Package ‘OlinkAnalyze’

January 28, 2026
Type Package
Title Facilitate Analysis of Proteomic Data from Olink
Version 4.5.0

Description A collection of functions to facilitate analysis of proteomic
data from Olink, primarily NPX data that has been exported from Olink
Software. The functions also work on QUANT data from
Olink by log- transforming the QUANT data. The functions are focused
on reading data, facilitating data wrangling and quality control
analysis, performing statistical analysis and generating figures to
visualize the results of the statistical analysis. The goal of this
package is to help users extract biological insights from proteomic
data run on the Olink platform.

License AGPL (>=3)
Contact biostattools @olink.com
Depends R (>=4.1.0)

Imports broom, car, cli (>=3.6.2), dplyr (>=1.1.1), data.table,
emmeans, forcats, generics, ggplot2, ggpubr, ggrepel,
grDevices, grid, magrittr, methods, readxl, rlang, rstatix,
stats, stringr, tibble, tidyr, tidyselect, tools, utils

Suggests arrow, clusterProfiler, FSA, ggplotify, kableExtra, knitr,
Ime4, ImerTest, markdown, msigdbr (>= 9.0.0), openssl, ordinal,
pheatmap, rmarkdown, scales, showtext, sysfonts, systemfonts,
testthat (>= 3.3.0), umap, vdiffr, withr, zip

VignetteBuilder kableExtra, knitr
Config/testthat/edition 3
Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

URL https://olink.com/
https://github.com/0link-Proteomics/0linkRPackage

NeedsCompilation no

https://olink.com/
https://github.com/Olink-Proteomics/OlinkRPackage

2 Contents

Author Kathleen Nevola [aut, cre] (ORCID:

<https://orcid.org/0000-0002-5183-6444>, kathy-nevola),

Marianne Sandin [aut] (ORCID: <https://orcid.org/0000-0001-6186-963X>,
marisand),

Jamey Guess [aut] (ORCID: <https://orcid.org/0000-0002-4017-0923>,
jrguess),

Simon Forsberg [aut] (ORCID: <https://orcid.org/0000-0002-7451-9222>,
simfor),

Christoffer Cambronero [aut] (Orbmac),

Pascal Pucholt [aut] (ORCID: <https://orcid.org/0000-0003-3342-1373>,
AskPascal),

Boxi Zhang [aut] (ORCID: <https://orcid.org/0000-0001-7758-6204>,
boxizhang),

Masoumeh Sheikhi [aut] (MasoumehSheikhi),

Klev Diamanti [aut] (ORCID: <https://orcid.org/0000-0002-4922-8415>,
klevdiamanti),

Amrita Kar [aut] (amrita-kar),

Lei Conze [aut] (leiliuC),

Kristyn Chin [aut] (kristynchin-olink),

Danai Topouza [aut] (dtopouza, ORCID:
<https://orcid.org/0000-0002-6897-9281>),

Stephen Pollo [aut] (spollo-olprot, ORCID:
<https://orcid.org/0000-0001-9252-4976>),

Kang Dong [aut] (KangD-dev, ORCID:
<https://orcid.org/0000-0002-4567-5007>),

Kristian Hodén [ctb] (ORCID: <https://orcid.org/0000-0003-0354-0662>,
kristianHoden),

Per Eriksson [ctb] (ORCID: <https://orcid.org/0000-0001-7633-403X>,
b_watcher),

Nicola Moloney [ctb] (ORCID: <https://orcid.org/0000-0003-4967-3284>),

Britta Lotstedt [ctb] (ORCID: <https://orcid.org/0000-0003-3545-5489>),

Emmett Sprecher [ctb] (ORCID: <https://orcid.org/0000-0002-7710-695X>),

Jessica Barbagallo [ctb] (jbarbagallo),

Olof Mansson [ctr] (olofmansson),

Ola Caster [ctb] (OlaCaster),

Olink [cph, fnd]

Maintainer Kathleen Nevola <biostattools@olink.com>
Repository CRAN
Date/Publication 2026-01-28 17:50:02 UTC

Contents
check_data_completeness 4
manifest e 5
norm_internal_adjust L. 6
norm_internal_adjust_not_ref. L L 7

norm_internal_adjust_refo oo 7

https://orcid.org/0000-0002-5183-6444
https://orcid.org/0000-0001-6186-963X
https://orcid.org/0000-0002-4017-0923
https://orcid.org/0000-0002-7451-9222
https://orcid.org/0000-0003-3342-1373
https://orcid.org/0000-0001-7758-6204
https://orcid.org/0000-0002-4922-8415
https://orcid.org/0000-0002-6897-9281
https://orcid.org/0000-0001-9252-4976
https://orcid.org/0000-0002-4567-5007
https://orcid.org/0000-0003-0354-0662
https://orcid.org/0000-0001-7633-403X
https://orcid.org/0000-0003-4967-3284
https://orcid.org/0000-0003-3545-5489
https://orcid.org/0000-0002-7710-695X

Contents

3
norm_internal_assay_median L 8
norm_internal_bridgeo 9
norm_internal_cross_product 10
norm_internal_reference_mediano e 11
norm_internal_rename_cols L. e e 12
norm_internal _subset L e e 12
norm_internal_update_maxlod oL 13
npx_datal e e 14
npx_data2 L e e e 15
olink_anova e 15
olink_anova_posthoc L 18
olink_boxplot e 20
olink_bridgeability_plot 21
olink_bridgeselector 23
olink_color_discrete e e 24
olink_color_gradient 25
olink_displayPlateDistributions L 25
olink_displayPlateLayout 26
olink_dist_plot 27
olink_fill_discrete e 28
olink_fill_gradient. 28
olink_format_oid_no_overlap 29
olink_format_rm_ext_ctrl 30
olink_heatmap_plot 30
olink_iqr. e e e 32
olink_Imer. e e 32
olink_Imer_plot 34
olink_Imer_posthoc 36
olink_lod e e 39
olink_median e 40
olink_median_iqr_outlier o 40
olink_normalization e e 41
olink_normalization_bridge 46
olink_normalization_bridgeable oL 47
olink_normalization_format 49
olink_normalization_n e e e e 51
olink normalization n check. 56
olink_normalization_project_name_check 0oL 57
olink_normalization_qs 58
olink_normalization_sample_check L 0. 60
olink_normalization_subset 61
olink_norm_input_assay_overlap 64
olink_norm_input_check 65
olink_norm_input_check_df cols 67
olink_norm_input_check_quant L o oL 69
olink_norm_input_check_samples 69
olink_norm_input_class 71

olink_norm_input_clean_assays 72

Index

check_data_completeness

olink_norm_input_cross_product
olink_norm_input_norm_method L Lo
olink_norm_input_ref medians oL o oL
olink_norm_input_validate L
olink_norm_product_id
olink_norm_reference_id e
olink_one_non_parametric o
olink_one_non_parametric_posthoc oo
olink_ordinalRegression
olink_ordinalRegression_posthoc L o oo
olink_pal e
olink_pathway_enrichment
olink_pathway_heatmap
olink_pathway_visualization
olink_pca_plot
olink_plate_randomizer
olink_qc_plot e e
olink_ttesto e s
olink_umap_plot
olink_volcano_plot
olink_ WilcoX e
print_and_capture e e e e e e e
read_flex L e
read_NPX . . .
1€Ad_NPX_CSV « . v v o i e i e e e e e e e e e e e e e e e
read_npX_parquUet L e e e e e e e e e e e e e
read_NPX_ZIP oo e
set_plot_theme

check_data_completeness

Check data completeness

Description

Throw informative warnings if a dataset appears to have problems

Usage

check_data_completeness(df)

Arguments

df

a NPX dataframe, e.g. from read_NPX()

manifest 5

Value

None. Used for side effects (warnings)

Examples

npx_datal %>%
dplyr::mutate(NPX = dplyr::if_else(
SampleID == "A1" & Panel == "Olink Cardiometabolic”,
NA_real_,
NPX)) %>%
OlinkAnalyze:::check_data_completeness()

manifest Example Sample Manifest

Description

Sample manifest is generated randomly to demonstrate use of functions in this package.

Usage

manifest

Format
This dataset contains columns:
SubjectID Subject Identifier, A-Z
Visit Visit Number, 1-6

SampleID 138 unique sample IDs
Site Sitel or Site2

Details

A tibble with 138 rows and 4 columns. This manifest contains 26 example subjects, with 6 visits
and 2 sites.

norm_internal_adjust

norm_internal_adj

ust Combine reference and non-reference datasets

Description

The function is used by norm_internal_subset and norm_internal_bridge to combine the ref-
erence dataset that has Adj_factor = @ and the non-reference dataset that used the adjustment fac-
tors provided in adj_fct_df.

Usage

norm_internal_adjust(

ref_df,
ref_name,
ref_cols,
not_ref_df,
not_ref_name,
not_ref_cols,
adj_fct_df

Arguments

ref_df
ref_name
ref_cols
not_ref_df
not_ref_name
not_ref_cols
adj_fct_df

Details

The reference dataset to be used in normalization (required).

Project name of the reference dataset (required).

Named list of column names in the reference dataset (required).

The non-reference dataset to be used in normalization (required).
Project name of the non-reference dataset (required).

Named list of column names in the non-reference dataset (required).

Dataset containing the adjustment factors to be applied to the non-reference
dataset for (required).

The function calls norm_internal_adjust_ref and norm_internal_adjust_not_ref and com-

bines their outputs.

Value

Tibble or ArrowObject with the normalized dataset.

Author(s)

Klev Diamanti

norm_internal_adjust_not_ref 7

norm_internal_adjust_not_ref
Add adjustment factors to a dataset

Description

Add adjustment factors to a dataset

Usage

norm_internal_adjust_not_ref(df, name, cols, adj_fct_df, adj_fct_cols)

Arguments
df The dataset to be normalized (required).
name Project name of the dataset (required).
cols Named list of column names in the dataset (required).
adj_fct_df Dataset containing the adjustment factors to be applied to the dataset not_ref_df

(required).

adj_fct_cols Named list of column names in the dataset containing adjustment factors (re-
quired).

Value

Tibble or ArrowObject with the normalized dataset with additional columns "Project” and "Adj_factor".

Author(s)

Klev Diamanti

norm_internal_adjust_ref
Modify the reference dataset to be combined with the non-reference
normalized dataset

Description

Modify the reference dataset to be combined with the non-reference normalized dataset

Usage

norm_internal_adjust_ref(ref_df, ref_name)

8 norm_internal_assay_median

Arguments
ref_df The reference dataset to be used in normalization (required).
ref_name Project name of the reference dataset (required).

Value

Tibble or ArrowObject with the reference dataset with additional columns "Project" and "Adj_factor".

Author(s)

Klev Diamanti

norm_internal_assay_median
Compute median value of the quantification method for each Olink
assay

Description
The function computes the median value of the the quantification method for each Olink assay in
the set of samples samples, and it adds the column Project.

Usage

norm_internal_assay_median(df, samples, name, cols)

Arguments
df The dataset to calculate medians from (required).
samples Character vector of sample identifiers to be used for adjustment factor calcula-
tion in the dataset df (required).
name Project name of the dataset that will be added in the column Project (required).
cols Named list of column names identified in the dataset df (required).
Details

This function is typically used by internal functions norm_internal_subset and norm_internal_reference_median
that compute median quantification value for each assay across multiple samples specified by
samples.
Value
Tibble or ArrowObject with one row per Olink assay and the columns OlinkID, Project, and as-
say_med
Author(s)

Klev Diamanti

norm_internal_bridge 9

norm_internal_bridge Internal bridge normalization function

Description

Internal bridge normalization function

Usage

norm_internal_bridge(
ref_df,
ref_samples,
ref_name,
ref_cols,
not_ref_df,
not_ref_name,
not_ref_cols

)
Arguments
ref_df The reference dataset to be used in normalization (required).
ref_samples Character vector of sample identifiers to be used for adjustment factor calcula-
tion in the reference dataset (required).
ref_name Project name of the reference dataset (required).
ref_cols Named list of column names in the reference dataset (required).
not_ref_df The non-reference dataset to be used in normalization (required).

not_ref_name Project name of the non-reference dataset (required).

not_ref_cols Named list of column names in the non-reference dataset (required).

Value

Tibble or ArrowObject with the normalized dataset.

Author(s)

Klev Diamanti

10 norm_internal_cross_product

norm_internal_cross_product
Internal function normalizing Olink Explore 3k to Olink Explore 3072

Description

Internal function normalizing Olink Explore 3k to Olink Explore 3072

Usage

norm_internal_cross_product(
ref_df,
ref_samples,
ref_name,
ref_cols,
prod_uniq,
not_ref_df,
not_ref_name,
not_ref_cols

)
Arguments
ref_df The reference dataset to be used in normalization (required).
ref_samples Character vector of sample identifiers to be used for adjustment factor calcula-
tion in the reference dataset (required).
ref_name Project name of the reference dataset (required).
ref_cols Named list of column names in the reference dataset (required).
prod_uniq Name of products (not_ref, ref)
not_ref_df The non-reference dataset to be used in normalization (required).

not_ref_name Project name of the non-reference dataset (required).

not_ref_cols Named list of column names in the non-reference dataset (required).

Value
Tibble or ArrowObject with a dataset with the following additional columns:

* OlinkID_E3072: Corresponding assay identifier from Olink Explore 3072.
* Project: Project of origin.

* BridgingRecommendation: Recommendation of whether the assay is bridgeable or not. One
of "NotBridgeable", "MedianCentering", or "QuantileSmoothing".

* MedianCenteredNPX: NPX values adjusted based on the median of the pair-wise differences
of NPX values between bridge samples.

* QSNormalizedNPX: NPX values adjusted based on the quantile smoothing normalization
among bridge samples.

norm_internal_reference_median 11

Author(s)

Klev Diamanti

norm_internal_reference_median
Internal reference median normalization function

Description

Internal reference median normalization function

Usage
norm_internal_reference_median(
ref_df,
ref_samples,
ref_name,
ref_cols,
reference_medians
)
Arguments
ref_df The reference dataset to be used in normalization (required).
ref_samples Character vector of sample identifiers to be used for adjustment factor calcula-
tion in the reference dataset (required).
ref_name Project name of the reference dataset (required).
ref_cols Named list of column names in the reference dataset (required).

reference_medians
Dataset with columns "OlinkID" and "Reference_NPX" (required). Used for
reference median normalization.

Value

Tibble or ArrowObject with the normalized dataset.

Author(s)

Klev Diamanti

12 norm_internal_subset

norm_internal_rename_cols
Update column names of non-reference dataset based on those of ref-
erence dataset

Description

This function handles cases when specific columns referring to the same thing are named differ-
ently in df 1 and df2 normalization datasets. It only renames columns panel_version, qc_warn, and
assay_warn based on their names in the reference dataset.#’

Usage

norm_internal_rename_cols(ref_cols, not_ref_cols, not_ref_df)

Arguments

ref_cols Named list of column names identified in the reference dataset.
not_ref_cols Named list of column names identified in the non-reference dataset.

not_ref_df Non-reference dataset to be used in normalization.

Value

not_ref_df with updated column names.

Author(s)

Klev Diamanti

norm_internal_subset Internal subset normalization function

Description

This function performs subset normalization using a subset of the samples from either or both
reference and non-reference datasets. When all samples from each dataset are used, the function
performs intensity normalization.

norm_internal_update_maxlod 13

Usage

norm_internal_subset(
ref_df,
ref_samples,
ref_name,
ref_cols,
not_ref_df,
not_ref_samples,
not_ref_name,
not_ref_cols

)
Arguments
ref_df The reference dataset to be used in normalization (required).
ref_samples Character vector of sample identifiers to be used for adjustment factor calcula-
tion in the reference dataset (required).
ref_name Project name of the reference dataset (required).
ref_cols Named list of column names in the reference dataset (required).
not_ref_df The non-reference dataset to be used in normalization (required).

not_ref_samples
Character vector of sample identifiers to be used for adjustment factor calcula-
tion in the non-reference dataset (required).

not_ref_name Project name of the non-reference dataset (required).

not_ref_cols Named list of column names in the non-reference dataset (required).

Value

Tibble or ArrowObject with the normalized dataset.

Author(s)

Klev Diamanti

norm_internal_update_maxlod
Update MaxLOD to the maximum MaxLOD across normalized
datasets.

Description

Update MaxLOD to the maximum MaxLOD across normalized datasets.

Usage

norm_internal_update_maxlod(df, cols)

14 npx_datal

Arguments

df Normalized Olink dataset (required).

cols Named list of column names in the dataset (required).
Value

The same dataset as the input df with the column reflecting MaxLLOD updated.

npx_datal NPX Data in Long format

Description

Data is generated randomly to demonstrate use of functions in this package.

Usage

npx_datal

Format

In addition to standard read_ NPX() columns, this dataset also contains columns:

Subject Subject Identifier
Treatment Treated or Untreated
Site Site indicator, 5 unique values
Time Baseline, Week.6 and Week.12

Project Project ID number

Details

A tibble with 29,440 rows and 17 columns. Dataset npx_datal is an Olink NPX data file (tib-
ble) in long format with 158 unique Sample ID’s (including 2 repeats each of control samples:
CONTROL_SAMPLE_AS 1 CONTROL_SAMPLE_AS 2). The data also contains 1104 assays
(uniquely identified using OlinkID) over 2 Panels.

npx_data2 15

npx_data?2 NPX Data in Long format, Follow-up

Description

Data is generated randomly to demonstrate use of functions in this package. The format is very sim-
ilar to data(npx_datal). Both datasets can be used together to demonstrate the use of normalization
functionality.

Usage

npx_data2

Format
In addition to standard read_ NPX() columns, this dataset also contains columns:

Subject Subject Identifier
Treatment Treated or Untreated
Site Site indicator, 5 unique values
Time Baseline, Week.6 and Week.12

Project Project ID number

Details

A tibble with 32,384 rows and 17 columns. npx_data2 is an Olink NPX data file (tibble) in
long format with 174 unique Sample ID’s (including 2 repeats each of control samples: CON-
TROL_SAMPLE_AS 1 CONTROL_SAMPLE_AS 2). The data also contains 1104 assays (uniquely
identified using OlinkID) over 2 Panels. This dataset also contain 16 bridge samples with Sam-
pleID’s that are also present in data(npx_datal). These sample ID’s are: A13, A29, A30, A36, A45,
A46, A52, A63, A71, A73, B3, B4, B37, B45, B63, B75

olink_anova Function which performs an ANOVA per protein

Description

Performs an ANOVA F-test for each assay (by OlinkID) in every panel using car::Anova and Type
IIT sum of squares. The function handles both factor and numerical variables and/or covariates.

Samples that have no variable information or missing factor levels are automatically removed from
the analysis (specified in a message if verbose = TRUE). Character columns in the input dataframe
are automatically converted to factors (specified in a message if verbose = TRUE). Numerical vari-
ables are not converted to factors. Control samples should be removed before using this function.

16 olink_anova

Control assays (AssayType is not "assay", or Assay contains "control" or "ctrl") should be removed
before using this function. If a numerical variable is to be used as a factor, this conversion needs to
be done on the dataframe before the function call.

Crossed analysis, i.e. A*B formula notation, is inferred from the variable argument in the fol-
lowing cases:

° C(?A’,’B?)
* cCA:B)
* cCA:B’,’B’)orcCA: B’,’A’)

Inference is specified in a message if verbose = TRUE.

For covariates, crossed analyses need to be specified explicitly, i.e. two main effects will not be
expanded with a ¢("A’;’B’) notation. Main effects present in the variable takes precedence. The
formula notation of the final model is specified in a message if verbose = TRUE.

Adjusted p-values are calculated by stats::p.adjust according to the Benjamini & Hochberg (1995)
method (“fdr”). The threshold is determined by logic evaluation of Adjusted_pval < 0.05. Covari-
ates are not included in the p-value adjustment.

