQplot.fun Perform a qqplot for the residuals of a NHPP

Description

This function performs a qqplot comparing the empirical quantiles of the residuals with the expected
quantiles under the fitted NHPP, calculated by a Monte Carlo approach.

It calls the auxiliary function resSim.fun (not intended for the users), see Details section.

Usage

resQQplot.fun(nsim, objres, covariates, clevel = 0.95, cores = 1,
tit ="", fixed.seed=NULL, histWgraph=TRUE)

Arguments

nsim Number of simulations for the calculations.

objres A list with the same elements of the output list from the function CalcRes.fun
or CalcResD.fun.

covariates Matrix of covariates to fit the NHPP (each column is a covariate).

clevel Confidence level of the residual envelope.

cores Optional. Number of cores of the computer to be used in the calculations. De-
fault: one core is used.

tit Character string. A title for the plot.

fixed.seed An integer or NULL. If it is an integer, that is the value used to set the seed in
random generation processes. It it is NULL, a random seed is used.

histWgraph Logical flag. Only used in Windows platforms. If it is TRUE, a new graphical
device is opened with the option record=TRUE.

Details

The expected quantiles are calculated as the median values of the simulated samples. Confidence
intervals for each quantile r(i) with pointwise significance level clevel are calculated as quantiles
of probability 1-clevel /2 and clevel/2 of the simulated sample for each residual.

All type of residuals (disjoint or overlapping and Pearson or raw residuals) are supported by this
function. However, the qqplot for overlapping residuals can be a high time consuming process. So,
disjoint residuals should be prefered in this function.

The auxiliary function resSim.fun generates a NHPP with intensity λ(t), fits the model using the
covariate matrix and calculates the residuals.

simNHP.fun 39

Value

A list with elements

resmed Numeric vector containing the mean of the simulated residuals in each point.

ressup Numeric vector of the upper values of the simulated envelopes.

resinf Numeric vector of the lower values of the simulated envelopes.

objres Input argument.

nsim Input argument.

fixed.seed Input argument.

References

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

See Also

simNHP.fun, GenEnv.fun

Examples

X1<-rnorm(500)
X2<-rnorm(500)

aux<-fitPP.fun(tind=TRUE,covariates=cbind(X1,X2),
posE=round(runif(40,1,500)), inddat=rep(1,500),
tim=c(1:500), tit="Simulated example", start=list(b0=1,b1=0,b2=0),dplot=FALSE)

auxRes<-CalcResD.fun(mlePP=aux,lint=50)

#if we want reproducible results, we can fixed the seed in the generation process
#(the number of cores used in the calculations must also be the same to reproduce
the result)

auxqq<-resQQplot.fun(nsim=50,objres=auxRes, covariates=cbind(X1,X2), fixed.seed=123)

simNHP.fun Generate the occurrence points of a NHPP

Description

This function generates the occurrence times of the points of a NHPP with a given time-varying
intensity λ(t), in a period (0, T). The length of argument lambda determines T, the length of the
observation period.

It calls the auxiliary function buscar (not intended for the users), see Details section.

40 simNHP.fun

Usage

simNHP.fun(lambda, fixed.seed=NULL)

Arguments

lambda Numeric vector, the time varying intensity λ(t) to generate the NHPP.

fixed.seed An integer or NULL. If it is an integer, that is the value used to set the seed in
random generation processes. It it is NULL, a random seed is used.

Details

The generation of the NHPP points consists in two steps. First, the points of a homogeneous PP
of intensity 1 are generated using independent exponentials. Then, the homogeneous occurrence
times are transformed into the points of a non homogeneous process with intensity λ(t). This
transformation is performed by the auxiliary function buscar (not intended for the user).

Value

A list with elements

posNH Numeric vector of the occurrences times of the NHPP generated in the observa-
tion period (0,T).

lambda Input argument.

fixed.seed Input argument.

References

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

Ross, S.M. (2006). Simulation. Academic Press.

