Package ‘R.AlphA.Home’

January 28, 2026

Type Package

Title Feel at Home using R, Thanks to Shortcuts Functions Making it
Simple

Version 2.0.2

Description A collection of personal functions designed to simplify and
streamline common R programming tasks. This package provides reusable
tools and shortcuts for frequently used calculations and workflows.

License GPL-3
URL https://github.com/R-alpha-act/R.AlphA.Home

BugReports https://github.com/R-alpha-act/R.AlphA.Home/issues
Depends R (>=4.0.0)

Imports data.table, diffobj, dplyr, ggplot2, lubridate, magrittr,
readxl, writexl, R.utils, R6, rstudioapi, tibble

Suggests shiny, shinyWidgets, testthat (>= 3.0.0)
Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation no

Author Raphaél Flambard [aut, cre],
Adrien Cocuaud [ctb]

Maintainer Rapha¢l Flambard <raphael@ralpha. fr>
Repository CRAN
Date/Publication 2026-01-28 13:40:02 UTC

Contents

cols_pad
compareVarso e e e e e e e e e e e e e e
countSwitches L e e e e

https://github.com/R-alpha-act/R.AlphA.Home
https://github.com/R-alpha-act/R.AlphA.Home/issues

2 cols_pad
foldAIIBr e 5
importAll e 6
left_join_checks L 8
IoadCheck e e e 9
lum_0_100 e 10
printif . . .o 10
qUICKEXPOrt e e 11
quickSaveo e e e e 13
ralpha_fold e 13
ralpha_unfold 14
rdate . ..o 15
ret_ lum e e 16
TOOU . v vt i e e e e e e e e e e e e e 17
Rtimer e e e 18
sepThsd e 19
SetOption L. e e 20
shiny_lum_0_100 e 21
show_diff 21
HMET o o o o o e e e e e 22

Index 24

cols_pad Add Variables to ease data usage in a Pivot Table

Description

Adds dummy columns to reach the number specified by the user. this is mostly useful to ensure
straightforward and easy data updating when using pivot tables in Excel. It allows replacement of
the previous data sheet by the new one, without having to take care about the number of columns,
which will always be the same.

Usage
cols_pad(data, nCols = 100, colPrefix = "x_")
Arguments
data The data frame to which dummy columns will be added.
nCols the total number of columns required : default is 100
colPrefix A string used as the prefix for the names of dummy columns.
Value

A data frame with the specified total number of columns.

compare Vars 3

Examples

table <- data.frame(a = 1:5, b = letters[1:5])
extraTable <- cols_pad(table, nCols = 6, colPrefix = "extra_")
print(extraTable)

compareVars Compare Table Variables

Description

Compares column names in two tables based on a given pattern. Provides information about which
columns are present in which tables.

Usage
compareVars(x, y, pattern = "")
Arguments
X A data frame representing the first table.
y A data frame representing the second table.
pattern A string pattern used to filter and compare only a subset of variables (column
names).
Value

A list containing:

e all: All column names from both tables.

* common: Column names found in both tables.

* onlyX: Column names found only in the first table (x).

* onlyY: Column names found only in the second table (y).

* exclusive: Column names found in only one of the two tables.

Examples

Example tables
tablel <- data.frame(exclusive_1 = 1:5, common_1 = 6:10, common_2 = 11:15)
table2 <- data.frame(common_1 = 16:20, common_2 = 21:25, exclusive_2 = 26:30)

Compare all columns (no pattern given)
compare_all <- compareVars(tablel, table2)
compare_all$common

compare_all$exclusive

compare_all$onlyX

4 countSwitches

compare_all$onlyY

compare only columns following a specific pattern
compare_wPattern <- compareVars(tablel, table2, pattern = "1")
compare_wPattern$all

compare_wPattern$common

countSwitches create an incremented Counter, based on Start/Stop Markers

Description

This function aims at identifying sections and sub-sections numbers, based on markers of section
starts and ends.

Given a data frame, and the name of a column giving the start/stop markers, it will add columns
giving infos about the successive section levels

Usage
countSwitches(
data,
colNm,
sttMark,
endMark,
includeStt = TRUE,
includeEnd = TRUE
)
Arguments
data A data frame containing the column to process.
colNm A string specifying the column name in ‘data‘ to evaluate.
sttMark A value indicating the start of a series.
endMark A value indicating the end of a series.
includeStt Logical. Should the start marker be included as part of the series? Default is
‘TRUE".
includeEnd Logical. Should the end marker be included as part of the series? Default is
‘TRUE".
Value

A modified version of the input data frame with additional columns including:

e ‘catLvl‘: The current series level calculated as the difference between the cumulative counts
of start and end markers.

o ‘Ivl_1°, “lvl_2°, ‘lvl_3*: Final series counts returned for each respective level.

foldAlIBr 5

Note

This function is currently mostly useful internally, to perform foldAlIBr().