Usage

olink_anova(
df,
variable,
outcome = "NPX",
covariates = NULL,
model_formula,
return.covariates = FALSE,
verbose = TRUE

)
Arguments

df NPX data frame in long format with at least protein name (Assay), OlinkID,
UniProt, Panel and a factor with at least 3 levels.

variable Single character value or character array. Variable(s) to test. If length > 1, the
included variable names will be used in crossed analyses . Also takes *:” or **’
notation.

outcome Character. The dependent variable. Default: NPX.

covariates Single character value or character array. Default: NULL. Covariates to include.

Takes ’:” or *’ notation. Crossed analysis will not be inferred from main effects.

model_formula (optional) Symbolic description of the model to be fitted in standard formula no-
tation (e.g. "NPX~A*B"). If provided, this will override the outcome, variable
and covariates arguments. Can be a string or of class stats:: formula().

olink_anova 17

return.covariates
Boolean. Default: False. Returns F-test results for the covariates. Note: Ad-
justed p-values will be NA for the covariates.

verbose Boolean. Default: True. If information about removed samples, factor conver-
sion and final model formula is to be printed to the console.

Value

A "tibble" containing the ANOVA results for every protein. The tibble is arranged by ascending
p-values. Columns include:

* Assay: "character" Protein symbol

* OlinkID: "character" Olink specific ID
* UniProt: "character" UniProt ID
 Panel: "character" Name of Olink Panel
* term: "character" term in model

* df: "numeric" degrees of freedom

* sumsq: "numeric" sum of square

* meansq: "numeric" mean of square

* statistic: "numeric" value of the statistic
e p.value: "numeric" nominal p-value

* Adjusted_pval: "numeric" adjusted p-value for the test (Benjamini&Hochberg)

* Threshold: "character" if adjusted p-value is significant or not (< 0.05)

Examples

library(dplyr)
npx_df <- npx_datal |> filter(!grepl('control|ctrl’,SampleID, ignore.case = TRUE))

#0ne-way ANOVA, no covariates.
#Results in a model NPX~Time
anova_results <- olink_anova(df = npx_df, variable = "Time")

#Two-way ANOVA, one main effect covariate.

#Results in model NPX~Treatment*Time+Site.

anova_results <- olink_anova(df = npx_df,
variable=c("Treatment:Time"),
covariates="Site")

#0ne-way ANOVA, interaction effect covariate.

#Results in model NPX~Treatment+Site:Time+Site+Time.

anova_results <- olink_anova(df = npx_df,
variable="Treatment”,
covariates="Site:Time")

18 olink_anova_posthoc

olink_anova_posthoc Function which performs an ANOVA posthoc test per protein.

Description

Performs a post hoc ANOVA test using emmeans::emmeans with Tukey p-value adjustment per
assay (by OlinkID) for each panel at confidence level 0.95. See olink_anova for details of input
notation.

The function handles both factor and numerical variables and/or covariates. Control samples should
be removed before using this function. Control assays (AssayType is not "assay", or Assay contains
"control" or "ctrl") should be removed before using this function. The posthoc test for a numerical
variable compares the difference in means of the outcome variable (default: NPX) for 1 standard
deviation difference in the numerical variable, e.g. mean NPX at mean(numerical variable) versus
mean NPX at mean(numerical variable) + 1*SD(numerical variable).

Usage

olink_anova_posthoc(
df,
olinkid_list = NULL,
variable,
covariates = NULL,
outcome = "NPX",
model_formula,
effect,

effect_formula,

mean_return = FALSE,
post_hoc_padjust_method = "tukey”,
verbose = TRUE

Arguments

df NPX data frame in long format with at least protein name (Assay), OlinkID,
UniProt, Panel and a factor with at least 3 levels.

olinkid_list Character vector of OlinkID’s on which to perform post hoc analysis. If not
specified, all assays in df are used.

variable Single character value or character array. Variable(s) to test. If length > 1,
the included variable names will be used in crossed analyses . Also takes ’:’
notation.

covariates Single character value or character array. Default: NULL. Covariates to include.

Takes ’:” or **’ notation. Crossed analysis will not be inferred from main effects.

outcome Character. The dependent variable. Default: NPX.

olink_anova_posthoc

model_formula

effect

effect_formula

mean_return

19

(optional) Symbolic description of the model to be fitted in standard formula no-
tation (e.g. "NPX~A*B"). If provided, this will override the outcome, variable
and covariates arguments. Can be a string or of class stats: : formula().

Term on which to perform post-hoc. Character vector. Must be subset of or
identical to variable.

(optional) A character vector specifying the names of the predictors over which
estimated marginal means are desired as defined in the emmeans package. May
also be a formula. If provided, this will override the effect argument. See
?emmeans: :emmeans () for more information.

Boolean. If true, returns the mean of each factor level rather than the difference
in means (default). Note that no p-value is returned for mean_return = TRUE
and no adjustment is performed.

post_hoc_padjust_method

verbose

Value

P-value adjustment method to use for post-hoc comparisons within an assay.
Options include tukey, sidak, bonferroni and none.

Boolean. Default: True. If information about removed samples, factor conver-
sion and final model formula is to be printed to the console.

A "tibble" of posthoc tests for specified effect, arranged by ascending adjusted p-values. Columns

include:

* Assay: "character" Protein symbol
* OlinkID: "character" Olink specific ID
* UniProt: "character" UniProt ID

e Panel: "character" Name of Olink Panel

e term: "character" term in model

* contrast: "character” the groups that were compared

* estimate: "numeric" difference in mean NPX between groups

¢ conf.low: "numeric" confidence interval for the mean (lower end)

* conf.high: "numeric" confidence interval for the mean (upper end)

* Adjusted_pval: "numeric" adjusted p-value for the test

* Threshold: "character" if adjusted p-value is significant or not (< 0.05)

Examples

library(dplyr)

npx_df <- npx_datal |> filter(!grepl('control|ctrl', SamplelID, ignore.case = TRUE))

#Two-way ANOVA, one main effect (Site) covariate.
#Results in model NPX~TreatmentxTime+Site.

anova_results <-

olink_anova(df = npx_df,

20 olink_boxplot

variable=c("Treatment:Time"),
covariates="Site")

#Posthoc test for the model NPX~Treatment*Time+Site,
#on the interaction effect Treatment:Time with covariate Site.

#Filtering out significant and relevant results.
significant_assays <- anova_results |>

filter(Threshold == 'Significant' & term == 'Treatment:Time') |>
select(01linkID) |>

distinct() |>

pull()

#Posthoc, all pairwise comparisons
anova_posthoc_results <- olink_anova_posthoc(npx_df,
variable=c("Treatment:Time"),

covariates="Site",

olinkid_list = significant_assays,

effect = "Treatment:Time")

#Posthoc, treated vs untreated at each timepoint, adjusted for Site effect
anova_posthoc_results <- olink_anova_posthoc(npx_df,

model_formula = "NPX~TreatmentxTime+Site"”,
olinkid_list = significant_assays,
effect_formula = "pairwise~Treatment|Time")
olink_boxplot Function which plots boxplots of selected variables
Description

Generates faceted boxplots of NPX vs. grouping variable(s) for a given list of proteins (OlinkIDs)
using ggplot and ggplot2::geom_boxplot.

Usage

olink_boxplot(
df,
variable,
olinkid_list,
verbose = FALSE,
number_of_proteins_per_plot = 6,
posthoc_results = NULL,
ttest_results = NULL,

olink_bridgeability_plot 21

Arguments
df NPX data frame in long format with at least protein name (Assay), OlinkID
(unique), UniProt and at least one grouping variable.
variable A character vector or character value indicating which column to use as the x-

axis and fill grouping variable. The first or single value is used as x-axis, the
second as fill. Further values in a vector are not plotted.

olinkid_list Character vector indicating which proteins (OlinkIDs) to plot.

verbose Boolean. If the plots are shown as well as returned in the list (default is false).
number_of_proteins_per_plot
Number of boxplots to include in the facet plot (default 6).
posthoc_results
Data frame from ANOVA posthoc analysis using olink_anova_posthoc() func-
tion.
ttest_results Data frame from ttest analysis using olink_ttest() function.

coloroption passed to specify color order

Value

A list of objects of class “ggplot” (the actual ggplot object is entry 1 in the list). Box and whisker
plot of NPX (y-axis) by variable (x-axis) for each Assay

Examples
library(dplyr)
npx_df <- npx_datal |> filter(!grepl('control|ctrl', SampleID, ignore.case = TRUE))
anova_results <- olink_anova(npx_df, variable = "Site")

significant_assays <- anova_results |>
filter(Threshold == 'Significant') |>
pull(01inkID)
olink_boxplot(npx_df,
variable = "Site",
olinkid_list = significant_assays,
verbose = TRUE,
number_of_proteins_per_plot = 3)

olink_bridgeability_plot
Plots for each bridgeable assays between two products.

Description

Plots for each bridgeable assays between two products.

22 olink_bridgeability_plot

Usage

olink_bridgeability_plot(
data,
olink_id = NULL,
median_counts_threshold = 150L,
min_count = 10L

)
Arguments
data A tibble containing the cross-product bridge normalized dataset generated by
olink_normalization.
olink_id Character vector of Olink assay identifiers OlinkID for which bridgeability plots
will be created. If null, plots for all assays in data will be created. (default =
NULL)

median_counts_threshold
Threshold indicating the minimum median counts for each product (default =
150).

min_count Threshold indicating the minimum number of counts per data point (default =
10). Data below min_count are excluded.

Value

An object of class "ggplot" containing 4 plots for each assay.

Author(s)

Amrita Kar Klev Diamanti

Generates a combined plot per assay containing a violin and boxplot for IQR ranges; correlation
plot of NPX values; a median count bar plot and KS plots from the 2 products.

Examples

npx_ht <- OlinkAnalyze:::data_ht_small |>
dplyr::filter(
.data[["SampleType"]] == "SAMPLE"
)

npx_3072 <- OlinkAnalyze:::data_3k_small [|>
dplyr::filter(
.data[["SampleType"]] == "SAMPLE"
)

overlapping_samples <- intersect(
x = npx_ht$SamplelD,
y = npx_3072$%$SamplelD

)

data_norm <- OlinkAnalyze::olink_normalization(

olink_bridgeselector 23

df1 = npx_ht,

df2 = npx_3072,

overlapping_samples_df1 = overlapping_samples,
df1_project_nr = "Explore HT",

df2_project_nr = "Explore 3072",
reference_project = "Explore HT"

)

data_norm_bridge_p <- OlinkAnalyze::olink_bridgeability_plot(
data = data_norm,
olink_id = c("0ID40770", "0ID40835"),
median_counts_threshold = 150L,
min_count = 10L

olink_bridgeselector Bridge selection function

Description

The bridge selection function will select a number of bridge samples based on the input data. It
selects samples with good detection, which passes QC and cover a good range of the data.

Usage

olink_bridgeselector(df, sampleMissingFreq, n)

Arguments
df Tibble/data frame in long format such as produced by the Olink Analyze read_NPX
function.
sampleMissingFreq
The threshold for sample wise missingness.
n Number of bridge samples to be selected.
Details

When running the selector, the sampleMissingFreq value represents a maximum percentage of
data below LOD allowed per sample. When running plasma on smaller panels, such as Target 96,
sampleMissingFreq = 0.10 can be a good starting point. Larger panels such as Explore HT have
many proteins that are only expressed in certain diseases or matrices and therefore more data below
LOD is expected. In this case sampleMissingFreq = 0.5 can be a good starting point.

For more information, please consult the Introduction to Bridging tutorial.

The function accepts NPX Excel files with data < LOD replaced.

24 olink_color_discrete

Value

A "tibble" with sample IDs and mean NPX for a defined number of bridging samples. Columns
include:

» SampleID: Sample ID
* PercAssaysBelowLOD: Percent of Assays that are below LOD for the sample
* MeanNPX: Mean NPX for the sample

Examples

bridge_samples <- olink_bridgeselector(npx_datal, sampleMissingFreq = 0.1, n = 20)

olink_color_discrete Olink color scale for discrete ggplots

Description

Olink color scale for discrete ggplots

Usage
olink_color_discrete(..., alpha = 1, coloroption = NULL)
Arguments
Optional. Additional arguments to pass to ggplot2::discrete_scale()
alpha transparency
coloroption string, one or more of the following: c(’red’, orange’, ’yellow’, ’green’, ’teal’,
“turqoise’, ’lightblue’, *darkblue’, *purple’, "pink’)
Value

No return value, called for side effects

Examples

library(ggplot2)

ggplot(mtcars, aes(x=wt, y=mpg, color=as.factor(cyl))) +
geom_point(size = 4) +

olink_color_discrete() +

theme_bw()

ggplot(mtcars, aes(x=wt, y=mpg, color=as.factor(cyl))) +
geom_point(size = 4) +

olink_color_discrete(coloroption = c('lightblue', 'red', 'green')) +
theme_bw()

olink_color_gradient 25

olink_color_gradient Olink color scale for continuous ggplots

Description

Olink color scale for continuous ggplots

Usage
olink_color_gradient(..., alpha = 1, coloroption = NULL)
Arguments
Optional. Additional arguments to pass to scale_color_gradientn()
alpha transparency (optional)
coloroption string, one or more of the following: c(’red’, ’orange’, "yellow’, ’green’, ’teal’,
“turqoise’, "lightblue’, *darkblue’, *purple’, ’pink’)
Value

No return value, called for side effects

Examples

library(ggplot2)

dsub <- subset(diamonds, x > 5 & x <6 &y >58&y<6)
dsub$diff <- with(dsub, sqrt(abs(x-y))x* sign(x-y))

ggplot(dsub, aes(x, y, colour=diff)) +
geom_point() +

theme_bw() +

olink_color_gradient()

olink_displayPlateDistributions
Plot distributions of a given variable for all plates

Description

Displays a bar chart for each plate representing the distribution of the given grouping variable on
each plate using ggplot2::ggplot and ggplot2::geom_bar.

Usage
olink_displayPlateDistributions(data, fill.color)

26 olink_displayPlateLayout

Arguments
data tibble/data frame in long format returned from the olink_plate_randomizer func-
tion.
fill.color Column name to be used as coloring variable for wells.
Value

An object of class "ggplot" showing the percent distribution of fill.color in each plate (x-axis)

See Also

* olink_plate_randomizer() for generating a plating scheme

* olink_displayPlatelLayout() for visualizing the generated plate layouts

Examples

randomized.manifest <- olink_plate_randomizer(manifest)
olink_displayPlateDistributions(data=randomized.manifest,fill.color="Site")

olink_displayPlatelLayout
Plot all plates colored by a variable

Description

Displays each plate in a facet with cells colored by the given variable using ggplot and ggplot2::geom_tile.

Usage

olink_displayPlatelLayout(
data,
fill.color,
PlateSize = 96,
num_ctrl = 8,
rand_ctrl = FALSE,

Product,
include.label = FALSE
)
Arguments
data tibble/data frame in long format returned from the olink_plate_randomizer func-
tion.
fill.color Column name to be used as coloring variable for wells.
PlateSize Integer. Either 96 or 48. 96 is default.

num_ctrl Numeric. Number of controls on each plate (default = 8)

olink_dist_plot 27

rand_ctrl Logical. Whether controls are added to be randomized across the plate (default
= FALSE)
Product String. Name of Olink product used to set PlateSize if not provided. Optional.

include.label Should the variable group be shown in the plot.

Value
An object of class "ggplot" showing each plate in a facet with the cells colored by values in column
fill.color in input data.

See Also

* olink_plate_randomizer() for generating a plating scheme

e olink_displayPlateDistributions() for validating that sites are properly randomized

Examples

randomized.manifest <- olink_plate_randomizer(manifest)
olink_displayPlatelayout(data = randomized.manifest, fill.color="Site")

olink_dist_plot Function to plot the NPX distribution by panel

Description

Generates boxplots of NPX vs. SamplelD colored by QC_Warning (default) or any other grouping
variable and faceted by Panel using ggplot and ggplot2::geom_boxplot.

Usage
olink_dist_plot(df, color_g = "QC_Warning”, ...)
Arguments
df NPX data frame in long format. Must have columns SampleID, NPX and Panel
color_g Character value indicating which column to use as fill color (default: QC_Warning)
Color option passed to specify color order.
Value

An object of class "ggplot" which displays NPX distribution for each sample per panel

Examples

olink_dist_plot(npx_datal, color_g = "QC_Warning")

28 olink_fill_gradient

olink_fill_discrete Olink fill scale for discrete ggplots

Description

Olink fill scale for discrete ggplots

Usage
olink_fill_discrete(..., alpha = 1, coloroption = NULL)
Arguments
Optional. Additional arguments to pass to ggplot2::discrete_scale()
alpha transparency (optional)
coloroption string, one or more of the following: c¢(’red’, orange’, ’yellow’, ’green’, 'teal’,
“turqoise’, ’lightblue’, *darkblue’, *purple’, ’pink’)
Value

No return value, called for side effects

Examples

library(ggplot2)

dsub <- subset(diamonds, x > 5 & x <6 & y > 5 & y < 6)
dsub$diff <- with(dsub, sqgrt(abs(x-y))* sign(x-y))

ggplot(dsub, aes(x, y, colour=diff)) +
geom_point() +

theme_bw() +

olink_fill_discrete()

olink_fill_gradient Olink fill scale for continuous ggplots

Description

Olink fill scale for continuous ggplots

Usage

olink_fill_gradient(..., alpha = 1, coloroption = NULL)

olink_format_oid_no_overlap 29

Arguments
Optional. Additional arguments to pass to ggplot2::scale_fill_gradientn()
alpha transparency (optional)
coloroption string, one or more of the following: c(’red’, ’orange’, "yellow’, ’green’, ’teal’,
‘turqoise’, ’lightblue’, *darkblue’, *purple’, "pink’)
Value

No return value, called for side effects

Examples

library(ggplot2)

dsub <- subset(diamonds, x > 5 & x <6 &y >58&y < 6)
dsub$diff <- with(dsub, sqrt(abs(x-y))* sign(x-y))
ggplot(dsub, aes(x, y, colour=diff)) +

geom_point() +

theme_bw() +

olink_fill_gradient()

olink_format_oid_no_overlap
Retrieve non-overlapping assays between two NPX datasets

Description
For use in olink_normalization_format function. Generates a message stating how many assays
were not overlapping. Appends additional columns depending on the normalization type to match
normalized data output. For cross-product normalization, splits any concatenated OlinkIDs.

Usage

olink_format_oid_no_overlap(lst_check)

Arguments

1st_check Normalization input list checks generated by olink_norm_input_check.

Value

A combined "tibble" of Olink data in long format containing only the non-overlapping assays from
each input dataset.

Author(s)

Danai Topouza Klev Diamanti

30 olink_heatmap_plot

olink_format_rm_ext_ctrl
Remove negative controls and plate controls from dataset. For use
in olink_normalization_format function. Generates a message stating
which control samples were removed.

Description

Remove negative controls and plate controls from dataset. For use in olink_normalization_format
function. Generates a message stating which control samples were removed.

Usage

olink_format_rm_ext_ctrl(df, lst_check)

Arguments

df NPX dataset to be processed.

1st_check Normalization input list checks generated by olink_norm_input_check.
Value

A "tibble" of Olink data in long format containing the input dataset with negative controls and plate
controls removed.

Author(s)

Danai G. Topouza Klev Diamanti

olink_heatmap_plot Function to plot a heatmap of the NPX data

Description

Generates a heatmap using pheatmap: : pheatmap of all samples from NPX data.