See Also

GenEnv.fun, resQQplot.fun

Examples

#Generation of the occurrence times of a homogeneours PP with constant intensity
#0.01 in a period of time of length 1000

aux<-simNHP.fun(lambda=rep(0.01,1000))
aux$posNH

#if we want reproducible results, we can fixed the seed in the generation process
aux<-simNHP.fun(lambda=rep(0.01,1000),fixed.seed=123)
aux$posNH

#and the result is:
[1] 85 143 275 279 284 316 347 362 634 637 738 786 814 852 870 955

stepAICmle.fun 41

#Generation of the occurrence times of a NHPP with time-varying intensity t in
#a period of time of length 500

t<-runif(500, 0.01,0.1)
aux<-simNHP.fun(lambda=t)
aux$posNH

stepAICmle.fun Choose the best PP model by AIC in a stepwise algorithm

Description

Performs stepwise model selection by AIC for Poisson proces models estimated by maximum like-
lihood.

It calls the auxiliary function checkdim (not intended for the users).

Usage

stepAICmle.fun(ImlePP, covariatesAdd = NULL, startAdd = NULL,
direction = "forward", ...)

Arguments

ImlePP A mlePP-class object; usually the output from fitPP.fun. It defines the initial
model of the stepwise algorithm. The fitted model cannot include fixed param-
eters.

covariatesAdd Matrix of the potential covariates to be added to the model; each column must
contain a covariate. In the ’forward’ and the ’both’ directions, it is compulsory
to assign a matrix to this argument. It is advisable to give names to the columns
of this matrix (using dimnames) since, they will be used in the output. Otherwise
the default names ’New Covariate i’ are used.

startAdd Optional. The vector of initial values for the estimation of the coefficients of
each potential covariate. If it is NULL, initial values equal to 0 are used.

direction Label indicating the direction of the algortihm: ’forward’ (the default), ’back-
ward’ or ’both’.

... Further arguments to pass to addAIC.fun and dropAIC.fun, for example the
constant k for the AIC calculation

Details

Three directions, forward, backward and both, are implemented. The initial model is given by
ImlePP and the algorithm stops when none of the covariates eliminated from the model or added
from the potential covariates set (argument covariatesAdd) improves the model fitted in the previ-
ous step, according to the AIC. For the ’both’ and ’forward’ directions, the argument covariatesADD
is compulsary, and the default NULL leads to an error.

42 testlik.fun

In the ’both’ direction, ’forward’ and ’backward’ steps are carried out alternatively. In the ’forward’
direction, the initial model usually contains only the intercept.

Value

A mlePP-class object, the fit of the final PP model selectecd by the algorithm.

References

Casella, G. and Berger, R.L., (2002). Statistical inference. Brooks/Cole.

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Fourth edition.
Springer.

See Also

addAIC.fun, dropAIC.fun, testlik.fun

Examples

data(BarTxTn)

BarEv<-POTevents.fun(T=BarTxTn$Tx,thres=318,
date=cbind(BarTxTn$ano,BarTxTn$mes,BarTxTn$dia))

#The initial model contains only the inercept
mod1Bind<-fitPP.fun(covariates=NULL, posE=BarEv$Px, inddat=BarEv$inddat,

tit='BAR Intercept ', start=list(b0=1))
#the potential covariates
covB<-cbind(cos(2*pi*BarTxTn$dia/365), sin(2*pi*BarTxTn$dia/365),
BarTxTn$TTx,BarTxTn$Txm31,BarTxTn$Txm31**2)
dimnames(covB)<-list(NULL,c('cos','sin','TTx','Txm31', 'Txm31**2'))

bb<-stepAICmle.fun(ImlePP=mod1Bind, covariates=covB, startAdd=c(1,-1,0,0,0),
direction='both')

testlik.fun Likelihood ratio test to compare two nested models

Description

This function performs a likelihood ratio test, a test to compare the fit of two models, where the first
one (the null model ModR) is a particular case of the other (the alternative model ModG).

testlik.fun 43

Usage

testlik.fun(ModG, ModR)

Arguments

ModG An object of class mlePP-class; usually, the output from fitPP.fun.

ModR An object of class mlePP-class; usually, the output from fitPP.fun.

Details

The test statistic is twice the difference in the log-likelihoods of the models. Under the null, the
statistic follows a χ2 distribution with degrees of freedom df2-df1,the number of parameters of
modG and modR respectively.

Value

A list with elements

pv P-value of the likelihood ratio test.

ModG Input argument.

ModR Input argument.

References

Casella, G. and Berger, R.L., (2002). Statistical inference. Brooks/Cole.