Examples

example code
library(dplyr)
tribble(

~step

, "start”

, "content of section 1"
, "start”

, "subsection 1.1"

, "end”

, "end”

, "out of any section”
, "start”

, "section 2"

, "start”

, "subsection 2.1"

, "end”

, "start”

, "subsection 2.2"

, "end”

, "end”

) %>%
countSwitches(colNm = "step”, "start”, "end")

foldAllBr Easily Fold Code Parts

Description

This function works with code split into parts identified by brackets. The format is as follows:

code from part 1

} # part 1
{

} # part 2

It automatically identifies parts to fold/unfold easily.

Shortcuts required: Suggestion is to have one shortcut for this function, foldAllBr, and another one
for "expand fold" command. Here are the suggested shortcuts depending on Windows or Mac :

6 importAll

* on Mac : use ctrl+shift -> + up (fold) and down (expand)
* on Win : use shift+alt -> + S (fold) and D (expand)

Usage
foldAllBr(time = FALSE, debug_getTbl = FALSE)

Arguments

time Logical. If “TRUE®, the function will return ggplot object visualizing execution
times for each step.

debug_getTbl Logical. If ‘TRUES, returns the ‘docContent‘ table with tags for debugging
purposes.

Value
A list containing:

* debug_info: A data frame with debugging information if debug_getTbl = TRUE.

* timer_plot: A ggplot object visualizing execution times if time = TRUE.

If both parameters are FALSE, the function returns a list with NULL values.

importAll Function to Import and Concatenate Multiple Data Files

Description

Imports multiple files into a list, concatenates them into a single table, and adds an ‘fName* variable.
The function automatically handles type harmonization when different file types are mixed and
supports various formats including CSV, Excel, and RDS files.

The files can be selected either by giving a file list (character vector), or by specifying a pattern.
The function also supports column renaming and file exclusion patterns. When type conflicts are
detected across files, the function automatically harmonizes column types using a priority system
(character > numeric > Date > integer).

Usage

importAll(

non

path = ".",

pattern = "",

ignore.case = FALSE,

importFunction = NULL,

fill = FALSE,

filelList = NULL,

renameTable = data.frame(oldName = character(), newName = character()),
excludePattern = NULL

importAll

Arguments

path

pattern

ignore.case

importFunction

fill

filelList

renameTable

excludePattern

Value

Character. Path to the directory, passed to ‘list.files‘. Default is current directory
(||.ll).

Character. Pattern to match file names, passed to ‘list.files’. Default is empty
string (all files).

Logical. If “TRUE®, ignores case when matching file names. Passed to ‘list.files*.
Default behavior is case-sensitive (‘FALSE®).

Function. A custom function for importing files. If not set, the function selects
an import method based on the file extension.

Logical. Passed to ‘rbind‘ to allow filling missing columns with NA values.
Default is ‘FALSE".

Character vector. A vector of file names to import (used instead of ‘pattern®).
Can contain absolute or relative paths.

Data.frame. A data.frame with 2 columns (oldName/newName). importAll
will rename the columns of each file following this table. Default is empty
data.frame.

Character. Pattern to exclude files from import, applied after initial file selection.
Default is ‘NULL* (no exclusion).

A data.table containing the concatenated table with the fName column indicating the source file for
each row. All imported data is converted to data.table format with automatic type harmonization

when necessary.

Examples

Directory containing test files
test_path <- tempdir()

Create test files

write.csv(data.frame(a =
write.csv(data.frame(a =
write.csv(data.frame(a =
saveRDS(data.frame(a = 1:
saveRDS(data.frame(a = 1

4:6), file.path(test_path, "filel.csv"))
10:12), file.path(test_path, "file2.csv"))
8:10), file.path(test_path, "file3.csv"))
:10), file.path(test_path, "filel.rds"))
16:20), file.path(test_path, "file2.rds"))

T Il T T T
o 1 n

Example 1: Import all csv files
result <- importAll(path = test_path, pattern = "\\.csv$")

print(result)

Example 2: Import only selected files
file_list <- c("filel.csv", "file2.csv")
result <- importAll(path = test_path, filelList = file_list)

print(result)

Example 3: Import all .rds files
result <- importAll(path = test_path, pattern = "\\.rds$")

print(result)

left_join_checks

Example 4: Use a custom import function
custom_import <- function(file) {
data <- read.csv(file, stringsAsFactors = FALSE)

return(data)

}

result <- importAll(path = test_path, pattern = "\\.csv$", importFunction = custom_import)

print(result)

left_join_checks

Left Join with Validation Checks

Description

a custom usage of left_join, with more detailed checks. Performs a left join and verifies that no
unexpected duplicates or mismatches occur. In cas of unexpected results, gives details about what

caused the problem.