Usage

olink_heatmap_plot(
df,
variable_row_list = NULL,
variable_col_list = NULL,
center_scale = TRUE,
cluster_rows = TRUE,
cluster_cols = TRUE,

olink_heatmap_plot 31

show_rownames = TRUE,
show_colnames = TRUE,
colnames = "both”,
annotation_legend = TRUE,
fontsize = 10,

na_col = "black”,
)
Arguments
df Data frame in long format with SampleID, NPX, OlinkID, Assay and columns

of choice for annotations.
variable_row_list

Columns in df to be annotated for rows in the heatmap.
variable_col_list

Columns in df to be annotated for columns in the heatmap.

center_scale Logical. If data should be centered and scaled across assays (default TRUE).
cluster_rows Logical. Determining if rows should be clustered (default TRUE).
cluster_cols Logical. Determining if columns should be clustered (default TRUE).
show_rownames Logical. Determining if row names are shown (default TRUE).
show_colnames Logical. Determining if column names are shown (default TRUE).

colnames Character. Determines how to label the columns. Must be ’assay’, ’oid’, or
"both’ (default "both’).

annotation_legend
Logical. Determining if legend for annotations should be shown (default TRUE).

fontsize Fontsize (default 10)
na_col Color of cells with NA (default black)

Additional arguments used in pheatmap: : pheatmap

Details

The values are by default scaled across and centered in the heatmap. Columns and rows are by
default sorted by by dendrogram. Unique sample names are required.

Value

An object of class ggplot, generated from the gtable returned by pheatmap: : pheatmap.

Examples

library(dplyr)
npx_data <- npx_datal %>%
filter(!stringr::str_detect(SampleID, 'CONT"))
try({ # This will fail if ggplotify is not installed
#Heatmap
olink_heatmap_plot (df=npx_data)

32 olink Imer

#Heatmap with annotation
olink_heatmap_plot(df=npx_data, variable_row_list = c('Time', 'Site'))

#Heatmap with calls from pheatmap
olink_heatmap_plot(df=npx_data, cutree_rows = 3)

b

olink_iqgr Compute inter-quartile range (IQR) of multiplied by a fixed value

Description

Compute inter-quartile range (IQR) of multiplied by a fixed value

Usage

olink_iqr(df, quant_col, igr_group, iqr_sd)

Arguments
df Olink dataset
quant_col Character vector of name of quantification column
igr_group Grouping for which to compute IQR for
igr_sd Fixed value to multiply IQR with
Value

Input dataset with two additional columns, iqr and iqr_sd

olink_lmer Function which performs a linear mixed model per protein

Description

Fits a linear mixed effects model for every protein (by OlinkID) in every panel, using ImerTest::lmer
and stats::anova. The function handles both factor and numerical variables and/or covariates.

Samples that have no variable information or missing factor levels are automatically removed from
the analysis (specified in a message if verbose = TRUE). Character columns in the input dataframe
are automatically converted to factors (specified in a message if verbose = TRUE). Numerical vari-
ables are not converted to factors. If a numerical variable is to be used as a factor, this conversion

olink_Imer 33

needs to be done on the dataframe before the function call.

Crossed analysis, i.e. A*B formula notation, is inferred from the variable argument in the fol-
lowing cases:

° C(?A’ ”B?)

* cCA:B’)

* ¢cCA:B’,’B’) orc(CA:B’,’A’)
Inference is specified in a message if verbose = TRUE.
For covariates, crossed analyses need to be specified explicitly, i.e. two main effects will not be
expanded with a ¢(’A’,’B’) notation. Main effects present in the variable takes precedence.

The random variable only takes main effect(s).
The formula notation of the final model is specified in a message if verbose = TRUE.

Output p-values are adjusted by stats::p.adjust according to the Benjamini-Hochberg method (“fdr’).
Adjusted p-values are logically evaluated towards adjusted p-value<0.05.

Usage

olink_Imer(
df,
variable,
outcome = "NPX",
random,
covariates = NULL,
model_formula,
return.covariates = FALSE,
verbose = TRUE

)
Arguments

df NPX data frame in long format with at least protein name (Assay), OlinkID,
UniProt, 1-2 variables with at least 2 levels.

variable Single character value or character array. Variable(s) to test. If length > 1, the
included variable names will be used in crossed analyses . Also takes ’:” or **’
notation.

outcome Character. The dependent variable. Default: NPX.

random Single character value or character array.

covariates Single character value or character array. Default: NULL. Covariates to include.

Takes ’:” or **’ notation. Crossed analysis will not be inferred from main effects.

model_formula (optional) Symbolic description of the model to be fitted in standard formula no-
tation (e.g. "NPX~A*B + (1IID)"). If provided, this will override the outcome,

variable and covariates arguments. Can be a string or of class stats: : formula().

34 olink_Imer_plot

return.covariates

Boolean. Default: False. Returns results for the covariates. Note: Adjusted
p-values will be NA for the covariates.

verbose Boolean. Default: True. If information about removed samples, factor conver-
sion and final model formula is to be printed to the console.

Value

A "tibble" containing the results of fitting the linear mixed effects model to every protein by
OlinkID, ordered by ascending p-value. Columns include:

* Assay: "character" Protein symbol

* OlinkID: "character" Olink specific ID

* UniProt: "character" UniProt ID

 Panel: "character" Name of Olink Panel

* term: "character” term in model

* sumsq: "numeric" sum of square

* meansq: "numeric" mean of square

* NumDF: "integer" numerator of degrees of freedom

* DenDF: "numeric" denominator of decrees of freedom

* statistic: "numeric" value of the statistic

* p.value: "numeric" nominal p-value

* Adjusted_pval: "numeric" adjusted p-value for the test (Benjamini&Hochberg)

* Threshold: "character" if adjusted p-value is significant or not (< 0.05)

Examples

if (requireNamespace("1lme4"”, quietly = TRUE) & requireNamespace("lmerTest”, quietly = TRUE)){
Results in model NPX~TimexTreatment+(1|Subject)+(1]|Site)
Imer_results <- olink_lmer(df = npx_datal,

variable=c("Time", 'Treatment'),
random = c('Subject', 'Site'))
3
olink_lmer_plot Function which performs a point-range plot per protein on a linear
mixed model
Description

Generates a point-range plot faceted by Assay using ggplot and ggplot2::geom_pointrange based
on a linear mixed effects model using ImerTest:lmer and emmeans::emmeans. See olink_lmer for
details of input notation.

olink_Imer_plot

Usage

35

olink_lmer_plot(

df,
variable,

outcome = "NPX",

random,
olinkid_list
covariates =

= NULL,
NULL,

X_axis_variable,

col_variable

= NULL,

number_of_proteins_per_plot = 6,
verbose = FALSE,

Arguments

df

variable

outcome
random

olinkid_list

covariates

X_axis_variable

col_variable

NPX data frame in long format with at least protein name (Assay), OlinkID,
UniProt, 1-2 variables with at least 2 levels.

Single character value or character array. Variable(s) to test. If length > 1, the
included variable names will be used in crossed analyses . Also takes *:” or **’
notation.

Character. The dependent variable. Default: NPX.
Single character value or character array.

Character vector indicating which proteins (by OlinkID) for which to create
figures.

Single character value or character array. Default: NULL. Covariates to include.
Takes ’:” or ’*’ notation. Crossed analysis will not be inferred from main effects.

Character. Which main effect to use as x-axis in the plot.

Character. If provided, the interaction effect col_variable:x_axis_variable will
be plotted with x_axis_variable on the x-axis and col_variable as color.

number_of_proteins_per_plot

verbose

Value

Number plots to include in the list of point-range plots. Defaults to 6 plots per
figure

Boolean. Default: True. If information about removed samples, factor conver-
sion and final model formula is to be printed to the console.

coloroption for color ordering

A list of objects of class "ggplot" showing point-range plot of NPX (y-axis) over x_axis_variable
for each assay (facet), colored by col_variable if provided.

36 olink_Imer_posthoc

Examples

library(dplyr)
if (requireNamespace(”1lme4", quietly = TRUE) & requireNamespace("lmerTest"”, quietly = TRUE)){
Imer_results <- olink_lmer(df = npx_datal,

variable=c("Time", 'Treatment'),

random = c('Subject'))

assay_list <- lmer_results %>%
filter(Threshold == 'Significant' & term == 'Time:Treatment') %>%
select(0linkID) %>%
distinct() %>%
pull()

list_of_pointrange_plots <- olink_lmer_plot(df = npx_datal,
variable=c("Time", 'Treatment'),
random = c('Subject'),
X_axis_variable = 'Time',
col_variable = 'Treatment',
verbose=TRUE,
olinkid_list = assay_list,
number_of_proteins_per_plot = 10)

olink_lmer_posthoc Function which performs a linear mixed model posthoc per protein.

Description

Similar to olink_Imer but performs a post hoc analysis based on a linear mixed model effects model
using ImerTest::lImer and emmeans::emmeans on proteins. See olink_lmer for details of input no-
tation.

The function handles both factor and numerical variables and/or covariates. Differences in esti-
mated marginal means are calculated for all pairwise levels of a given variable. Degrees of freedom
are estimated using Satterthwaite’s approximation. The posthoc test for a numerical variable com-
pares the difference in means of the outcome variable (default: NPX) for 1 standard deviation dif-
ference in the numerical variable, e.g. mean NPX at mean(numerical variable) versus mean NPX at
mean(numerical variable) + 1*SD(numerical variable). The output tibble is arranged by ascending
Tukey adjusted p-values.

Usage

olink_lmer_posthoc(
df,
olinkid_list = NULL,
variable,

olink_Imer_posthoc 37

outcome = "NPX",
random,
model_formula,
effect,

effect_formula,

covariates = NULL,

mean_return = FALSE,
post_hoc_padjust_method = "tukey”,
verbose = TRUE

)
Arguments

df NPX data frame in long format with at least protein name (Assay), OlinkID,
UniProt, 1-2 variables with at least 2 levels and subject ID.

olinkid_list Character vector of OlinkID’s on which to perform post hoc analysis. If not
specified, all assays in df are used.

variable Single character value or character array. Variable(s) to test. If length > 1, the
included variable names will be used in crossed analyses . Also takes *:” or **’
notation.

outcome Character. The dependent variable. Default: NPX.

random Single character value or character array.

model_formula (optional) Symbolic description of the model to be fitted in standard formula no-

ef

ef

co

me

po

ve

Value

A

tation (e.g. "NPX~A*B + (1IID)"). If provided, this will override the outcome,

variable and covariates arguments. Can be a string or of class stats: : formula().

fect Term on which to perform post-hoc. Character vector. Must be subset of or
identical to variable.
fect_formula (optional) A character vector specifying the names of the predictors over which

estimated marginal means are desired as defined in the emmeans package. May
also be a formula. If provided, this will override the effect argument. See
?emmeans: :emmeans () for more information.

variates Single character value or character array. Default: NULL. Covariates to include.
Takes *:” or **’ notation. Crossed analysis will not be inferred from main effects.

an_return Boolean. If true, returns the mean of each factor level rather than the difference
in means (default). Note that no p-value is returned for mean_return = TRUE
and no adjustment is performed.

st_hoc_padjust_method

P-value adjustment method to use for post-hoc comparisons within an assay.
Options include tukey, sidak, bonferroni and none.

rbose Boolean. Default: True. If information about removed samples, factor conver-
sion and final model formula is to be printed to the console.
"tibble" containing the results of the pairwise comparisons between given variable levels for

proteins specified in olinkid_list (or full df). Columns include:

38

olink_Imer_posthoc

* Assay: "character" Protein symbol

* OlinkID: "character" Olink specific ID

e UniProt: "character" UniProt ID

* Panel: "character" Name of Olink Panel

 term: "character" term in model

* contrast: "character" the groups that were compared

* estimate: "numeric" difference in mean NPX between groups

e conf.low: "numeric" confidence interval for the mean (lower end)
 conf.high: "numeric" confidence interval for the mean (upper end)
* Adjusted_pval: "numeric" adjusted p-value for the test

* Threshold: "character" if adjusted p-value is significant or not (< 0.05)

Examples

library(dplyr)

if (requireNamespace(”1lme4", quietly = TRUE) & requireNamespace("lmerTest"”, quietly = TRUE)){

lmer_results <- olink_lmer(df = npx_datal,
variable=c("Time", 'Treatment'),
random = c('Subject'))

assay_list <- lmer_results %>%
filter(Threshold == 'Significant' & term == 'Time:Treatment') %>%
select(0linkID) %>%
distinct() %>%
pull()

results_lmer_posthoc <- olink_lmer_posthoc(df = npx_datal,
olinkid_list = assay_list,

variable=c("Time", 'Treatment'),
effect = 'Time:Treatment',
random = 'Subject’,

verbose = TRUE)

#Estimate treated vs untreated at each timepoint

results_lmer_posthoc <- olink_lmer_posthoc(df = npx_datal,
olinkid_list = assay_list,

model_formula = "NPX~Time*Treatment+(1|Subject)”,
effect_formula = "pairwise~Treatment|Time",
verbose = TRUE)

olink_lod 39

olink_lod Calculate LOD using Negative Controls or Fixed LOD

Description

Calculate LOD using Negative Controls or Fixed LOD

Usage
olink_lod(data, lod_file_path = NULL, lod_method = "NCLOD")

Arguments

data npx data file

lod_file_path location of lod file from Olink. Only needed if lod_method = "FixedLOD" or
"Both". Default NULL.

lod_method method for calculating LOD using either "FixedLOD" or negative controls ("NCLOD"),
or both ("Both"). Default NCLOD.

Value

A dataframe with 2 additional columns, LOD and PCNormalizedLOD if 1od_method is FixedLOD
or NCLOD. When Normalization = "Plate Control”, LOD and PCNormalizedLOD are identi-
cal.

If 1lod_method is "Both", 4 additional columns will be added:
* NCLOD - LOD calculated from negative controls and normalized based on normalization
column
* NCPCNormalizedLOD - PC Normalized LOD calculated from negative controls

¢ FixedLOD - LOD calculated from fixed LOD file and normalized based on normalization
column

¢ FixedPCNormalizedLOD - PC Normalized LOD calculated from fixed LOD file

Examples

Not run:
\donttest{
try({ # This will fail if the files do not exist.

Import NPX data
npx_data <- read_NPX("path/to/npx_file")

Estimate LOD from negative controls
npx_data_lod_NC <- olink_lod(data = npx_data, lod_method = "NCLOD")

Estimate LOD from fixed LOD
Locate the fixed LOD file

40 olink_median_iqr_outlier

lod_file_path <- "path/to/lod_file"

npx_data_lod_Fixed <- olink_lod(data = npx_data,
lod_file_path = lod_file_path,
lod_method = "FixedLOD")
D)
}

End(Not run)

olink_median Compute median of quantified value

Description

Compute median of quantified value

Usage

olink_median(df, quant_col, median_group)

Arguments
df Olink dataset
quant_col Character vector of name of quantification column

median_group Grouping for which to compute median for

Value

Input dataset with one additional columns, median

olink_median_iqgr_outlier
Compute outliers based on median +/- iqr_sd * IQR

Description

Compute outliers based on median +/- iqr_sd * IQR

Usage

olink_median_iqr_outlier(df, quant_col, group, iqr_sd)

olink_normalization 41

Arguments
df Olink dataset
quant_col Character vector of name of quantification column
group Grouping for which to compute median for
igr_sd Fixed value to multiply IQR with

Value

Boolean vector with length equal to the number of input rows indicating outlier.

olink_normalization Normalize two Olink datasets

Description

Normalizes two Olink datasets to each other, or one Olink dataset to a reference set of medians

values.
Usage
olink_normalization(
df1,
df2 = NULL,

overlapping_samples_df1,
overlapping_samples_df2 = NULL,
df1_project_nr = "P1",
df2_project_nr = "P2",
reference_project = "P1",
reference_medians = NULL,
format = FALSE

)
Arguments
df1 First dataset to be used for normalization (required).
df2 Second dataset to be used for normalization. Required for bridge and subset

normalization.

overlapping_samples_df1
Character vector of samples to be used for the calculation of adjustment factors
in df1 (required).

overlapping_samples_df2
Character vector of samples to be used for the calculation of adjustment factors
in df2. Required for subset normalization.

df1_project_nr Project name of first dataset (required).

df2_project_nr Project name of second dataset. Required for bridge and subset normalization.

42 olink_normalization

reference_project
Project to be used as reference project. Should be one of df 1_project_nr and
df2_project_nr. Required for bridge and subset normalization.

reference_medians
Dataset with columns "OlinkID" and "Reference_ NPX". Required for reference
median normalization.

format Boolean that controls whether the normalized dataset will be formatted for input
to downstream analysis.

Details

The function handles four different types of normalization:

* Bridge normalization: One of the datasets is adjusted to another using overlapping samples
(bridge samples). Overlapping samples need to have the same identifiers in both datasets.
Normalization is performed using the median of the pair-wise differences between the bridge
samples in the two datasets. The two datasets are provided as df1 and df2, and the one being
adjusted to is specified in the input reference_project; overlapping samples are specified in
overlapping_samples_df1. Only overlapping_samples_df1 should be provided regard-
less of the dataset used as reference_project.

* Subset normalization: One of the datasets is adjusted to another using a subset of samples
from each. Normalization is performed using the differences of the medians between the sub-
sets from the two datasets. Both overlapping_samples_df1 and overlapping_samples_df2
need to be provided, and sample identifiers do not need to be the same.

— A special case of subset normalization occurs when all samples (except control samples
and samples with QC warnings) from each dataset are used for normalization; this spe-
cial case is called intensity normalization. In intensity normalization all unique sample
identifiers from df1 are provided as input in overlapping_samples_df1 and all unique
sample identifiers from df2 are provided as input in overlapping_samples_df2.

* Reference median normalization: One of the datasets (df1) is adjusted to a predefined set
of adjustment factors. This is effectively subset normalization, but using differences of medi-
ans to pre-recorded median values. df1, overlapping_samples_df1, df1_project_nr and
reference_medians need to be specified. Dataset df'1 is normalized using the differences in
median between the overlapping samples and the reference medians.

* Cross-product normalization: One of the datasets is adjusted to another using the me-
dian of pair-wise differences of overlapping samples (bridge samples) or quantile smooth-
ing using overlapping samples as reference to adjust the distributions. Overlapping sam-
ples need to have the same identifiers in both datasets. The two datasets are provided as
df1 and df2, and the one being adjusted to is specified in the input reference_project;
Note that in cross-product normalization the reference project is predefined, and in case
the argument reference_project does not match the expected reference project an error
will be returned. Overlapping samples are specified in overlapping_samples_df1. Only
overlapping_samples_df1 should be provided regardless of the dataset used as reference_project.
This functionality does not modify the column with original quantification values (e.g. NPX),
instead it normalizes it with 2 different approaches in columns "MedianCenteredNPX" and
"QSNormalizedNPX", and provides a recommendation in "BridgingRecommendation" about
which of the two columns is to be used.

olink_normalization 43

The output dataset is df1 if reference median normalization, or df2 appended to df1 if bridge,
subset or cross-product normalization. The output dataset contains all original columns from the
original dataset(s), and the columns:

* "Project” and "Adj_factor" in case of reference median, bridge and subset normalization. The
former marks the project of origin based on df1_project_nr and df2_project_nr, and the
latter the adjustment factor that was applied to the non-reference dataset.

* "Project”, "OlinkID_E3072", "MedianCenteredNPX", "QSNormalizedNPX", "BridgingRec-
ommendation" in case of cross-product normalization. The columns correspond to the project
of origin based on df1_project_nr and df2_project_nr, the assay identifier in the non-
reference project, the bridge-normalized quantification value, the quantile smoothing-normalized
quantification value, and the recommendation about which of the two normalized values is
more suitable for downstream analysis.

Value

Tibble or ArrowObject with the normalized dataset.