See Also

fitPP.fun,LRTpv.fun

Examples

##The alternative model modB is specified by the output fitPP.fun
##The null model modBR is specified by a list with elments llik and npar

data(BarTxTn)

covB<-cbind(cos(2*pi*BarTxTn$dia/365), sin(2*pi*BarTxTn$dia/365),
BarTxTn$TTx,BarTxTn$Txm31,BarTxTn$Txm31**2)

modB<-fitPP.fun(tind=TRUE,covariates=covB,
POTob=list(T=BarTxTn$Tx, thres=318),
tim=c(1:8415), tit="BAR Tx; cos, sin, TTx, Txm31, Txm31**2",
start=list(b0=-100,b1=1,b2=10,b3=0,b4=0,b5=0),dplot=FALSE,modCI=TRUE,modSim=TRUE)

modBR<-fitPP.fun(tind=TRUE,covariates=covB[,1:4],

44 transfH.fun

POTob=list(T=BarTxTn$Tx, thres=318),
tim=c(1:8415), tit="BAR Tx; cos, sin, TTx, Txm31",
start=list(b0=-100,b1=1,b2=10,b3=0,b4=0),dplot=FALSE,modCI=TRUE,modSim=TRUE)

aux<-testlik.fun(ModG=modB,ModR=modBR)

transfH.fun Transform a NHPP into a HPP

Description

This function transforms the points tNH
i of a NHPP into the occurrence points tHi of a HPP of rate

1.

Usage

transfH.fun(mlePP)

Arguments

mlePP An object of class mlePP-class; usually, the output from fitPP.fun.

Details

Transformation of the NHPP points tNH
i into the HPP points tHi is based on the time scale trans-

formation,

tHi =

∫ tNH
i

0

λ(t)dt.

(usually the estimated value λ̂(t) is used in the transformation.)

Value

A list with elements

posEH Numeric vector of the transformed occurrence times of the HPP.
posE Slot of the input argument mlePP.
lambdafit Slot of the input argument mlePP.
inddat Slot of the input argument mlePP.

References

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

Cox, D.R., Isham, V., 1980. Point Processes. Chapman and Hall.

Daley, D. and D. Vere-Jones (2003). An Introduction to the Theory of Point Processes. Springer.

unifres.fun 45

See Also

simNHP.fun

Examples

X1<-rnorm(500)
X2<-rnorm(500)
auxmlePP<-fitPP.fun(posE=round(runif(50,1,500)), inddat=rep(1,500),
covariates=cbind(X1,X2),start=list(b0=1,b1=0,b2=0))

posEH<-transfH.fun(auxmlePP)

unifres.fun Calculate exponential and uniform (generalized) residuals of a HPP

Description

This function calculates the exponential di and the uniform (generalized) residuals ui of a HPP,
using the occurrence points ti.

Usage

unifres.fun(posEH)

Arguments

posEH Numeric vector, the occurrence points of a HPP.

Details

The exponential residuals of a HPP are defined as the inter-event distances di = ti − ti−1, that are
an i.i.d. exponential sample. The series di is an example of the generalized residuals proposed by
Cox and Snell (1968). The uniform residuals, defined as the function exp(−di) of the exponential
residuals, are an i.i.d. uniform sample, see Ogata (1988).

Value

A list with elements

expres Numeric vector of the exponential residuals.

unires Numeric vector of the uniform residuals.

posEH Input argument.

46 VARbeta.fun

References

Abaurrea, J., Asin, J., Cebrian, A.C. and Centelles, A. (2007). Modeling and forecasting extreme
heat events in the central Ebro valley, a continental-Mediterranean area. Global and Planetary
Change, 57(1-2), 43-58.

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

Cox, D. R. and Snell, E. J. (1968). A general definition of residuals. Journal of the Royal Statistical
Society, series B, 30(2), 248-275. 83(401), 9-27.

Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point
processes.Journal of the American Statistical Association, 83(401), 9-27.

See Also

transfH.fun, graphresU.fun

Examples

generates the occurrence times of a homogeneours PP with constant intensity 0.01
and calculates de residuals

aux<-simNHP.fun(lambda=rep(0.01,1000))

res<-unifres.fun(aux$posNH)

VARbeta.fun Calculate the covariance matrix of the β̂ vector.

Description

This function estimates the covariance matrix of the ML estimators of the β parameters, using the
asymptotic distribution and properties of the ML estimators.