Usage

left_join_checks(
X,
Y,
reg_xAllMatch =
req_preserved_x

1,
:']’

behavior = "error",
showNotFound = FALSE,

showProblems =
time = FALSE

Arguments

TRUE,

X A data.table representing the left table.

y A data.table representing the right table.

Additional arguments passed to ‘dplyr::left_join*.

req_xAllMatch Logical. Ensure that all rows in ‘x‘ find a match in ‘y*‘. Default: FALSE.

reg_preserved_x

Logical. Ensure that the number of rows in ‘x‘ remains unchanged after the join.
Default: TRUE.

behavior Character. Specifies behavior if validation fails. Options: ‘"warning"* or ‘"er-
ror"‘. (default: ‘"warning"*)

showNotFound Logical. Show rows from ‘x‘ that did not match with ‘y*. Default: FALSE.

loadCheck 9

showProblems Logical. Display the problems encountered during the joining process, if any.

time Logical. Internal argument used only for testing purposes, timing the function
steps

Value

A data.table containing the joined table.

Examples

library(data.table)
library(dplyr)

Example 1: Simple left join with all matches

table_left <- data.table(id = 1:3, value_left = c("A", "B", "C"))

table_right <- data.table(id = 1:3, value_right = c("X", "Y", "Z"))

result <- left_join_checks(table_left, table_right, by = "id"”, req_preserved_x = TRUE)
print(result) # Ensures all rows in table_left are preserved

Example 2: Left join with missing matches
table_left <- data.table(id = 1:5, value_left = c("A", "B", "C", "D", "E"))
table_right <- data.table(id = c(1, 3, 5), value_right = c("X", "Y", "Z"))
result <- left_join_checks(

table_left,

table_right,

by = "id",

reg_preserved_x = TRUE,

showNotFound = TRUE,

behavior = "warning”

)

print(result) # Rows from table_left with no matches in table_right are shown

loadCheck Load and Install Package if Necessary

Description

This function checks if a specified package is available in the current R environment. If the package
is not installed, it automatically installs it with dependencies and then loads it. # The function
suppresses startup messages to provide a clean loading experience.

Usage
loadCheck(package_names)

Arguments

package_names A character vector specifying the name(s) of the package(s) to install (if neces-
sary), and load.

10 printif

Value

No return value.

Examples

Load a commonly used package
loadCheck("dplyr™")

Load a package that might not be installed
loadCheck("ggplot2")

lum_0_100 Adjust the Brightness of the Graphics Window for confortable viewing
when using ggplot2

Description

Modifies the brightness level of the active graphics window by adjusting its background color.

This is especially useful when using dark RStudio themes, where a 100 graphic window creates an
unconfortable contrast.

Usage
lum_0_100(lum = NULL)

Arguments
lum Numeric. Brightness level, ranging from 0 (completely dark) to 100 (maximum
brightness).
Value

no return value : only apply the theme_set() function

printif Conditionally Print an Object

Description

This function prints ‘x‘ if ‘show* is ‘TRUE®; otherwise, it returns ‘x‘ unchanged. Its main usage
is to "close" dplyr-like treatment chains (using This creates an extremely handy way to process
accurate line-by-line debugging, printing results when necessary and removing the print option
easily without having to rewrite everything or take care about the last element in the chain.

This saves much code writing and debugging time.
It is also useful to design functions so that users can easily stop elements from being printed

Given the purpose of this function, it is much more convenient to use 1 and O for the ’show’ argument
than TRUE or FALSE, as this can be switched easily in the editor.

quickExport 11

Usage
printif(x, show = FALSE, ...)
Arguments
X Any object.
show A logical value indicating whether to print ‘x‘ (default: ‘FALSE®).
Additional arguments passed to ‘print()‘.
Value

The object ‘x°, printed if ‘show* is “TRUE".

Examples

Basic usage
printif (42, show
printif (42, show

TRUE)
FALSE)

Using numeric shortcuts
printif(”"Hello", 1)
printif("Hello"”, 0)

Most useful usage : in a pipeline (requires dplyr)
if (requireNamespace("dplyr”, quietly = TRUE)) {
library(dplyr)
mtcars %>%
filter(mpg > 20) %>%
summarise(mean_hp = mean(hp)) %>%
printif(1)

quickExport Quick Export of Data to Excel with Column Padding

Description

Exports a data frame to an Excel file with optional column padding to ensure a consistent number
of columns. This function combines data export functionality with column padding, making it
particularly useful for creating Excel files that maintain the same structure across different datasets,
especially when used with pivot tables.