Examples

prepare datasets
npx_df1 <- npx_datal |>
dplyr: :mutate(
Normalization = "Intensity”
)
npx_df2 <- npx_data2 |>
dplyr: :mutate(
Normalization = "Intensity”

)
bridge normalization

overlapping samples - exclude control samples
overlap_samples <- intersect(x = npx_df1$SamplelD,
y = npx_df2$SampleID) |>
(\(x) x['grepl("~CONTROL_SAMPLE", x)1) ()

normalize
olink_normalization(
df1 = npx_df1,
df2 = npx_df2,
overlapping_samples_df1 = overlap_samples,
df1_project_nr = "P1",
df2_project_nr = "P2",
reference_project = "P1"

subset normalization

find a suitable subset of samples from each dataset:
exclude control samples

44

olink_normalization

exclude samples that do not pass QC
df1_samples <- npx_df1 [>

dplyr: :group_by(
dplyr: :pick(
dplyr::all_of("SampleID")
)
)1>
dplyr::filter(
all(.data[["QC_Warning"]] == 'Pass')
) 1>
dplyr: :ungroup() |>
dplyr::filter(
lgrepl(pattern = "#CONTROL_SAMPLE", x = .data[["SampleID"]1])
) 1>
dplyr: :pull(
.data[["SampleID"]]
) 1>

unique()

df2_samples <- npx_df2 [|>

dplyr: :group_by(
dplyr::pick(
dplyr::all_of ("SampleID")
)
1>
dplyr::filter(
all(.data[["QC_Warning"]] == 'Pass')
) 1>
dplyr: :ungroup() |>
dplyr::filter(
lgrepl(pattern = "~CONTROL_SAMPLE", x = .data[["SampleID"]1])
) 1>
dplyr::pull(
.data[["SampleID"]]
) 1>

unique()

select a subset of samples from each set from above
df1_subset <- sample(x = df1_samples, size = 16L)
df2_subset <- sample(x = df2_samples, size = 20L)

normalize
olink_normalization(

)

df1 = npx_df1,

df2 = npx_df2,
overlapping_samples_df1 df1_subset,
overlapping_samples_df2 = df2_subset,
df1_project_nr = "P1",

df2_project_nr = "P2",
reference_project = "P1"

special case of subset normalization using all samples
olink_normalization(

olink_normalization

df1 = npx_df1,

df2 = npx_df2,

overlapping_samples_df1 = df1_samples,
overlapping_samples_df2 = df2_samples,
df1_project_nr = "P1",

df2_project_nr = "P2",
reference_project = "P1"

)

reference median normalization

For the sake of this example, set the reference median to 1
ref_med_df <- npx_datal |>
dplyr::select(
dplyr::all_of(
c("0linkID")
)
) 1>
dplyr::distinct() |>
dplyr: :mutate(
Reference_NPX = runif(n = dplyr::n(),
min = -1,
max = 1)

)

normalize

olink_normalization(
df1 = npx_df1,
overlapping_samples_df1 = df1_subset,
reference_medians = ref_med_df

cross-product normalization

get reference samples
overlap_samples_product <- intersect(
x = unique(OlinkAnalyze:::data_ht_small$SamplelD),
y = unique(0linkAnalyze:: :data_3k_small$SampleID)
) 1>
(\N(C.) .['grepl("CONTROL", .DDO

normalize
olink_normalization(
df1 = OlinkAnalyze:::data_ht_small,
df2 = 0OlinkAnalyze:::data_3k_small,
overlapping_samples_df1 = overlap_samples_product,
df1_project_nr = "proj_ht",
df2_project_nr = "proj_3k",
reference_project = "proj_ht",
format = FALSE

46 olink_normalization_bridge

olink_normalization_bridge
Bridge normalization of all proteins between two NPX projects.

Description

Normalizes two NPX projects (data frames) using shared samples.

Usage

olink_normalization_bridge(
project_1_df,
project_2_df,
bridge_samples,

project_1_name = "P1",
project_2_name = "P2",
project_ref_name = "P1"
)
Arguments

project_1_df Data frame of the first project (required).
project_2_df Data frame of the second project (required).

bridge_samples Named list of 2 arrays containing SampleID of shared samples to be used for
the calculation of adjustment factor. The names of the two arrays should be
DF1 and DF2 corresponding to projects 1 and 2, respectively. Arrays should be
of equal length and index of each entry should correspond to the same sample.
(required)
project_1_name Name of the first project (default: P1).
project_2_name Name of the second project (default: P2).
project_ref_name
Name of the project to be used as reference set. Needs to be one of the project_1_name

or project_2_name. It marks the project to which the other project will be ad-
justed to (default: P1).

Details

This function is a wrapper of olink_normalization.

In bridging normalization one of the projects is adjusted to another using shared samples (bridge
samples). It is not necessary for the shared samples to be named the same in each project. Ad-
justment between the two projects is made using the median of the paired differences between

olink_normalization_bridgeable 47

the shared samples. The two data frames are inputs project_1_df and project_2_df, the one be-
ing adjusted to is specified in the input project_ref_name and the shared samples are specified in
bridge_samples.

Value

A "tibble" of NPX data in long format containing normalized NPX values, including adjustment
factors and name of project.

Examples

npx_df1 <- npx_datal |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) |>
dplyr::select(-Project) |>
dplyr::mutate(Normalization = "Intensity"”)

npx_df2 <- npx_data2 |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) |>
dplyr::select(-Project) |>
dplyr::mutate(Normalization = "Intensity")

Find overlapping samples, but exclude Olink control
overlap_samples <- dplyr::intersect(unique(npx_df1$SampleID),
unique(npx_df2$SampleID))

overlap_samples_list <- list("DF1" = overlap_samples,

"DF2" = overlap_samples)

Normalize

olink_normalization_bridge(project_1_df = npx_df1,
project_2_df = npx_df2,
bridge_samples = overlap_samples_list,

project_1_name = "P1",
project_2_name = "P2",
project_ref_name = "P1")

olink_normalization_bridgeable
Identify if assays shared between Olink Explore 3072 and Olink Ex-
plore HT can be bridged

Description

The function uses a dataset from Olink Explore 3072 and a dataset from Olink Explore HT, and
examines if the matched assays between the two products can be normalized to each other. The
input datasets should be exported from Olink software and should not be altered prior to importing
them to this function.

48 olink_normalization_bridgeable

Usage

olink_normalization_bridgeable(lst_df, ref_cols, not_ref_cols, seed = 1)

Arguments
1st_df A named list of the 2 input datasets. First element should be the reference dataset
from Olink Explore HT and the second element should originate from Olink
Explore 3072.
ref_cols A named list with the column names to use. Exported from olink_norm_input_check.

not_ref_cols A named list with the column names from the non-reference dataset. Exported
from olink_norm_input_check.

seed Integer random seed (Default: seek = 1).

Details

All processes below assume that the first element from Ist_df is the reference dataset (e.g. Olink
Explore HT), and the other element of the list is the non-reference dataset (e.g. Olink Explore
3072). The input datasets have to be pre-processed by olink_norm_input_check which will
take care of mapping of assay identifiers and various checks. Also, the input datasets should ex-
clusively contain datapoints from bridge samples. When this function is called from the function
olink_normalization, then the list is created seamlessly in the background, and the datasets have
been already processed by olink_norm_input_check.

The input ref_cols is a named list masking column names of the reference dataset. This list is gener-
ated automatically from olink_norm_input_check when it is called from olink_normalization.
In addition, olink_normalization has also utilized norm_internal_rename_cols to rename the
columns of the non-reference dataset according to the ones of the reference dataset, hence all col-
umn names should match.

Value

A "tibble" in long format with the following columns:

* OlinkID: Underscore-separated Olink identifiers of matching assays between Olink Explore
HT and Olink Explore 3072.

* BridgingRecommendation: A character vector indicating whether the matching assays are
considered as bridgeable or not, and the recommended type of normalization to perform.

Author(s)

Amrita Kar Marianne Sandin Danai G. Topouza Klev Diamanti

Examples

check input datasets

data_explore_check <- OlinkAnalyze:::olink_norm_input_check(
df1 = 0linkAnalyze:::data_3k_small,
df2 = 0linkAnalyze:::data_ht_small,
overlapping_samples_df1 = intersect(

olink_normalization_format 49

x = unique(OlinkAnalyze:::data_3k_small$SamplelD),

y = unique(OlinkAnalyze:::data_ht_small$SampleID)
) 1>

(\N(x) x[!grepl("CONTROL", x)ID(O |>

head(20L),

overlapping_samples_df2 = NULL,
df1_project_nr = "P1",
df2_project_nr = "P2",
reference_project = "P2",
reference_medians = NULL

)

create lst_df
1st_df <- list(
data_explore_check$ref_df,
data_explore_check$not_ref_df
)
names(1lst_df) <- c(data_explore_check$ref_name,
data_explore_check$not_ref_name)

create ref_cols
ref_cols <- data_explore_check$ref_cols
not_ref_cols <- data_explore_check$not_ref_cols

run olink_normalization_bridgeable
is_bridgeable_result <- OlinkAnalyze:::olink_normalization_bridgeable(
1st_df = 1lst_df,
ref_cols = ref_cols,
not_ref_cols = not_ref_cols,
seed = 1

olink_normalization_format

Format the output of olink_normalization for seamless use with down-
stream analysis functions.

Description
For within-product bridging and subset normalization:

* Adds non-overlapping assays between projects to the bridged file without adjustment.

* Removes external controls, except sample controls.
For cross-product bridging:

* Adds non-overlapping assays between projects and not bridgeable assays to the bridged file
without adjustment.

50 olink_normalization_format

* Removes external controls, except sample controls.

* Replaces the NPX values of the non-reference project by the Median Centered or QS Normal-
ized NPX, according to the Bridging Recommendation.

* Edits the BridgingRecommendation column to indicate whether an assay is NotBridgeable,
NotOverlapping, MedianCentering, or QuantileSmoothing bridged.

* Replaces OlinkID by the concatenation of each product’s OlinkIDs to record the OlinkIDs
from both projects for bridgeable assays. Assays that are NotBridgeable or NotOverlapping
retain their original OlinkIDs and NPX values.

» Replaces Panel by the concatenation of each product panel per assay. Assays that are Not-
Bridgeable or NotOverlapping retain their original Panel value.

¢ Removes MedianCenteredNPX, QSNormalizedNPX, OlinkID_E3072 columns.
For reference median normalization:

* Adds non-overlapping assays from the dataset, but not from the reference medians, to the
bridged file without adjustment.

* Removes external controls, except sample controls.
In all cases, normalization and formatting changes are applied to the NPX column. The contents of
the Count and PCNormalizedNPX columns remain unchanged.
Usage

olink_normalization_format(df_norm, lst_check)

Arguments
df_norm A "tibble" of Olink data in long format resulting from the olink_normalization
function.
1st_check Normalization input list checks generated by olink_norm_input_check.
Value

A "tibble" of Olink data in long format containing both input datasets with the bridged NPX quan-
tifications, with the above modifications.

Author(s)

Danai G. Topouza Klev Diamanti

Examples

bridge samples
bridge_samples <- intersect(
x = unique(OlinkAnalyze:::data_ht_small$SamplelID),
y = unique(0linkAnalyze:::data_3k_small$SamplelID)
E
(\(x) x['grepl("CONTROL", x)1) ()

olink_normalization_n 51

run olink_normalization

df_norm <- olink_normalization(
df1 = OlinkAnalyze:::data_ht_small,
df2 = 0linkAnalyze:::data_3k_small,
overlapping_samples_df1 = bridge_samples,
df1_project_nr = "Explore HT",
df2_project_nr = "Explore 3072",
reference_project = "Explore HT"

)

generate lst_check

1st_check <- OlinkAnalyze:::olink_norm_input_check(
df1 = 0linkAnalyze:::data_3k_small,
df2 = OlinkAnalyze:::data_ht_small,
overlapping_samples_df1 = bridge_samples,
overlapping_samples_df2 = NULL,
df1_project_nr = "P1",
df2_project_nr = "P2",
reference_project = "P2",
reference_medians = NULL

)

format output
OlinkAnalyze:::olink_normalization_format(
df_norm = df_norm,
1st_check = 1st_check

olink_normalization_n Bridge and/or subset normalization of all proteins among multiple
NPX projects.

Description

This function normalizes pairs of NPX projects (data frames) using shared samples or subsets of
samples.

Usage

olink_normalization_n(norm_schema)

Arguments

norm_schema A tibble with more than 1 rows and (strictly) the following columns: "order",
"name", "data", "samples", "normalization_type", "normalize_to". See "De-
tails" for the structure of the data frame (required)

52 olink_normalization_n

Details

This function is a wrapper of olink_normalization_bridge and olink_normalization_subset.

The input of this function is a tibble that contains all the necessary information to normalize multiple
NPX projects. This tibble is called the normalization schema. The basic idea is that every row of
the data frame is a separate project to be normalized. We assume that there is always one baseline
project that does not normalize to any other. All other project normalize to one or more projects.
The function handles projects that are normalized in a chain, for example:

* 1. project 2 normalizes to project 1, and project 3 normalizes to project 2.

» 2. project 2 normalizes to project 1, and project 3 normalizes to the combined data frame of
projects 1 and 2 (that is already normalized).

The function can also handle a mixed schema of bridge and subset normalization.

Specifications of the normalization schema data frame:

* order: should strictly be a numeric or integer array with unique identifiers for each project. It
is necessary that this array starts from 1 and that it contains no NAs.

* name: should strictly be a character array with unique identifiers for each project. Each entry
should represent the name of the project located in the same row. No NAs are allowed.

* data: a named list of NPX data frames representing the projects to be normalized. Names of
the items of the list should be identical to "names". No NAs are allowed.

» samples: a two-level nested named list of sample identifiers from each NPX project from
"data". Names of the first level of the nested list should be identical to "names" and to the
names of the list from "data". Projects that will be used only as reference should have their
corresponding element in the list as NA, while all other projects should contain a named list of
2 arrays containing identifiers of samples to be used for the calculation of adjustment factor.
The names of the two arrays should be DF1 and DF2 corresponding to the reference project
and the project in the current row, respectively. For bridge normalization arrays should be of
equal length and the index of each entry should correspond to the same sample. For subset
normalization arrays do not need to be of equal length and the order the samples appear in
does not matter. DF1 might contain sample identifiers from more than one project as long as
the project in the current row is to be normalized to multiple other projects.

» normalization_type: a character array containing the flags "Bridge" or "Subset". Projects that
will be used only as reference should have their corresponding element in the array as NA,
while all other projects should contain a flag. For the time being the flag "Median" is not
supported.

* normalize_to: a character array pointing to the project this project is to be normalized to.
Elements of the array should be exclusively from the "order" column. Elements of the array
may be comma-separated if the project is to be normalized to multiple projects.

Value

A "tibble" of NPX data in long format containing normalized NPX values, including adjustment
factors and name of project.

olink_normalization_n

Examples

Bridge normalization of two projects

prepare datasets

npx_df1 <- npx_datal |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) [>
dplyr::select(-Project) |>
dplyr::mutate(Normalization = "Intensity")

npx_df2 <- npx_data2 |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) |>
dplyr::select(-Project) |>
dplyr::mutate(Normalization = "Intensity")

Find overlapping samples, but exclude Olink control
overlap_samples <- dplyr::intersect(unique(npx_df1$SampleID),
unique (npx_df2$SampleID))

overlap_samples_list <- list("DF1" = overlap_samples,

"DF2" = overlap_samples)

create tibble for input
norm_schema_bridge <- dplyr::tibble(

order =c(1, 2),
name = c("NPX_DF1", "NPX_DF2"),
data = list("NPX_DF1" = npx_df1,
"NPX_DF2" = npx_df2),
samples = list("NPX_DF1" = NA_character_,
"NPX_DF2" = overlap_samples_list),
normalization_type = c(NA_character_, "Bridge"),
normalize_to = c(NA_character_, "1")

normalize
olink_normalization_n(norm_schema = norm_schema_bridge)

Subset normalization of two projects

datasets

npx_df1 <- npx_datal |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) |>
dplyr::select(-Project) |>
dplyr::mutate(Normalization = "Intensity")

npx_df2 <- npx_data2 |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) |>
dplyr::select(-Project) |>
dplyr::mutate(Normalization = "Intensity")

Find a suitable subset of samples from both projects, but exclude Olink
controls and samples that fail QC.
df1_samples <- npx_df1 |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) [>
dplyr::group_by(SampleID) |>
dplyr::filter(all(QC_Warning == 'Pass')) |>

54

olink_normalization_n

dplyr::pull(SampleID) |>
unique() |>
sample(size = 16, replace = FALSE)

df2_samples <- npx_df2 [>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) [>
dplyr::group_by(SampleID) |>
dplyr::filter(all(QC_Warning == 'Pass')) |>
dplyr::pull(SampleID) |>
unique() |>
sample(size = 16, replace = FALSE)

create named list
subset_samples_list <- list(”"DF1" = dfl1_samples,
"DF2" = df2_samples)

create tibble for input
norm_schema_subset <- dplyr::tibble(

order =c(1, 2),
name = c("NPX_DF1", "NPX_DF2"),
data = list("NPX_DF1" = npx_df1,
"NPX_DF2" = npx_df2),
samples = list("NPX_DF1" = NA_character_,
"NPX_DF2" = subset_samples_list),
normalization_type = c(NA_character_, "Subset”),
normalize_to = c(NA_character_, "1")

)

Normalize
olink_normalization_n(norm_schema = norm_schema_subset)

Subset normalization of two projects using all samples

datasets

npx_df1 <- npx_datal |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) |>
dplyr::select(-Project) |>
dplyr::mutate(Normalization = "Intensity")

npx_df2 <- npx_data2 |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) [>
dplyr::select(-Project) |>
dplyr::mutate(Normalization = "Intensity")

Find a suitable subset of samples from both projects, but exclude Olink

controls and samples that fail QC.

df1_samples_all <- npx_df1 |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) [>
dplyr: :group_by(SampleID) |>
dplyr::filter(all(QC_Warning == 'Pass')) |>
dplyr::pull(SampleID) |>
unique()

df2_samples_all <- npx_df2 |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) [>
dplyr: :group_by(SampleID) |>

olink_normalization_n

dplyr::filter(all(QC_Warning == 'Pass')) |>
dplyr::pull(SampleID) |>
unique()

create named list
subset_samples_all_list <- list("DF1"
IIDF2II

df1_samples_all,
df2_samples_all)

create tibble for input
norm_schema_subset_all <- dplyr::tibble(

order =c(1, 2),
name = c("NPX_DF1", "NPX_DF2"),
data = list("NPX_DF1" = npx_df1,
"NPX_DF2" = npx_df2),
samples = list("NPX_DF1" = NA_character_,
"NPX_DF2" = subset_samples_all_list),
normalization_type = c(NA_character_, "Subset”),

normalize_to

)

c(NA_character_, "1")

Normalize
olink_normalization_n(norm_schema = norm_schema_subset_all)

Multi-project normalization using bridge and subset samples

NPX data frames to bridge

npx_df1 <- npx_datal |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) [>
dplyr::select(-Project) |>
dplyr::mutate(Normalization = "Intensity")

npx_df2 <- npx_data2 |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) |>
dplyr::select(-Project) |>
dplyr::mutate(Normalization = "Intensity"”)

manipulating the sample NPX datasets to create another two random ones
npx_df3 <- npx_data2 |>
dplyr::mutate(SampleID = paste(SampleID, "_mod”, sep = ""),

PlateID = paste(PlateID, "_mod", sep = ""),

NPX = sample(x = NPX, size = dplyr::n(), replace = FALSE)) |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) [>
dplyr::select(-Project) |>
dplyr::mutate(Normalization = "Intensity")

npx_df4 <- npx_datal |>
dplyr::mutate(SampleID = paste(SampleID, "_mod2", sep = ""),

PlateID = paste(PlateID, "_mod2", sep = ""),

NPX = sample(x = NPX, size = dplyr::n(), replace = FALSE)) |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) |>
dplyr::select(-Project) |>
dplyr::mutate(Normalization = "Intensity")

56

olink_normalization_n_check

samples to use for normalization
Bridge samples with same identifiers between npx_df1 and npx_df2
overlap_samples <- dplyr::intersect(unique(npx_df1$SamplelD),
unique(npx_df2$SampleID))
overlap_samples_df1_df2 <- 1list("DF1" = overlap_samples,
"DF2" = overlap_samples)
rm(overlap_samples)

Bridge samples with different identifiers between npx_df2 and npx_df3
overlap_samples_df2_df3 <- list("DF1" = sample(x = unique(npx_df2$SamplelD),
size = 10,
replace = FALSE),
"DF2" = sample(x = unique(npx_df3$SamplelD),
size = 10,
replace = FALSE))

Samples to use for intensity normalization between npx_df4 and the
normalized dataset of npx_df1 and npx_df2
overlap_samples_df12_df4 <- list("DF1" = sample(x = c(unique(npx_df1$SampleID),
unique(npx_df2$SamplelD)),
size = 100,
replace = FALSE) |>

unique(),
"DF2" = sample(x = unique(npx_df4$SamplelD),
size = 40,
replace = FALSE))
create tibble for input
norm_schema_n <- dplyr::tibble(
order =c(1, 2, 3, 4),
name = c("NPX_DF1", "NPX_DF2", "NPX_DF3", "NPX_DF4"),
data = list("NPX_DF1" = npx_df1,

"NPX_DF2" = npx_df2,

"NPX_DF3" = npx_df3,

"NPX_DF4" = npx_df4),
samples = list("NPX_DF1" = NA_character_,

"NPX_DF2" = overlap_samples_df1_df2,

"NPX_DF3" = overlap_samples_df2_df3,

"NPX_DF4" = overlap_samples_df12_df4),
normalization_type = c(NA_character_, "Bridge"”, "Bridge"”, "Subset"),
normalize_to = c(NA_character_, "1", "2", "1,2")

)

olink_normalization_n(norm_schema = norm_schema_n)

olink_normalization_project_name_check 57

olink_normalization_n_check

An internal function to perform checks on the input of the function
olink_normalization_n.