Usage

VARbeta.fun(covariates, lambdafit)

Arguments

covariates Matrix of covariates (each column is a covariate).

lambdafit Numeric vector, the fitted PP intensity λ̂(t).

Details

The covariance matrix is calculated as the inverse of the negative of the hessian matrix. The in-
verse of the matrix is calculated using the solve function. If this function leads to an error in the
calculation, the inverse is calculated via its Cholesky decomposition. If this option also fails, the
covariance matrix is not estimated and a matrix of dimension 0× 0 is returned.

VARbeta.fun 47

Value

VARbeta Coariance matrix of the β̂ vector. It has an attribute, called ’CalMethod’ which
shows the method used to calculate the inverse of the matrix: ’Solve function’,
’Cholesky’ or ’Not possible’.

Note

The function fitPP.fun calls this function.

References

Casella, G. and Berger, R.L., (2002). Statistical inference. Brooks/Cole.

Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validat-
ing Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.

See Also

CItran.fun, CIdelta.fun

Examples

lambdafit<-runif(100,0,1)
X<-cbind(rep(1,100),rnorm(100),rnorm(100))

aux<-VARbeta.fun(covariates=X, lambdafit=lambdafit)

Index

∗ methods
extractAIC-methods, 17
profile-methods, 37

∗ non homogeneous Poisson process
NHPoisson-package, 2

addAIC.fun, 3, 14, 34, 41, 42
AIC, 3, 13

BarTxTn, 4
buscar (simNHP.fun), 39

CalcRes.fun, 5, 9, 23–26, 38
CalcResD.fun, 7, 23–26, 38
checkdim (stepAICmle.fun), 41
CIdelta.fun, 9, 11, 18, 19, 47
CItran.fun, 10, 10, 18, 19, 47
confint, 12
confintAsin.fun, 11

dimnames, 17, 41
dropAIC.fun, 4, 13, 34, 41, 42

emplambda.fun, 14, 16
emplambdaD.fun, 15, 15
extractAIC, 17, 35
extractAIC,ANY-method

(extractAIC-methods), 17
extractAIC,mle-method

(extractAIC-methods), 17
extractAIC-methods, 17

fitPP.fun, 3, 5, 7, 10–13, 15, 16, 17, 18, 22,
28, 32–37, 41, 43, 44, 47

funSim.fun (GenEnv.fun), 20

GenEnv.fun, 20, 39, 40
globalval.fun, 19, 21
graphrate.fun, 23, 24, 27
graphres.fun, 6, 9, 23, 26, 29, 33
graphResCov.fun, 22, 23, 28, 33

graphresU.fun, 23, 30, 46
graphResX.fun, 28, 29, 31

logLik, 19
lowess, 22, 26, 30
LRTpv.fun, 4, 14, 33, 43

mle, 17, 19, 35–37
mlePP, 3, 12, 13, 17, 19, 35, 37, 41, 42
mlePP-class, 34

NHPoisson (NHPoisson-package), 2
NHPoisson-package, 2
nlminb, 18, 35

optim, 18, 35

par, 23, 26, 29, 30
posk.fun (GenEnv.fun), 20
POTevents.fun, 14–16, 18, 19, 36
profile, 35, 37
profile,mlePP-method (profile-methods),

37
profile-methods, 37

resQQplot.fun, 21, 23, 38, 40
resSim.fun (resQQplot.fun), 38

simNHP.fun, 21, 39, 39, 45
stepAICmle.fun, 3, 4, 14, 41
summary, 19

testlik.fun, 34, 42, 42
transfH.fun, 31, 44, 46

unifres.fun, 6, 9, 31, 45

VARbeta.fun, 10–12, 19, 46

48

	NHPoisson-package
	addAIC.fun
	BarTxTn
	CalcRes.fun
	CalcResD.fun
	CIdelta.fun
	CItran.fun
	confintAsin.fun
	dropAIC.fun
	emplambda.fun
	emplambdaD.fun
	extractAIC-methods
	fitPP.fun
	GenEnv.fun
	globalval.fun
	graphrate.fun
	graphres.fun
	graphResCov.fun
	graphresU.fun
	graphResX.fun
	LRTpv.fun
	mlePP-class
	POTevents.fun
	profile-methods
	resQQplot.fun
	simNHP.fun
	stepAICmle.fun
	testlik.fun
	transfH.fun
	unifres.fun
	VARbeta.fun
	Index