Description

An internal function to perform checks on the input of the function olink_normalization_n.

Usage

olink_normalization_n_check(norm_schema)

Arguments
norm_schema A tibble with more than 1 rows and (strictly) the following columns: "order",
"name", "data", "samples", "normalization_type", "normalize_to". See above
for details of the structure of the data frame. See details in help for olink_normalization_n.
(required)
Value

a character message. If the message is "TRUE" then all checks passed, otherwise an error message
will be printed.

olink_normalization_project_name_check
An internal function to perform checks on the input project
names in the functions olink_normalization_bridge and
olink_normalization_subset. The function is expected to run all
checks on project names to make sure that normalization can be
performed smoothly. It should work independently of the function
calling it.

Description

An internal function to perform checks on the input project names in the functions olink_normalization_bridge
and olink_normalization_subset. The function is expected to run all checks on project names to

make sure that normalization can be performed smoothly. It should work independently of the

function calling it.

Usage

olink_normalization_project_name_check(
project_1_name,
project_2_name,
project_ref_name

)

58 olink_normalization_qs

Arguments

project_1_name Name of project 1 (required)
project_2_name Name of project 2 (required)

project_ref_name
Name of reference project (required)

Value

a character message. If the message is "TRUE" then all checks passed, otherwise an error message
will be printed.

olink_normalization_gs
Quantile smoothing normalization of all proteins between two NPX
projects.

Description

This function uses bridge samples to map quantiles of the non-reference dataset to the ones of
the reference dataset. Mapped quantiles are used to transform the quantifications of the the non-
reference dataset to the reference.

Usage

olink_normalization_gs(
1st_df,
ref_cols,
not_ref_cols,
bridge_samples,

prod_uniq
)
Arguments
1st_df A named list of the 2 input datasets. First element should be the reference dataset
from Olink Explore HT and the second element should originate from Olink
Explore 3072. (required)
ref_cols A named list with the column names to use. Exported from olink_norm_input_check.

(required)

not_ref_cols A named list with the column names from the non-reference dataset. Exported
from olink_norm_input_check. (required)

bridge_samples Character vector of samples to be used for the quantile mapping. (required)

prod_uniq Name of products (not_ref, ref)

olink_normalization_qs 59

Details

In the case when a study is separated into multiple projects, an additional normalization step is
needed to allow the data to be comparable across projects. Across different Olink products, some
of the assays exist in corresponding but distinct NPX spaces. For those assays, the median of paired
differences is insufficient for bridging as it only considers one anchor point (the median/50% quan-
tile). Instead, quantile smoothing (QS) using multiple anchor points (5%, 10%, 25%, 50%, 75%,
90% and 95% quantiles) is favored to map the Explore 3072 data to the Explore HT distribution.
The olink_normalization_qgs() performs quantile smoothing bridging normalization between
datasets from two Olink products (for example Olink Explore 3072 and Olink Explore HT) by per-
forming the following steps:

* An empirical cumulative distribution function is used to map datapoints for the bridging sam-
ples from one product to the equivalent space in the other product.

* A spline regression model is constructed using unmapped and mapped data from one product,
using anchor points from the quantiles defined above.

* The spline regression model is used to predict the normalized NPX values for all datapoints

More information on quantile smoothing and between product normalization can be found in the
Bridging Olink Explore 3072 to Olink Explore HT tutorial.

Value

A "tibble" of Olink data in long format containing both input datasets with the quantile normalized
quantifications.

Author(s)

Amrita Kar Marianne Sandin Masoumeh Sheikhi Klev Diamanti

Examples

Bridge samples
bridge_samples <- intersect(
x = unique(OlinkAnalyze:::data_ht_small$SamplelD),
y = unique(OlinkAnalyze:::data_3k_small$SamplelD)
) 1>
(\N(x) x['grepl("CONTROL", x)1) ()

Run the internal function olink_norm_input_check
check_norm <- OlinkAnalyze:::olink_norm_input_check(
df1 = 0linkAnalyze:::data_ht_small,
df2 = 0linkAnalyze:::data_3k_small,
overlapping_samples_df1 = bridge_samples,
overlapping_samples_df2 = NULL,
df1_project_nr = "P1",
df2_project_nr = "P2",
reference_project = "P1",
reference_medians = NULL

60 olink_normalization_sample_check

Named list of input datasets

1st_df <- list(
check_norm$ref_df,
check_norm$not_ref_df

)

names(lst_df) <- c(check_norm$ref_name, check_norm$not_ref_name)

ref_cols <- check_norm$ref_cols
not_ref_cols <- check_norm$not_ref_cols

gs_result <- OlinkAnalyze:::olink_normalization_qgs(
1st_df = lst_df,

ref_cols = ref_cols,

not_ref_cols = not_ref_cols,

bridge_samples = bridge_samples,

prod_uniq = c("E3072","HT")
)

olink_normalization_sample_check

An internal function to perform checks on the input sam-
ples in the functions olink_normalization_bridge and
olink_normalization_subset. The function is expected to run all
checks on SamplelD to make sure that normalization can be per-
formed smoothly. It should work independently of the function calling
it.

Description

An internal function to perform checks on the input samples in the functions olink_normalization_bridge
and olink_normalization_subset. The function is expected to run all checks on SampleID to make

sure that normalization can be performed smoothly. It should work independently of the function
calling it.

Usage

olink_normalization_sample_check(
list_samples,
check_mode,
project_1_all_samples,
project_2_all_samples

)

olink_normalization_subset 61

Arguments

list_samples Named list of 2 arrays containing SampleID of the subset or bridge samples to
be used for normalization. The names of the two arrays should be DF1 and DF2
corresponding to projects 1 and 2, respectively. (required)

check_mode Flag "bridge" or "subset" indicating the type of normalization the check should
be tailored to (required)

project_1_all_samples
Array of all samples from project 1 (required)

project_2_all_samples
Array of all samples from project 2 (required)

Value

a character message. If the message is "TRUE" then all checks passed, otherwise an error message
will be printed.

olink_normalization_subset
Subset normalization of all proteins between two NPX projects.

Description

Normalizes two NPX projects (data frames) using all or a subset of samples.

Usage

olink_normalization_subset(
project_1_df,
project_2_df,
reference_samples,

project_1_name = "P1",
project_2_name = "P2",
project_ref_name = "P1"
)
Arguments

project_1_df Data frame of the first project (required).

project_2_df Data frame of the second project (required).

reference_samples
Named list of 2 arrays containing SamplelD of the subset of samples to be used
for the calculation of median NPX within each project. The names of the two
arrays should be DF1 and DF2 corresponding to projects 1 and 2, respectively.
Arrays do not need to be of equal length and the order the samples appear in
does not play any role. (required)

62 olink_normalization_subset

project_1_name Name of the first project (default: P1).

project_2_name Name of the second project (default: P2).
project_ref_name
Name of the project to be used as reference set. Needs to be one of the project_1_name

or project_2_name. It marks the project to which the other project will be ad-
justed to (default: P1).

Details

This function is a wrapper of olink_normalization.

In subset normalization one of the projects is adjusted to another using a subset of all samples from
each. Please note that the subsets of samples are not expected to be replicates of each other or to have
the SampleID. Adjustment between the two projects is made using the assay-specific differences in
median between the subsets of samples from the two projects. The two data frames are inputs
project_1_df and project_2_df, the one being adjusted to is specified in the input project_ref_name
and the shared samples are specified in reference_samples.

A special case of subset normalization is to use all samples (except control samples) from each
project as a subset.

Value

A "tibble" of NPX data in long format containing normalized NPX values, including adjustment
factors and name of project.

Examples

Subset normalization

datasets

npx_df1 <- npx_datal |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) [>
dplyr::select(-Project) |>
dplyr::mutate(Normalization = "Intensity")

npx_df2 <- npx_data2 |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) |>
dplyr::select(-Project) |>
dplyr::mutate(Normalization = "Intensity")

Find a suitable subset of samples from both projects, but exclude Olink
controls and samples that fail QC.
df1_samples <- npx_df1 [>

dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) [>

dplyr: :group_by(SampleID) |>

olink_normalization_subset

dplyr::filter(all(QC_Warning == 'Pass')) |>

dplyr::pull(SampleID) |>

unique() |>

sample(size = 16, replace = FALSE)
df2_samples <- npx_df2 [>

dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) |>

dplyr::group_by(SampleID) |>

dplyr::filter(all(QC_Warning == 'Pass')) |>

dplyr::pull(SampleID) |>

unique() |>

sample(size = 16, replace = FALSE)

create named list
subset_samples_list <- list("DF1" = df1_samples,
"DF2" = df2_samples)

Normalize

olink_normalization_subset(project_1_df = npx_df1,
project_2_df = npx_df2,
reference_samples = subset_samples_list,

project_1_name = "P1",
project_2_name = "P2",
project_ref_name = "P1")

Special case of subset normalization using all samples

datasets

npx_df1 <- npx_datal |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) |>
dplyr::select(-Project) |>
dplyr::mutate(Normalization = "Intensity")

npx_df2 <- npx_data2 |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) |>
dplyr::select(-Project) |>
dplyr::mutate(Normalization = "Intensity")

Find a suitable subset of samples from both projects, but exclude Olink

controls and samples that fail QC.

df1_samples_all <- npx_df1 |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) |>
dplyr::group_by(SampleID) |>
dplyr::filter(all(QC_Warning == 'Pass')) |>
dplyr::pull(SampleID) |>
unique()

df2_samples_all <- npx_df2 |>
dplyr::filter(!stringr::str_detect(SampleID, "CONTROL_")) |>
dplyr::group_by(SampleID) |>

dplyr::filter(all(QC_Warning == 'Pass')) |>
dplyr::pull(SampleID) |>
unique()

create named list

64 olink_norm_input_assay_overlap

subset_samples_all_list <- list("DF1" = df1_samples_all,
"DF2" = df2_samples_all)

Normalize
olink_normalization_subset(project_1_df = npx_df1,
project_2_df = npx_df2,
reference_samples = subset_samples_all_list,

project_1_name = "P1",
project_2_name = "P2",
project_ref_name = "P1")

olink_norm_input_assay_overlap

Check datasets and reference_medians for Olink identifiers not shared
across datasets.

Description

Check datasets and reference_medians for Olink identifiers not shared across datasets.

Usage
olink_norm_input_assay_overlap(
1st_df,
reference_medians,
1st_cols,
norm_mode = norm_mode
)
Arguments
1st_df Named list of datasets to be normalized.

reference_medians

Dataset with columns "OlinkID" and "Reference_ NPX". Used for reference
median normalization.

1st_cols Named list of vectors with the required column names for each dataset in Ist_df.

norm_mode Character string indicating the type of normalization to be performed. Ex-
pecting one of bridge, subset, ref_median or norm_cross_product. # nolint
line_length_linter

Value

A named list containing Ist_df and reference_medians with assays shared across all datasets.

Author(s)

Klev Diamanti

olink_norm_input_check 65

olink_norm_input_check
Check inputs of olink_normalization function.

Description

This function is a wrapper of multiple help functions which check the inputs of the o1link_normalization
function.

Usage

olink_norm_input_check(
df1,
df2,
overlapping_samples_df1,
overlapping_samples_df2,
df1_project_nr,
df2_project_nr,
reference_project,
reference_medians

)

Arguments
df1 First dataset to be used in normalization (required).
df2 Second dataset to be used in normalization.

overlapping_samples_df1
Samples to be used for adjustment factor calculation in df1 (required).
overlapping_samples_df2
Samples to be used for adjustment factor calculation in df2.
df1_project_nr Project name of first dataset (df1).
df2_project_nr Project name of first dataset (df2).
reference_project
Project name of reference_project. Should be one of df1_project_nr or df2_project_nr.
Indicates the project to which the other project is adjusted to.
reference_medians
Dataset with columns "OlinkID" and "Reference NPX". Used for reference

median normalization.
Details
The following checks are performed:

e olink_norm_input_validate:

— Determines the normalization to be performed by intersecting inputs with internal global
variable olink_norm_mode_combos.

66 olink_norm_input_check

— Returns the type of normalization to be performed from olink_norm_modes.
— Message with the normalization type.

— Error message if input is invalid.
e olink_norm_input_class:
— Checks if all inputs are of the expected class:

% df1, df2 and reference_medians: tibble or R6 ArrowObject

+* overlapping_samples_df1, overlapping_samples_df2,df1_project_nr,df2_project_nr
and reference_project: Character vector

— Also checks the validity of names of project and reference project.

— Error if invalid input classes are detected.

e olink_norm_input_check_df_cols:

Detects the column names of input datasets df 1 and df2 to allow for alternative names.

Returns named list of column names to use downstream.

Warning if Normalization column missing from all datasets.

Warning if LOD is missing or if there are multiple LOD columns.

Error if required columns are missing.

Error if not all input datasets have or lack Normalization column.

Error if input datasets have been quantified with different methods.

e olink_norm_input_ref_medians:

Checks validity of dataset containing reference_medians.

Error if required columns are missing based on olink_norm_ref_median_cols.

Error if columns are not of the correct class bases on olink_norm_ref_median_cols.

Error if there duplicate assay identifiers.
e olink_norm_input_check_samples:
— Check character vectors of reference sample identifiers for:
* Being present in df 1 and/or df2.
Duplicate identifiers.
e olink_norm_input_clean_assays:
— Returns a named list with the updated df 1, df2 and/or reference_medians.
— Removes assays that are not of the format OID followed by 5 digits.
— Removes assays that are marked with Normalization = EXCLUDED.
* olink_norm_input_assay_overlap:
— Returns a named list with the updated df1, df2 and/or reference_medians.
— Remove assays not shared between df 1 and df 2, or between df 1 and reference_medians.
e olink_norm_input_norm_method:

— Check if all assays in df 1 and df2 have been originally normalized with the same method
"Intensity" or "Plate control".

— Warning is thrown if not.

olink_norm_input_check_df _cols 67

Value

Named list of updated inputs to use for normalization:

df1: dataset df1.
df2: NULL if reference median normalization, or dataset df2.
overlapping_samples_df1: character vector of reference samples from df1.

overlapping_samples_df2: NULL if reference median normalization, or character vector of
reference samples from df1.

df1_project_nr: name of dfl project.

df2_project_nr: NULL if reference median normalization, or name of df2 project.
reference_project: NULL if reference median normalization, or name of reference project.
reference_medians: NULL if bridge or subset normalization, or dataset with reference_medians.
df1_cols: column names of dfl to use downstream.

df2_cols: NULL if reference median normalization, or column names of df2 to use down-
stream.

norm_mode: one of bridge, subset, ref_median, and norm_cross_product indicating the nor-
malization to be performed.

Author(s)

Klev Diamanti

olink_

norm_input_check_df_cols
Check columns of a list of datasets to be normalized.

Description

This function takes as input a named list of datasets and checks if their columns allow the normal-
ization to be performed. The input may contain "tibble", "ArrowTable" or a mixture of them.

Usage

olink_norm_input_check_df_cols(lst_df)

Arguments

1st_df Named list of datasets to be normalized.

Value

Named list of vectors with the required column names for each dataset in Ist_df if no error.

68

Author(s)

Klev Diamanti

Examples

One dataset
OlinkAnalyze:::olink_norm_input_check_df_cols(
Ist_df = list(
"p1" = npx_datal
E
lapply(function(l_df) {
1_df |>
dplyr::select(
-dplyr::any_of (c("Normalization"))
)
D)
)

Two datasets
OlinkAnalyze:::olink_norm_input_check_df_cols(
Ist_df = list(
"p1" = npx_datal,
"p2" = npx_data2
) 1>
lapply(function(1l_df) {
1_df |>
dplyr::select(
-dplyr::any_of (c("Normalization™))
)
D)
)

Multiple datasets
OlinkAnalyze:::olink_norm_input_check_df_cols(
1st_df = list(
"p1" = npx_datal,
"p2" = npx_data2,
"p3" = npx_datal,
"p4" = npx_data2
) 1>
lapply(function(1l_df) {
1_df |>
dplyr::select(
-dplyr::any_of (c("Normalization"))
)
D)

olink_norm_input_check_df _cols

olink_norm_input_check_quant 69

olink_norm_input_check_quant
Check quantification columns.

Description
This function is called from olink_norm_input_check_df_cols to resolve ties and cases of multiple
the quantification columns across datasets.

Usage

olink_norm_input_check_quant(quant_cols, quant_cols_set)

Arguments

quant_cols Named list of vector arrays with quantifications of the datasets to be normalized.

quant_cols_set pre-ordered vector array of accepted quantification column names.

Value

quant_cols with the selected quantification column.

olink_norm_input_check_samples
Check reference samples to be used for normalization

Description

This function takes as input a two named lists of character vectors with matching names and checks
the validity of the reference samples. In case of 1 set of df samples, then all checks are skipped as
reference median normalization is to be performed.

Usage

olink_norm_input_check_samples(lst_df_samples, lst_ref_samples, norm_mode)

Arguments

1st_df_samples Named list of all sample identifiers from datasets to be normalized.
1st_ref_samples

Named list of reference sample identifiers to be used for normalization.
norm_mode Character string indicating the type of normalization to be performed. Ex-

pecting one of bridge, subset, ref_median or norm_cross_product. # nolint
line_length_linter

70 olink_norm_input_check_samples

Value

NULL if no warning or error.

Author(s)

Klev Diamanti

Examples

Reference median normalization
OlinkAnalyze:::olink_norm_input_check_samples(
1st_df_samples = list(
"p1" = unique(npx_datal$SampleID)
),
1st_ref_samples = list(
"p1" = npx_datal [>
dplyr::filter(
lgrepl(pattern = "CONTROL_SAMPLE",
x = .data[["SampleID"]1],
fixed = TRUE)
) 1>
dplyr::pull(.data[["SampleID"]1]) |>
unique() |>

sort() |>
head(n = 6L)
)?
norm_mode = "ref_median”
)

Bridge normalization
ref_samples_bridge <- intersect(x = npx_datal$SamplelD,
y = npx_data2$SampleID) |>
(\(x) x['grepl(pattern = "CONTROL_SAMPLE", x = x, fixed = TRUE)])()

OlinkAnalyze:::olink_norm_input_check_samples(
1st_df_samples = list(
"p1" = unique(npx_datal$SamplelD),
"p2" = unique(npx_data2$SamplelD)
),
1st_ref_samples = list(
"p1" = ref_samples_bridge,
"p2" = ref_samples_bridge
),
norm_mode = "bridge"

)

Subset normalization
ref_samples_subset_1 <- npx_datal |>
dplyr::filter(
lgrepl(pattern = "CONTROL_SAMPLE",
x = .data[["SampleID"]1],
fixed = TRUE)

olink_norm_input_class 71

& .data[["QC_Warning”]] == "Pass”
E
dplyr::pull(
.data[["SampleID"]]
) 1>
unique()
ref_samples_subset_2 <- npx_data2 |>
dplyr::filter(
lgrepl(pattern = "CONTROL_SAMPLE",
x = .data[["SampleID"]],
fixed = TRUE)
& .datal[["QC_Warning”]] == "Pass”
) 1>
dplyr::pull(
.data[["SampleID"]]
) 1>

unique()

OlinkAnalyze:::olink_norm_input_check_samples(
1st_df_samples = list(
"p1" = unique(npx_datal$SamplelID),
"p2" = unique(npx_data2$SampleID)
),
1st_ref_samples = list(
"p1" = ref_samples_subset_1,
"p2" = ref_samples_subset_2
),

norm_mode = "subset”

olink_norm_input_class
Check classes of input in olink_normalization function

Description

Check if df1, df2 and/or reference_medians are tibble or ArrowDataset datasets; if overlapping_samples_df1
and/or overlapping_samples_df2 are character vectors; and if df1_project_nr, df2_project_nr and/or
reference_project are scalar character vectors.

Usage

olink_norm_input_class(
df1,
df2,
overlapping_samples_df1,
overlapping_samples_df2,

72 olink_norm_input_clean_assays

df1_project_nr,
df2_project_nr,
reference_project,
reference_medians,

norm_mode
)
Arguments
df1 First dataset to be used in normalization (required).
df2 Second dataset to be used in normalization.

overlapping_samples_df1

Samples to be used for adjustment factor calculation in df1 (required).
overlapping_samples_df2

Samples to be used for adjustment factor calculation in df2.
df1_project_nr Project name of first dataset (df1).
df2_project_nr Project name of first dataset (df2).
reference_project

Project name of reference_project. Should be one of df1_project_nr or df2_project_nr.
Indicates the project to which the other project is adjusted to.
reference_medians

Dataset with columns "OlinkID" and "Reference NPX". Used for reference
median normalization.

norm_mode Scalar character from olink_norm_modes with the normalization to be performed.
Output from olink_norm_input_validate.

Value

NULL unless there is an error

Author(s)

Klev Diamanti

olink_norm_input_clean_assays

Check datasets and reference_medians for unexpected Olink identi-
fiers or excluded assays

Description

Check datasets and reference_medians for unexpected Olink identifiers or excluded assays

Usage

olink_norm_input_clean_assays(lst_df, reference_medians, lst_cols, norm_mode)

olink_norm_input_cross_product 73

Arguments

1st_df Named list of datasets to be normalized.
reference_medians

Dataset with columns "OlinkID" and "Reference_NPX". Used for reference
median normalization.

1st_cols Named list of vectors with the required column names for each dataset in Ist_df.

norm_mode Character string indicating the type of normalization to be performed. Ex-
pecting one of bridge, subset, ref_median or norm_cross_product. # nolint
line_length_linter
Value
A named list containing Ist_df and reference_medians stripped from unexpected Olink identifiers
or excluded assays
Author(s)

Klev Diamanti

olink_norm_input_cross_product
Check if bridge or cross-platform normalization

Description

A function to check whether we are to perform simple bridge normalization, or cross-platform
(Olink Explore 3072 - Olink Explore HT/Olink Reveal) normalization.

The function uses the internal dataset eHT_e3072_mapping to determine the product source of each
dataset. If both datasets originate from the same Olink product, then it will return bridge. If the
datasets to be normalized originate from Olink Explore HT and Olink Explore 3072 or Olink Reveal
and Olink Explore 3072, it will return norm_cross_product. In any other case an error is thrown.

Usage

olink_norm_input_cross_product(
1st_df,
1st_cols,
reference_project,
product_ids,
ref_ids

74 olink_norm_input_norm_method

Arguments
1st_df Named list of datasets to be normalized.
1st_cols Named list of vectors with the required column names for each dataset in Ist_df.

reference_project
Project name of reference_project. Should be one of df1_project_nr or df2_project_nr.
Indicates the project to which the other project is adjusted to.

product_ids Named character vector with the Olink product name that each input dataset
matches to.
ref_ids Named character vector with df1_project_nr and df2_project_nr marked as "ref"
and "not_ref".
Value

Character string indicating the type of normalization to be performed. One of bridge, subset,
ref_median or norm_cross_product. # nolint line_length_linter And the updated list of datasets
in case of cross-platform normalization.

Author(s)

Klev Diamanti

olink_norm_input_norm_method
Check datasets and reference_medians for Olink identifiers not shared
across datasets.

Description

Check datasets and reference_medians for Olink identifiers not shared across datasets.

Usage

olink_norm_input_norm_method(lst_df, 1lst_cols)

Arguments

1st_df Named list of datasets to be normalized.

1st_cols Named list of vectors with the required column names for each dataset in Ist_df.
Value

NULL if all assays are normalized with the same approach.

Author(s)

Klev Diamanti; Kathleen Nevola

olink_norm_input_ref_medians 75

olink_norm_input_ref_medians
Check datasets of reference_medians

Description

Check datasets of reference_medians

Usage

olink_norm_input_ref_medians(reference_medians)

Arguments
reference_medians
Dataset with columns "OlinkID" and "Reference_NPX". Used for reference
median normalization.

Value

NULL otherwise error.

Author(s)

Klev Diamanti

olink_norm_input_validate
Validate inputs of normalization function

Description

This function takes as input some of the inputs of the Olink normalization function and checks the
validity of the input.

Usage

olink_norm_input_validate(
df1,
df2,
overlapping_samples_df1,
overlapping_samples_df2,
reference_medians

76 olink_norm_product_id

Arguments
df1 First dataset to be used in normalization (required).
df2 Second dataset to be used in normalization.

overlapping_samples_df1

Samples to be used for adjustment factor calculation in df1 (required).
overlapping_samples_df2

Samples to be used for adjustment factor calculation in df2.
reference_medians

Dataset with columns "OlinkID" and "Reference_ NPX". Used for reference

median normalization.

Details

Depending on the input the function will return:

* Error: if the required components are lacking from the input or if the normalization cannot
be performed.

* Warning: if the normalization can be determined but extra inputs are provided. This will be
followed by a message and the type of normalization to be performed.

* Message: Information about the type of normalization to be performed.

Note that input are passed directly from the main olink_normalization function.

Value

Scalar character from olink_norm_modes if normalization can be determined from the input, oth-
erwise see details.

Author(s)

Klev Diamanti

olink_norm_product_id Identify names of product for each project

Description

Identify names of product for each project

Usage

olink_norm_product_id(1lst_df, lst_cols)

Arguments

Ist_df Named list of datasets to be normalized.

1st_cols Named list of vectors with the required column names for each dataset in Ist_df.

olink_norm_reference_id 77

Value

Named character vector with the Olink product name that each input dataset matches to.

Author(s)

Kathy Nevola Klev Diamanti

olink_norm_reference_id
Identify reference project.

Description

Identify reference project.

Usage

olink_norm_reference_id(lst_product, reference_project)

Arguments

1st_product Named character vector with the Olink product name that each input dataset
matches to.

reference_project
Project name of reference_project. Should be one of df1_project_nr or df2_project_nr.
Indicates the project to which the other project is adjusted to.

Value

Named character vector with dfl_project_nr and df2_project_nr marked as "ref" and "not_ref".

Author(s)

Kathy Nevola Klev Diamanti

78 olink_one_non_parametric

olink_one_non_parametric
Function which performs a Kruskal-Wallis Test or Friedman Test per
protein

Description

Performs an Kruskal-Wallis Test for each assay (by OlinkID) in every panel using stats::kruskal.test.
Performs an Friedman Test for each assay (by OlinkID) in every panel using rstatix::friedman_test.
The function handles factor variable.

Samples that have no variable information or missing factor levels are automatically removed from
the analysis (specified in a message if verbose = TRUE). Character columns in the input dataframe
are automatically converted to factors (specified in a message if verbose = T). Numerical variables
are not converted to factors. If a numerical variable is to be used as a factor, this conversion needs
to be done on the dataframe before the function call.

Inference is specified in a message if verbose = TRUE.
The formula notation of the final model is specified in a message if verbose = TRUE.

Adjusted p-values are calculated by stats::p.adjust according to the Benjamini & Hochberg (1995)
method (“fdr”). The threshold is determined by logic evaluation of Adjusted_pval < 0.05.

Usage

olink_one_non_parametric(
df,
variable,
dependence = FALSE,
subject = NULL,
verbose = TRUE

)
Arguments

df NPX or Quantified_value data frame in long format with at least protein name
(Assay), OlinkID, UniProt, Panel and a factor with at least 3 levels.

variable Single character value.

dependence Boolean. Default: FALSE. When the groups are independent, the kruskal-Wallis
will run, when the groups are dependent, the Friedman test will run.

subject Group information for the repeated measurement. If (dependence = TRUE), this
parameter need to be specified.

verbose Boolean. Default: True. If information about removed samples, factor conver-

sion and final model formula is to be printed to the console.

olink_one_non_parametric_posthoc 79

Value

A tibble containing the Kruskal-Wallis Test or Friedman Test results for every protein.

Columns include:

* Assay: "character" Protein symbol

* OlinkID: "character" Olink specific ID

* UniProt: "character" UniProt ID

* Panel: "character" Name of Olink Panel

 term: "character" term in model

 df: "numeric" degrees of freedom

* method: "character" which method was used

* statistic: "named numeric" the value of the test statistic with a name describing it
e p.value: "numeric" p-value for the test

* Adjusted_pval: "numeric" adjusted p-value for the test (Benjamini&Hochberg)
* Threshold: "character" if adjusted p-value is significant or not (< 0.05)

Examples

library(dplyr)

One-way Kruskal-Wallis Test

try({ # May fail if dependencies are not installed

kruskal_results <- olink_one_non_parametric(df = npx_datal,
variable = "Site")

b

#Friedman Test

friedman_results <- olink_one_non_parametric(df = npx_datal,
variable = "Time",
subject = "Subject”,
dependence = TRUE)

olink_one_non_parametric_posthoc
Function which performs posthoc test per protein for the results from
Friedman or Kruskal-Wallis Test.

Description

Performs a posthoc test using rstatix::wilcox_test or FSA::dunnTest with Benjamini-Hochberg p-
value adjustment per assay (by OlinkID) for each panel at confidence level 0.95. See olink_one_non_parametric
for details of input notation.

The function handles both factor and numerical variables.

80

olink_one_non_parametric_posthoc

Usage
olink_one_non_parametric_posthoc(
df,
olinkid_list = NULL,
variable,

test = "kruskal”,
subject = "Subject”,
verbose = TRUE

Arguments

df

NPX data frame in long format with at least protein name (Assay), OlinkID,
UniProt, Panel and a factor with at least 3 levels.

olinkid_list Character vector of OlinkID’s on which to perform post hoc analysis. If not

specified, all assays in df are used.

variable Single character value or character array.

test

Single character value indicates running the post hoc test for friedman or kruskal.

subject Group information for the repeated measurement. If (dependence = TRUE), this

parameter need to be specified.

verbose Boolean. Default: True. If information about removed samples, factor conver-

Value

sion and final model formula is to be printed to the console.

Tibble of posthoc tests for specified effect, arranged by ascending adjusted p-values.

Columns include:

Assay: "character" Protein symbol

OlinkID: "character" Olink specific ID

UniProt: "character" UniProt ID

Panel: "character" Name of Olink Panel

term: "character" term in model

contrast: "character” the groups that were compared

estimate: "numeric" the value of the test statistic with a name describing it
Adjusted_pval: "numeric" adjusted p-value for the test

Threshold: "character" if adjusted p-value is significant or not (< 0.05)

Examples

library(dplyr)

try({ # May fail if dependencies are not installed
One-way Kruskal-Wallis Test
kruskal_results <- olink_one_non_parametric(df = npx_datal,

olink_ordinalRegression 81

variable = "Site")

b

#Friedman Test

friedman_results <- olink_one_non_parametric(df = npx_datal,
variable = "Time",
subject = "Subject”,
dependence = TRUE)

#Posthoc test for the results from Friedman Test
friedman_posthoc_results <- olink_one_non_parametric_posthoc(npx_datal,
variable = "Time",
test = "friedman”,
olinkid_list = {friedman_results %>%
filter(Threshold == 'Significant') %>%
dplyr::select(0linkID) %>%
distinct() %>%
pull(D})

olink_ordinalRegression
Function which A two-way ordinal analysis of variance can address
an experimental design with two independent variables, each of which
is a factor variable. The main effect of each independent variable can
be tested, as well as the effect of the interaction of the two factors.

Description

Performs an ANOVA F-test for each assay (by OlinkID) in every panel using stats::Anova and Type
IIT sum of squares. Dependent variable will be treated as ordered factor. The function handles only
factor and/or covariates.

Samples that have no variable information or missing factor levels are automatically removed from
the analysis (specified in a message if verbose = T). Character columns in the input dataframe are
automatically converted to factors (specified in a message if verbose = T). Crossed analysis, i.e.
A*B formula notation, is inferred from the variable argument in the following cases:

° C(?A’,’B?)
* cCA:B’)
* cCA:B’,’B’)orc(CA: B’,’A’)
Inference is specified in a message if verbose = T.
The formula notation of the final model is specified in a message if verbose = T.

Adjusted p-values are calculated by stats::p.adjust according to the Benjamini & Hochberg (1995)
method (“fdr”). The threshold is determined by logic evaluation of Adjusted_pval < 0.05. Covari-
ates are not included in the p-value adjustment.

82 olink_ordinalRegression

Usage

olink_ordinalRegression(
df,
variable,
covariates = NULL,
return.covariates = F,
verbose = T

)
Arguments

df NPX or Quantified_value data frame in long format with at least protein name
(Assay), OlinkID, UniProt, Panel and a factor with at least 3 levels.

variable Single character value or character array. Variable(s) to test. If length > 1, the
included variable names will be used in crossed analyses . Also takes *:’/°*’
notation.

covariates Single character value or character array. Default: NULL. Covariates to include.

Takes ’:’/’*’ notation. Crossed analysis will not be inferred from main effects.
return.covariates

Logical. Default: False. Returns F-test results for the covariates. Note: Adjusted
p-values will be NA for the covariates.

verbose Logical. Default: True. If information about removed samples, factor conver-
sion and final model formula is to be printed to the console.

Value

A tibble containing the ANOVA results for every protein. The tibble is arranged by ascending
p-values.

Columns include:

* Assay: "character" Protein symbol

* OlinkID: "character" Olink specific ID

* UniProt: "character" UniProt ID

* Panel: "character" Name of Olink Panel

 term: "character" term in model

* statistic: "numeric" value of the statistic

* p.value: "numeric" nominal p-value

* Adjusted_pval: "numeric" adjusted p-value for the test

* Threshold: "character" if adjusted p-value is significant or not (< 0.05)

Examples

library(dplyr)

try({ # May fail if dependencies are not installed.

olink_ordinalRegression_posthoc 83

#Two-way Ordinal Regression with CLM.
#Results in model NPX~Treatment+Time+Treatment:Time.
ordinalRegression_results <- olink_ordinalRegression(df = npx_datal,
variable="Treatment:Time")

»

olink_ordinalRegression_posthoc
Function which performs an posthoc test per protein.

Description

Performs a post hoc ANOVA test using emmeans::emmeans with Tukey p-value adjustment per
assay (by OlinkID) for each panel at confidence level 0.95. See olink_anova for details of input
notation.

The function handles both factor and numerical variables and/or covariates. The posthoc test for
a numerical variable compares the difference in means of the ordinal outcome variable (default:
NPX) for 1 standard deviation difference in the numerical variable, e.g. mean ordinal NPX at
mean(numerical variable) versus mean NPX at mean(numerical variable) + 1*SD(numerical vari-
able).

Usage
olink_ordinalRegression_posthoc(
df,
olinkid_list = NULL,
variable,
covariates = NULL,
effect,

effect_formula,

mean_return = FALSE,
post_hoc_padjust_method = "tukey",
verbose = T

Arguments

df NPX data frame in long format with at least protein name (Assay), OlinkID,
UniProt, Panel and a factor with at least 3 levels.

olinkid_list Character vector of OlinkID’s on which to perform post hoc analysis. If not
specified, all assays in df are used.

variable Single character value or character array. Variable(s) to test. If length > 1,
the included variable names will be used in crossed analyses . Also takes ’:’
notation.

84 olink_ordinalRegression_posthoc

covariates Single character value or character array. Default: NULL. Covariates to include.
Takes ’:’/*’ notation. Crossed analysis will not be inferred from main effects.

effect Term on which to perform post-hoc. Character vector. Must be subset of or
identical to variable.

effect_formula (optional) A character vector specifying the names of the predictors over which
estimated marginal means are desired as defined in the emmeans package. May
also be a formula. If provided, this will override the effect argument. See
?emmeans: :emmeans () for more information.

mean_return Boolean. If true, returns the mean of each factor level rather than the difference
in means (default). Note that no p-value is returned for mean_return = TRUE
and no adjustment is performed.

post_hoc_padjust_method

P-value adjustment method to use for post-hoc comparisons within an assay.
Options include tukey, sidak, bonferroni and none.

verbose Boolean. Default: True. If information about removed samples, factor conver-
sion and final model formula is to be printed to the console.

Value

Tibble of posthoc tests for specified effect, arranged by ascending adjusted p-values.

Columns include:

* Assay: "character" Protein symbol

* OlinkID: "character" Olink specific ID

* UniProt: "character”" UniProt ID

* Panel: "character" Name of Olink Panel

 term: "character" term in model

* contrast: "character" the groups that were compared

* estimate: "numeric" difference in mean of the ordinal NPX between groups
* Adjusted_pval: "numeric" adjusted p-value for the test

* Threshold: "character" if adjusted p-value is significant or not (< 0.05)

Examples

library(dplyr)

#Two-way Ordinal Regression.

#Results in model NPX~Treatment*Time.

try({ # May not work if dependencies are not installed.

ordinalRegression_results <- olink_ordinalRegression(df = npx_datal,
variable="Treatment:Time")

#Filtering out significant and relevant results.
significant_assays <- ordinalRegression_results %>%
filter(Threshold == 'Significant' & term == 'Time') %>%
select(0linkID) %>%
distinct() %>%

olink_pal 85

pull()

#Posthoc test for the model NPX~Treatment*Time,
#on the effect Time.

#Posthoc

ordinalRegression_results_posthoc_results <- olink_ordinalRegression_posthoc(npx_datal,
variable=c("Treatment:Time"),
olinkid_list = significant_assays,
effect = "Time")

»
olink_pal Olink color panel for plotting

Description

Olink color panel for plotting
Usage

olink_pal(alpha = 1, coloroption = NULL)
Arguments

alpha transparency (optional)

coloroption string, one or more of the following: c(’red’, ’orange’, "yellow’, ’green’, ’teal’,

‘turqoise’, ’lightblue’, *darkblue’, *purple’, "pink’)

Value

A character vector of palette hex codes for colors

Examples

library(scales)

#Color matrices
show_col(olink_pal()(10), labels = FALSE)
show_col(olink_pal(coloroption = c('lightblue', 'green'))(2), labels = FALSE)

#Contour plot
filled.contour(volcano, color.palette = olink_pal(), asp = 1)
filled.contour(volcano, color.palette = hue_pal(), asp = 1)

86 olink_pathway_enrichment

olink_pathway_enrichment

Performs pathway enrichment using over-representation analysis
(ORA) or gene set enrichment analysis (GSEA)

Description

This function performs enrichment analysis based on statistical test results and full data using clus-
terProfiler’s gsea and enrich functions for MSigDB.

Usage

olink_pathway_enrichment(
data,
test_results,
method = "GSEA",
ontology = "MSigDhb",
organism = "human”,
pvalue_cutoff = 0.05,
estimate_cutoff = @

Arguments

data NPX data frame in long format with at least protein name (Assay), OlinkID,
UniProt,SampleID, QC_Warning, NPX, and LOD

test_results a dataframe of statistical test results including Adjusted_pval and estimate columns.

method Either "GSEA" (default) or "ORA"

ontology Supports "MSigDb" (default), "KEGG", "GO", and "Reactome" as arguments.
MSigDb contains C2 and C5 genesets. C2 and C5 encompass KEGG, GO, and
Reactome.

organism Either "human" (default) or "mouse"

pvalue_cutoff (numeric) maximum Adjusted p-value cutoff for ORA filtering of foreground
set (default = 0.05). This argument is not used for GSEA.

estimate_cutoff
(numeric) minimum estimate cutoff for ORA filtering of foreground set (default
= 0) This argument is not used for GSEA.

Details

MSigDB is subset if the ontology argument is KEGG, GO, or Reactome. test_results must contain
estimates for all assays. Posthoc results can be used but should be filtered for one contrast to
improve interpretability. Alternative statistical results can be used as input as long as they include
the columns "OlinkID", "Assay", and "estimate"”. A column named "Adjusted_pal" is also needed
for ORA. Any statistical results that contains one estimate per protein will work as long as the
estimates are comparable to each other.

olink_pathway_enrichment 87

clusterProfiler is originally developed by Guangchuang Yu at the School of Basic Medical Sciences
at Southern Medical University.

T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, W Tang, L Zhan, X Fu, S Liu, X
Bo, and G Yu. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The
Innovation. 2021, 2(3):100141. doi: 10.1016/j.xinn.2021.100141

NB: We strongly recommend to set a seed prior to running this function to ensure reproducibility
of the results.

A few notes on Pathway Enrichment with Olink Data

It is important to note that sometimes the proteins that are assayed in Olink Panels are related to
specific biological areas and therefore do not represent an unbiased overview of the proteome as
a whole. Pathways can only interpreted based on the background/context they came from. For
this reason, an estimate for all assays measured must be provided. Furthermore, certain pathways
cannot come up based on Olink’s coverage in this area. Additionally, if only the Inflammation panel
was run, then the available pathways would be given based on a background of proteins related to
inflammation. Both ORA and GSEA can provide mechanistic and disease related insight and are
best to use when trying to uncover pathways/annotations of interest. It is recommended to only
use pathway enrichment for hypothesis generating data, which is more well suited for data on the
Explore platform or on multiple Target 96 panels. For smaller lists of proteins it may be more
informative to use biological annotation in directed research, to discover which significant assay
are related to keywords of interest.

Value
A data frame of enrichment results. Columns for ORA include:

* ID: "character" Pathway ID from MSigDB

* Description: "character" Description of Pathway from MSigDB

* GeneRatio: "character” ratio of input proteins that are annotated in a term
* BgRatio: "character" ratio of all genes that are annotated in this term

* pvalue: "numeric" p-value of enrichment

* p.adjust: "numeric" Adjusted p-value (Benjamini-Hochberg)

 gvalue: "numeric" false discovery rate, the estimated probability that the normalized enrich-
ment score represents a false positive finding

 genelD: "character" list of input proteins (Gene Symbols) annotated in a term delimited by "/"

* Count: "integer" Number of input proteins that are annotated in a term
Columns for GSEA:

* ID: "character" Pathway ID from MSigDB
* Description: "character” Description of Pathway from MSigDB
* setSize: "integer" ratio of input proteins that are annotated in a term

* enrichmentScore: "numeric" Enrichment score, degree to which a gene set is over-represented
at the top or bottom of the ranked list of genes

* NES: "numeric" Normalized Enrichment Score, normalized to account for differences in gene
set size and in correlations between gene sets and expression data sets. NES can be used to
compare analysis results across gene sets.

88 olink_pathway_heatmap

* pvalue: "numeric" p-value of enrichment
* p.adjust: "numeric" Adjusted p-value (Benjamini-Hochberg)

» gvalue: "numeric" false discovery rate, the estimated probability that the normalized enrich-
ment score represents a false positive finding

* rank: "numeric" the position in the ranked list where the maximum enrichment score occurred

* leading_edge: "character" contains tags, list, and signal. Tags gives an indication of the per-
centage of genes contributing to the enrichment score. List gives an indication of where in
the list the enrichment score is obtained. Signal represents the enrichment signal strength and
combines the tag and list.

* core_enrichment: "character" list of input proteins (Gene Symbols) annotated in a term de-
limited by "/"

See Also

* olink_pathway_heatmap for generating a heat map of results

* olink_pathway_visualization for generating a bar graph of results

Examples

library(dplyr)
npx_df <- npx_datal %>% filter(!grepl(”control”, SamplelID, ignore.case = TRUE))
ttest_results <- olink_ttest(

df = npx_df,
variable = "Treatment”,
alternative = "two.sided”

)
try({ # This expression might fail if dependencies are not installed
gsea_results <- olink_pathway_enrichment(data = npx_datal, test_results = ttest_results)
ora_results <- olink_pathway_enrichment(
data = npx_datal,
test_results = ttest_results, method = "ORA"
)
}, silent = TRUE)

olink_pathway_heatmap Creates a heatmap of selected pathways and proteins

Description

Creates a heatmap of proteins related to pathways using enrichment results from olink_pathway_enrichment.

olink_pathway_heatmap 89

Usage

olink_pathway_heatmap(
enrich_results,
test_results,
method = "GSEA",
keyword = NULL,
number_of_terms = 20

Arguments

enrich_results data frame of enrichment results from olink_pathway_enrichment()
test_results filtered results from statistical test with Assay, OlinkID, and estimate columns

method method used in olink_pathway_enrichment ("GSEA" (default) or "ORA")
keyword (optional) keyword to filter enrichment results on, if not specified, displays top
terms

number_of_terms
number of terms to display, default is 20

Value

A heatmap as a ggplot object

See Also

* olink_pathway_enrichment for generating enrichment results
* olink_pathway_visualization for generating a bar graph of results

Examples

library(dplyr)
Run t-test results (see olink_ttest documentation)
npx_df <- npx_datal %>% filter(!grepl('control',SampleID, ignore.case = TRUE))
ttest_results <- olink_ttest(df=npx_df,
variable = 'Treatment',
alternative = 'two.sided')

try({ # This expression might fail if dependencies are not installed
Run olink_pathway_enrichment (see documentation)
gsea_results <- olink_pathway_enrichment(data = npx_datal, test_results = ttest_results)
ora_results <- olink_pathway_enrichment(data = npx_datal,
test_results = ttest_results, method = "ORA")

olink_pathway_heatmap(enrich_results = gsea_results, test_results = ttest_results)
olink_pathway_heatmap(enrich_results = ora_results, test_results = ttest_results,

method = "ORA", keyword = "cell")
»

90 olink_pathway_visualization

olink_pathway_visualization
Creates bargraph of top/selected enrichment terms from GSEA or ORA
results from olink_pathway_enrichment()

Description

Pathways are ordered by increasing p-value (unadjusted)

Usage

olink_pathway_visualization(
enrich_results,
method = "GSEA",
keyword = NULL,
number_of_terms = 20

Arguments

enrich_results data frame of enrichment results from olink_pathway_enrichment()

method method used in olink_pathway_enrichment ("GSEA" (default) or "ORA")
keyword (optional) keyword to filter enrichment results on, if not specified, displays top
terms

number_of_terms
number of terms to display, default is 20

Value

A bargraph as a ggplot object

See Also

* olink_pathway_enrichment for generating enrichment results

* olink_pathway_heatmap for generating a heat map of results

Examples

library(dplyr)
Run olink_ttest or other stats test (see documentaiton)
npx_df <- npx_datal %>% filter(!grepl('control',SampleID, ignore.case = TRUE))
ttest_results <- olink_ttest(df=npx_df,
variable = 'Treatment',
alternative = 'two.sided')

try({ # This expression might fail if dependencies are not installed
Run olink_pathway_enrichment (see documentation)

olink_pca_plot 91

gsea_results <- olink_pathway_enrichment(data = npx_datal, test_results = ttest_results)
ora_results <- olink_pathway_enrichment(data = npx_datal,

test_results = ttest_results, method = "ORA")
olink_pathway_visualization(enrich_results = gsea_results)
olink_pathway_visualization(enrich_results = gsea_results, keyword = "immune")
olink_pathway_visualization(enrich_results = ora_results, method = "ORA", number_of_terms = 15)

b

olink_pca_plot Function to plot a PCA of the data

Description

Generates a PCA projection of all samples from NPX data along two principal components (de-
fault PC2 vs. PCl1) including the explained variance and dots colored by QC_Warning using
stats::prcomp and ggplot2::ggplot.

Usage
olink_pca_plot(
df,
color_g = "QC_Warning",
x_val =1,
y_val = 2,

label_samples = FALSE,
drop_assays = FALSE,
drop_samples = FALSE,
n_loadings = 0,
loadings_list = NULL,
byPanel = FALSE,
outlierDefX = NA,
outlierDefY = NA,
outlierLines = FALSE,
label_outliers = TRUE,
quiet = FALSE,

verbose = TRUE,

)

Arguments
df data frame in long format with Sample Id, NPX and column of choice for colors
color_g Character value indicating which column to use for colors (default QC_Warning).

Continuous color scale for Olink(R) Sample Index (OSI) columns OSITime-
ToCentrifugation, OSIPreparationTemperature and OSISummary is also sup-
ported.

92

x_val

y_val

label_samples

drop_assays

drop_samples
n_loadings

loadings_list

byPanel
outlierDefX

outlierDefY

outlierLines

label_outliers

quiet

verbose

Details

olink_pca_plot

Integer indicating which principal component to plot along the x-axis (default
1y

Integer indicating which principal component to plot along the y-axis (default
2)

Logical. If TRUE, points are replaced with SampleID (default FALSE)

Logical. All assays with any missing values will be dropped. Takes precedence
over sample drop.

Logical. All samples with any missing values will be dropped.
Integer. Will plot the top n_loadings based on size.

Character vector indicating for which OlinkID’s to plot as loadings. It is possible
to use n_loadings and loadings_list simultaneously.

Perform the PCA per panel (default FALSE)

The number standard deviations along the PC plotted on the x-axis that defines
an outlier. See also "Details"

The number standard deviations along the PC plotted on the y-axis that defines
an outlier. See also "Details"

Draw dashed lines at +/- outlierDefX and outlierDefY standard deviations from
the mean of the plotted PCs (default FALSE)

Use ggrepel to label samples lying outside the limits set by the outlierLines
(default TRUE)

Logical. If TRUE, the resulting plot is not printed

Logical. Whether warnings about the number of samples and/or assays dropped
or imputed should be printed to the console.

coloroption passed to specify color order.

The values are by default scaled and centered in the PCA and proteins with missing NPX values are
by default removed from the corresponding assay. Unique sample names are required. Imputation
by the median is done for assays with missingness <10\ The plot is printed, and a list of ggplot

objects is returned.

If byPanel = TRUE, the data processing (imputation of missing values etc) and subsequent PCA
is performed separately per panel. A faceted plot is printed, while the individual ggplot objects are

returned.

The arguments outlierDefX and outlierDefY can be used to identify outliers in the PCA. Sam-
ples more than +/- outlierDefX and outlierDefY standard deviations from the mean of the plotted
PC will be labelled. Both arguments have to be specified.

Value

A list of objects of class "ggplot", each plot contains scatter plot of PCs

olink_plate_randomizer 93

Examples

library(dplyr)
npx_data <- npx_datal %>%
filter(!grepl('CONTROL', SamplelD))

#PCA using all the data
olink_pca_plot(df=npx_data, color_g = "QC_Warning")

#PCA per panel
g <- olink_pca_plot(df=npx_data, color_g = "QC_Warning”, byPanel = TRUE)
g[[2]] #Plot only the second panel

#lLabel outliers
olink_pca_plot(df=npx_data, color_g = "QC_Warning",

outlierDefX = 2, outlierDefY = 4) #All data
olink_pca_plot(df=npx_data, color_g = "QC_Warning",

outlierDefX = 2.5, outlierDefY = 4, byPanel = TRUE) #Per panel

#Retrieve the outliers
g <- olink_pca_plot(df=npx_data, color_g = "QC_Warning"”,
outlierDefX = 2.5, outlierDefY = 4, byPanel = TRUE)
outliers <- lapply(g, function(x){x$data}) %>%
bind_rows() %>%
filter(Outlier == 1)

olink_plate_randomizer
Randomly assign samples to plates

Description

Generates a scheme for how to plate samples with an option to keep subjects on the same plate
and/or to keep studies together.

Usage

olink_plate_randomizer(
Manifest,
PlateSize = 96,
Product,
SubjectColumn,
iterations = 500,
available.spots,
num_ctrl = 8,
rand_ctrl = FALSE,
seed,
study = NULL

94 olink_plate_randomizer

Arguments
Manifest tibble/data frame in long format containing all sample ID’s. Sample ID column
must be named SamplelD.
PlateSize Integer. Either 96 or 48. 96 is default.
Product String. Name of Olink product used to set PlateSize if not provided. Optional.

SubjectColumn (Optional) Column name of the subject ID column. Cannot contain missing val-
ues. If provided, subjects are kept on the same plate. This argument is used for
longitudinal studies and must be a separate column from the SampleID column.

iterations Number of iterations for fitting subjects on the same plate.

available.spots
Numeric. Number of wells available on each plate. Maximum 40 for T48 and
88 for T96. Takes a vector equal to the number of plates to be used indicating
the number of wells available on each plate.

num_ctrl Numeric. Number of controls on each plate (default = 8)

rand_ctrl Logical. Whether controls are added to be randomized across the plate (default
= FALSE)

seed Seed to set. Highly recommend setting this for reproducibility.

study String. Optional. Name of column that includes study information. For when

multiple studies are being plated and randomizing within studies. If study col-
umn is present in manifest, within study randomization will be performed.

Details

Variables of interest should if possible be randomized across plates to avoid confounding with po-
tential plate effects. In the case of multiple samples per subject (e.g. in longitudinal studies), Olink
recommends keeping each subject on the same plate. This can be achieved using the SubjectColumn
argument.

Value

A "tibble" including SampleID, SubjectID etc. assigned to well positions. Columns include same
columns as Manifest with additional columns:

plate: Plate number

column: Column on the plate

* row: Row on the plate

well: Well location on the plate

See Also

* olink_displayPlateLayout() for visualizing the generated plate layouts

* olink_displayPlateDistributions() for validating that sites are properly randomized

olink_qc_plot 95

Examples

#Generate randomization scheme using complete randomization
randomized.manifest_a <- olink_plate_randomizer(manifest, seed=12345)

#Generate randomization scheme that keeps subjects on the same plate (for longitudinal studies)
randomized.manifest_b <- olink_plate_randomizer(manifest,SubjectColumn="SubjectID",
available.spots=c(88,88), seed=12345)

Generate randomization scheme that keeps samples from the same study together
randomized.manifest_c <- olink_plate_randomizer(manifest, study = "Site")

#Visualize the generated plate layouts
olink_displayPlatelLayout(randomized.manifest_a, fill.color = 'Site')
olink_displayPlatelLayout(randomized.manifest_a, fill.color = 'SubjectID')
olink_displayPlatelLayout(randomized.manifest_b, fill.color = 'Site')
olink_displayPlatelayout(randomized.manifest_b, fill.color = 'SubjectID')
olink_displayPlatelLayout(randomized.manifest_c, fill.color = 'Site')

#Validate that sites are properly randomized

olink_displayPlateDistributions(randomized.manifest_a, fill.color = 'Site')
olink_displayPlateDistributions(randomized.manifest_b, fill.color = 'Site')
olink_gc_plot Function to plot an overview of a sample cohort per Panel

Description

Generates a facet plot per Panel using ggplot2::ggplot and ggplot2::geom_point and stats::IQR plot-
ting IQR vs. median for all samples. Horizontal dashed lines indicate +/-IQR_outlierDef standard
deviations from the mean IQR (default 3). Vertical dashed lines indicate +/-median_outlierDef
standard deviations from the mean sample median (default 3).

Usage

olink_qgc_plot(
df,
color_g = "QC_Warning",
plot_index = FALSE,
label_outliers = TRUE,
IQR_outlierDef = 3,
median_outlierDef = 3,
outlierLines = TRUE,
facetNrow = NULL,
facetNcol = NULL,

96 olink_ ttest

Arguments
df NPX data frame in long format. Must have columns SampleID, NPX and Panel
color_g Character value indicating which column to use as fill color (default QC_Warning)
plot_index Boolean. If FALSE (default), a point will be plotted for a sample. If TRUE, a

sample’s unique index number is displayed.
label_outliers Boolean. If TRUE, an outlier sample will be labelled with its SamplelD.

IQR_outlierDef The number of standard deviations from the mean IQR that defines an outlier
(default 3)

median_outlierDef
The number of standard deviations from the mean sample median that defines
an outlier. (default 3)

outlierLines Draw dashed lines at +/-IQR_outlierDef and +/-median_outlierDef standard de-
viations from the mean IQR and sample median respectively (default TRUE)

facetNrow The number of rows that the panels are arranged on
facetNcol The number of columns that the panels are arranged on

coloroption passed to specify color order

Value

An object of class "ggplot". Scatterplot shows IQR vs median for all samples per panel

Examples

library(dplyr)
olink_qgc_plot(npx_datal, color_g = "QC_Warning")

#Change the outlier threshold to +-4SD
olink_qgc_plot(npx_datal, color_g = "QC_Warning"”, IQR_outlierDef = 4, median_outlierDef = 4)

#Identify the outliers
gc <- olink_qgc_plot(npx_datal, color_g = "QC_Warning"”, IQR_outlierDef = 4, median_outlierDef = 4)
outliers <- qc$data %>% filter(Outlier == 1)

olink_ttest Function which performs a t-test per protein

Description

Performs a Welch 2-sample t-test or paired t-test at confidence level 0.95 for every protein (by
OlinkID) for a given grouping variable using stats::t.test and corrects for multiple testing by the
Benjamini-Hochberg method (“fdr’”’) using stats::p.adjust. Adjusted p-values are logically evaluated
towards adjusted p-value<0.05. The resulting t-test table is arranged by ascending p-values.

olink_ ttest 97

Usage
olink_ttest(df, variable, pair_id, ...)
Arguments
df NPX data frame in long format with at least protein name (Assay), OlinkID,
UniProt and a factor with 2 levels.
variable Character value indicating which column should be used as the grouping vari-
able. Needs to have exactly 2 levels.
pair_id Character value indicating which column indicates the paired sample identifier.
Options to be passed to t.test. See ?t. test for more information.
Value

A "tibble" containing the t-test results for every protein. Columns include:

Assay: "character" Protein symbol

OlinkID: "character" Olink specific ID

UniProt: "character” UniProt ID

Panel: "character" Name of Olink Panel

estimate: "numeric" difference in mean NPX between groups

Group 1: "numeric" Column is named first level of variable when converted to factor, contains
mean NPX for that group

Group 2: "numeric" Column is named second level of variable when converted to factor,
contains mean NPX for that group

statistic: "named numeric" value of the t-statistic

p-value: "numeric" p-value for the test

parameter: "named numeric" degrees of freedom for the t-statistic

conf.low: "numeric" confidence interval for the mean (lower end)

conf.high: "numeric" confidence interval for the mean (upper end)

method: "character" which t-test method was used

alternative: "character" describes the alternative hypothesis

Adjusted_pval: "numeric" adjusted p-value for the test (Benjamini&Hochberg)

Threshold: "character" if adjusted p-value is significant or not (< 0.05)

Examples

library(dplyr)

npx_df <- npx_datal %>% filter(!grepl('control',SampleID, ignore.case = TRUE))

ttest_results <- olink_ttest(df=npx_df,

variable = 'Treatment',

98 olink_umap_plot

alternative = 'two.sided')

#Paired t-test

npx_df %>%
filter(Time %in% c("Baseline”,"Week.6")) %>%
olink_ttest(variable = "Time", pair_id = "Subject”)

olink_umap_plot Function to make a UMAP plot from the data

Description

Computes a manifold approximation and projection using umap::umap and plots the two specified
components. Unique sample names are required and imputation by the median is done for assays
with missingness <10\

Usage
olink_umap_plot(
df,
color_g = "QC_Warning",
x_val =1,
y_val = 2,

config = NULL,
label_samples = FALSE,
drop_assays = FALSE,
drop_samples = FALSE,
byPanel = FALSE,
outlierDefX = NA,
outlierDefY = NA,
outlierLines = FALSE,
label_outliers = TRUE,
quiet = FALSE,

verbose = TRUE,

)

Arguments
df data frame in long format with Sample Id, NPX and column of choice for colors
color_g Character value indicating which column to use for colors (default QC_Warning)
x_val Integer indicating which UMAP component to plot along the x-axis (default 1)
y_val Integer indicating which UMAP component to plot along the y-axis (default 2)
config object of class umap.config, specifying the parameters for the UMAP algorithm

(default umap::umap.defaults)

olink_umap_plot

label_samples

drop_assays

drop_samples
byPanel
outlierDefX

outlierDefY

outlierLines

label_outliers

quiet

verbose

Details

99

Logical. If TRUE, points are replaced with SampleID (default FALSE)

Logical. All assays with any missing values will be dropped. Takes precedence
over sample drop.

Logical. All samples with any missing values will be dropped.
Perform the UMAP per panel (default FALSE)

The number standard deviations along the UMAP dimension plotted on the x-
axis that defines an outlier. See also ’Details"

The number standard deviations along the UMAP dimension plotted on the y-
axis that defines an outlier. See also ’Details"

Draw dashed lines at +/- outlierDefX and outlierDefY standard deviations from
the mean of the plotted PCs (default FALSE)

Use ggrepel to label samples lying outside the limits set by the outlierLines
(default TRUE)

Logical. If TRUE, the resulting plot is not printed

Logical. Whether warnings about the number of samples and/or assays dropped
or imputed should be printed to the console.

coloroption passed to specify color order.

The plot is printed, and a list of ggplot objects is returned.

If byPanel = TRUE, the data processing (imputation of missing values etc) and subsequent UMAP
is performed separately per panel. A faceted plot is printed, while the individual ggplot objects are

returned.

The arguments outlierDefX and outlierDefY can be used to identify outliers in the UMAP results.
Samples more than +/- outlierDefX and outlierDefY standard deviations from the mean of the plot-
ted UMAP component will be labelled. Both arguments have to be specified. NOTE: UMAP is a
non-linear data transformation that might not accurately preserve the properties of the data. Dis-
tances in the UMAP plane should therefore be interpreted with caution.

Value

A list of objects of class "ggplot", each plot contains scatter plot of UMAPs

Examples

library(dplyr)

npx_data <- npx_datal %>%
mutate(SampleID = paste(SampleID, "_", Index, sep = ""))
try({ # Requires umap package dependency
#UMAP using all the data
olink_umap_plot(df=npx_data, color_g = "QC_Warning")

#UMAP per panel

non

g <- olink_umap_plot(df=npx_data, color_g = "QC_Warning"”, byPanel = TRUE)

100 olink_volcano_plot

g$Inflammation #Plot only the Inflammation panel

#Label outliers
olink_umap_plot(df=npx_data, color_g = "QC_Warning",

outlierDefX = 2, outlierDefY = 4) #All data
olink_umap_plot(df=npx_data, color_g = "QC_Warning",

outlierDefX = 3, outlierDefY = 2, byPanel = TRUE) #Per panel

#Retrieve the outliers
g <- olink_umap_plot(df=npx_data, color_g = "QC_Warning",
outlierDefX = 3, outlierDefY = 2, byPanel = TRUE)
outliers <- lapply(g, function(x){x$data}) %>%
bind_rows() %>%
filter(Outlier == 1)
»

olink_volcano_plot Easy volcano plot with Olink theme

Description

Generates a volcano plot using the results of the olink_ttest function using ggplot and ggplot2::geom_point.
The estimated difference is plotted on the x-axis and the negative 10-log p-value on the y-axis. The
horizontal dotted line indicates p-value=0.05. Dots are colored based on the Benjamini-Hochberg
adjusted p-value cutoff 0.05 and can optionally be annotated by OlinkID.

Usage

olink_volcano_plot(p.val_tbl, x_lab = "Estimate”, olinkid_list = NULL, ...)
Arguments

p.val_tbl a data frame of results generated by olink_ttest()

x_lab Optional. Character value to use as the X-axis label

olinkid_list Optional. Character vector of proteins (by OlinkID) to label in the plot. If not
provided, default is to label all significant proteins.

Optional. Additional arguments for olink_color_discrete()

Value

An object of class "ggplot", plotting significance (y-axis) by estimated difference between groups
(x-axis) for each protein.

olink_wilcox 101

Examples

library(dplyr)

npx_df <- npx_datal %>% filter(!grepl('control',6SampleID, ignore.case = TRUE))
ttest_results <- olink_ttest(df=npx_df,

variable = 'Treatment',

alternative = 'two.sided')
olink_volcano_plot(ttest_results)

olink_wilcox Function which performs a Mann-Whitney U Test per protein

Description

Performs a Welch 2-sample Mann-Whitney U Test at confidence level 0.95 for every protein (by
OlinkID) for a given grouping variable using stats::wilcox.test and corrects for multiple testing
by the Benjamini-Hochberg method (“fdr’””) using stats::p.adjust. Adjusted p-values are logically
evaluated towards adjusted p-value<0.05. The resulting Mann-Whitney U Test table is arranged by
ascending p-values.

Usage
olink_wilcox(df, variable, pair_id, ...)
Arguments
df NPX or Quantified_value data frame in long format with at least protein name
(Assay), OlinkID, UniProt and a factor with 2 levels.
variable Character value indicating which column should be used as the grouping vari-
able. Needs to have exactly 2 levels.
pair_id Character value indicating which column indicates the paired sample identifier.
Options to be passed to wilcox.test. See ?wilcox_test for more information.
Value

A data frame containing the Mann-Whitney U Test results for every protein.

Columns include:

* Assay: "character" Protein symbol

* OlinkID: "character" Olink specific ID

* UniProt: "character" UniProt ID

* Panel: "character" Name of Olink Panel

* estimate: "numeric" median of NPX differences between groups

* statistic: "named numeric" the value of the test statistic with a name describing it

102 print_and_capture

* p.value: "numeric" p-value for the test

e conf.low: "numeric" confidence interval for the median of differences (lower end)
* conf.high: "numeric" confidence interval for the median of differences (upper end)
* method: "character" which wilcoxon method was used

* alternative: "character” describes the alternative hypothesis

* Adjusted_pval: "numeric" adjusted p-value for the test (Benjamini&Hochberg)

* Threshold: "character" if adjusted p-value is significant or not (< 0.05)

Examples

library(dplyr)
npx_df <- npx_datal %>% filter(!grepl('control',SampleID, ignore.case = TRUE))

wilcox_results <- olink_wilcox(df = npx_df,
variable = 'Treatment',
alternative = 'two.sided')

#Paired Mann-Whitney U Test
npx_df %>%
filter(Time %in% c("Baseline”,"Week.6")) %>%

olink_wilcox(variable = "Time"”, pair_id = "Subject"”)
print_and_capture Capture the output of printing an object
Description

Capture the output of printing an object

Usage

print_and_capture(x)

Arguments

X printable object

Value

string representation of the provided object

Examples

OlinkAnalyze:::print_and_capture(npx_datal)

read_flex 103

read_flex Read in flex data

Description

Called by read_NPX

Usage

read_flex(filename)

Arguments

filename where the file is located

Value

tibble of data

read_NPX Function to read NPX data into long format

Description

Imports an NPX or QUANT file exported from Olink Software. No alterations to the output format
is allowed.

Usage
read_NPX(filename)

Arguments

filename Path to Olink Software output file.

Value
A "tibble" in long format. Columns include:

* SampleID: Sample ID
* Index: Index
OlinkID: Olink ID

e UniProt: UniProt ID

* Assay: Protein symbol

* MissingFreq: Proportion of sample below LOD

104 read_npx_csv

¢ Panel_Version: Panel Version
PlateID: Plate ID

* QC_Warning: QC Warning Status
LOD: Limit of detection

* NPX: Normalized Protein Expression

Additional columns may be present or missing depending on the platform

Examples

file <- system.file("extdata"”, "Example_NPX_Data.csv"”, package = "OlinkAnalyze")
read_NPX(file)

read_npx_csv Helper function to read in Olink Explore csv or txt files

Description

Helper function to read in Olink Explore csv or txt files

Usage

read_npx_csv(filename)

Arguments

filename Path to Olink Software output txt of csv file.

Value
A "tibble" in long format. Some of the columns are:

» SampleID: Sample ID

¢ Index: Index

* OlinkID: Olink ID

* UniProt: UniProt ID

* Assay: Protein symbol

* MissingFreq: Proportion of sample below LOD
e Panel Version: Panel Version

* PlateID: Plate ID

e QC_Warning: QC Warning Status

* LOD: Limit of detection

* NPX: Normalized Protein Expression

Additional columns may be present or missing depending on the platform

read_npx_parquet

Examples

file <- system.file("extdata”, "Example_NPX_Data.csv”, package = "OlinkAnalyze")

read_NPX(file)

105

read_npx_parquet Helper function to read in Olink Explore parquet output files

Description

Helper function to read in Olink Explore parquet output files

Usage

read_npx_parquet(filename)

Arguments

filename Path to Olink Software parquet output file.

Value

A "tibble" in long format. Some of the columns are:

» SampleID: Sample ID

* OlinkID: Olink ID

* UniProt: UniProt ID

* Assay: Protein symbol

¢ PlateID: Plate ID

* Count: Counts from sequences

* ExtNPX: External control normalized counts

* NPX: Normalized Protein Expression

Additional columns may be present or missing depending on the platform

Examples

file <- system.file("extdata”, "Example_NPX_Data.csv”, package = "OlinkAnalyze")

read_NPX(file)

106 read_npx_zip

read_npx_zip Helper function to read in Olink Explore zip csv files

Description

Helper function to read in Olink Explore zip csv files

Usage

read_npx_zip(filename)

Arguments

filename Path to Olink Software output zip file.

Value

A "tibble" in long format. Some of the columns are:

* SampleID: Sample ID

* Index: Index

* OlinkID: Olink ID

* UniProt: UniProt ID

* Assay: Protein symbol

* MissingFreq: Proportion of sample below LOD
e Panel Version: Panel Version

* PlateID: Plate ID

* QC_Warning: QC Warning Status

* LOD: Limit of detection

¢ NPX: Normalized Protein Expression

Additional columns may be present or missing depending on the platform

Examples

try({ # May fail if dependencies are not installed

file <- system.file("extdata"”, "Example_NPX_Data.csv"”, package = "OlinkAnalyze")
read_NPX(file)

»

set_plot_theme 107

set_plot_theme Function to set plot theme

Description

This function sets a coherent plot theme for functions.

Usage

set_plot_theme(font = "Arial")

Arguments

font Font family to use for text elements. Default: "Arial".

Value

No return value, used as theme for ggplots

Examples
library(ggplot2)
ggplot(mtcars, aes(x = wt, y = mpg, color = as.factor(cyl))) +

geom_point(size = 4) +
set_plot_theme()

ggplot(mtcars, aes(x = wt, y = mpg, color = as.factor(cyl))) +
geom_point(size = 4) +
set_plot_theme(font = "")

Index

* Bridge
olink_normalization_bridge, 46
olink_normalization_n, 51

* Bridging

olink_normalization_bridgeable, 47

+ Heatmap
olink_heatmap_plot, 30
* NPX
olink_dist_plot, 27
olink_heatmap_plot, 30

olink_normalization_bridgeable, 47

olink_pca_plot, 91
olink_gc_plot, 95
olink_umap_plot, 98
read_NPX, 103
read_npx_csv, 104
read_npx_parquet, 105
read_npx_zip, 106
+x Normalization
olink_normalization_bridge, 46
olink_normalization_n, 51
olink_normalization_gs, 58
olink_normalization_subset, 61
x Olink
olink_pal, 85
* PCA
olink_pca_plot, 91
* Quantile
olink_normalization_gs, 58
* Smoothing
olink_normalization_gs, 58
* Subset
olink_normalization_n, 51
olink_normalization_subset, 61
x+ UMAP
olink_umap_plot, 98
* color
olink_pal, 85
+ datasets

108

manifest, 5
npx_datal, 14
npx_dataz, 15
* ggplot
olink_displayPlateDistributions,
25
olink_displayPlatelLayout, 26
*n
olink_normalization_n, 51
* palette
olink_pal, 85
* plates
olink_displayPlateDistributions,
25
olink_displayPlatelLayout, 26
olink_plate_randomizer, 93
+ randomized
olink_displayPlateDistributions,
25
olink_displayPlatelLayout, 26
olink_plate_randomizer, 93

check_data_completeness, 4
manifest, 5

norm_internal_adjust, 6
norm_internal_adjust_not_ref, 6,7
norm_internal_adjust_ref, 6,7
norm_internal_assay_median, 8
norm_internal_bridge, 6,9
norm_internal_cross_product, 10
norm_internal_reference_median, 8, 11
norm_internal_rename_cols, 12, 48
norm_internal_subset, 6, 8, 12
norm_internal_update_maxlod, 13
npx_datal, 14

npx_data2, 15

olink_anova, 15

INDEX

olink_anova_posthoc, 18
olink_boxplot, 20
olink_bridgeability_plot, 21
olink_bridgeselector, 23
olink_color_discrete, 24
olink_color_gradient, 25
olink_displayPlateDistributions, 25
olink_displayPlateDistributions(), 27
94
olink_displayPlatelLayout, 26
olink_displayPlateLayout(), 26, 94
olink_dist_plot, 27
olink_fill_discrete, 28
olink_fill_gradient, 28
olink_format_oid_no_overlap, 29
olink_format_rm_ext_ctrl, 30
olink_heatmap_plot, 30
olink_iqgr, 32
olink_lmer, 32
olink_lmer_plot, 34
olink_lmer_posthoc, 36
olink_lod, 39
olink_median, 40
olink_median_iqgr_outlier, 40
olink_norm_input_assay_overlap, 64, 66
olink_norm_input_check, 48, 65
olink_norm_input_check_df_cols, 66, 67
olink_norm_input_check_quant, 69
olink_norm_input_check_samples, 66, 69
olink_norm_input_class, 66, 71
olink_norm_input_clean_assays, 66, 72
olink_norm_input_cross_product, 73
olink_norm_input_norm_method, 66, 74
olink_norm_input_ref_medians, 66, 75
olink_norm_input_validate, 65, 72, 75
olink_norm_product_id, 76
olink_norm_reference_id, 77
olink_normalization, 22, 41, 48, 65, 76
olink_normalization_bridge, 46
olink_normalization_bridgeable, 47
olink_normalization_format, 49
olink_normalization_n, 51
olink_normalization_n_check, 56

olink_normalization_project_name_check,

57
olink_normalization_gs, 58
olink_normalization_sample_check, 60
olink_normalization_subset, 61

109

olink_one_non_parametric, 78
olink_one_non_parametric_posthoc, 79
olink_ordinalRegression, 81
olink_ordinalRegression_posthoc, 83
olink_pal, 85
olink_pathway_enrichment, 86, 89, 90
olink_pathway_heatmap, 88, 88, 90
olink_pathway_visualization, 88, 89, 90
olink_pca_plot, 91
olink_plate_randomizer, 93
olink_plate_randomizer(), 26, 27
olink_gc_plot, 95

olink_ttest, 96

olink_umap_plot, 98
olink_volcano_plot, 100
olink_wilcox, 101

print_and_capture, 102

read_f1lex, 103
read_NPX, 103
read_npx_csv, 104
read_npx_parquet, 105
read_npx_zip, 106

set_plot_theme, 107

	check_data_completeness
	manifest
	norm_internal_adjust
	norm_internal_adjust_not_ref
	norm_internal_adjust_ref
	norm_internal_assay_median
	norm_internal_bridge
	norm_internal_cross_product
	norm_internal_reference_median
	norm_internal_rename_cols
	norm_internal_subset
	norm_internal_update_maxlod
	npx_data1
	npx_data2
	olink_anova
	olink_anova_posthoc
	olink_boxplot
	olink_bridgeability_plot
	olink_bridgeselector
	olink_color_discrete
	olink_color_gradient
	olink_displayPlateDistributions
	olink_displayPlateLayout
	olink_dist_plot
	olink_fill_discrete
	olink_fill_gradient
	olink_format_oid_no_overlap
	olink_format_rm_ext_ctrl
	olink_heatmap_plot
	olink_iqr
	olink_lmer
	olink_lmer_plot
	olink_lmer_posthoc
	olink_lod
	olink_median
	olink_median_iqr_outlier
	olink_normalization
	olink_normalization_bridge
	olink_normalization_bridgeable
	olink_normalization_format
	olink_normalization_n
	olink_normalization_n_check
	olink_normalization_project_name_check
	olink_normalization_qs
	olink_normalization_sample_check
	olink_normalization_subset
	olink_norm_input_assay_overlap
	olink_norm_input_check
	olink_norm_input_check_df_cols
	olink_norm_input_check_quant
	olink_norm_input_check_samples
	olink_norm_input_class
	olink_norm_input_clean_assays
	olink_norm_input_cross_product
	olink_norm_input_norm_method
	olink_norm_input_ref_medians
	olink_norm_input_validate
	olink_norm_product_id
	olink_norm_reference_id
	olink_one_non_parametric
	olink_one_non_parametric_posthoc
	olink_ordinalRegression
	olink_ordinalRegression_posthoc
	olink_pal
	olink_pathway_enrichment
	olink_pathway_heatmap
	olink_pathway_visualization
	olink_pca_plot
	olink_plate_randomizer
	olink_qc_plot
	olink_ttest
	olink_umap_plot
	olink_volcano_plot
	olink_wilcox
	print_and_capture
	read_flex
	read_NPX
	read_npx_csv
	read_npx_parquet
	read_npx_zip
	set_plot_theme
	Index