12 quickExport

Usage
quickExport(
data,
sheetName = "data_",
saveDir = root(),
saveName = "tmp_export.xlsx”,
nCols = 100,
colPrefix = "x_",
overwrite = TRUE
)
Arguments
data A data frame to be exported to Excel.
sheetName A character string specifying the name of the Excel sheet. Default is "data_".
saveDir A character string specifying the directory path where the file will be saved.
Default uses root() function.
saveName A character string specifying the filename for the Excel file. Defaultis "tmp_export.xIsx".
nCols An integer specifying the total number of columns required after padding. De-
fault is 100.
colPrefix A character string used as the prefix for the names of dummy columns added
during padding. Default is "x_".
overwrite A logical value indicating whether to overwrite existing files. Default is TRUE.
Value

No explicit return value. The function writes an Excel file to the specified location and prints a
message with the file path.

Examples

Not run:

Basic usage with default parameters

df <- data.frame(name = c("Alice", "Bob"), age = c(25, 30))
quickExport(df, sheetName = "employees”, saveName = "employee_data.xlsx")

Custom column padding and file location
sales_data <- data.frame(product = c("A", "B"), sales = c(100, 200))
quickExport(sales_data, nCols = 50, colPrefix = "col_",

saveName = "sales_report.xlsx", overwrite = FALSE)

End(Not run)

quickSave 13

quickSave Save File in a Directory storing saves, prefixing it with current date

Description

Saves a file with current date in its name in a sub directory located in the same directory as the
original file. Optionally, a note is added after the file name.

Usage

quickSave(
saveDir,
filePath = NULL,
saveNote = NULL,
overwrite = FALSE,
verbose = FALSE

)
Arguments
saveDir Choose the directory used to store saves. Suggested : ’old’
filePath Optional, if you want to save another file than the current one : full path of the
file you want to save.
saveNote An optional custom note to append to the file name for the save, allowing to
keep track of why this save has been done.
overwrite Logical. Should an existing save with the same name be overwritten? Default is
‘FALSE".
verbose logical. If turned to ‘“TRUE’, the save path is displayed
Value

the output value of the function used to copy file

ralpha_fold Fold Code Sections in RStudio

Description

Automatically fold code sections in RStudio editor to improve code readability and navigation

Usage
ralpha_fold(get_time = getOption("fab_time"”, default = FALSE))

14 ralpha_unfold

Arguments
get_time Logical value indicating whether to track and display function execution time.
Default is taken from option "fab_time" or FALSE if not set.
Value

Invisible NULL. The function is called for its side effect of folding code sections in the RStudio
editor.

Examples

Not run:

Fold code sections in the current RStudio editor
ralpha_fold()

Fold code sections and display timing information
ralpha_fold(get_time = TRUE)

End(Not run)

ralpha_unfold Unfold Code Sections in RStudio

Description

ralpha_fold() and ralpha_unfold() allow usage of the R.AlphA code format that keeps long scripts
easily readable.

This format is based on identifying code parts with brackets, and an optional but recommended
comment at the end :

code from part 1

} # part 1
{

} # part 2
then appearing as

{...} # part 1
{...} # part 2

rdate 15

To stay easy to manipulate, this format requires shortcuts to easily open or close the different sec-
tions.

ralpha_fold() will fold the different code parts and go back to beginning of current part
ralpha_unfold() will unfold a code part and jump to the next braces when relevant.

both combined will provide a convenient way to manage what is displayed on screen, ensuring a
constant global overview of the document.

Shortcuts required: Here are the suggested shortcuts, both for Mac and Windows :

* ralpha_fold : use ctrl+up

* ralpha_unfold : use ctrl+down

Usage
ralpha_unfold()

Value

NULL (invisibly). This function performs actions only (cursor movement and unfolding)

rdate Generate Random Dates, with a similar usage as the r* functions

Description

Generates a vector of random dates within a specified range. This function tries to replicate the
usage of the r* functions from stats package, such as runif(), rpois(), ...

Usage

rdate(
X)
min = paste@(format(Sys.Date(), "%Y"), "-01-01"),

max = paste@(format(Sys.Date(), "%Y"), "-12-31"),
sort = FALSE,
include_hours = FALSE
)
Arguments
X Integer. Length of the output vector (number of random dates to generate).
min Date. Optional. The minimum date for the range. Defaults to the 1st of January
of the current year.
max Date. Optional. The maximum date for the range. Defaults to the 31st of De-
cember of the current year.
sort Logical. Should the dates be sorted in ascending order? Default is ‘FALSE*.

include_hours Logical. Should the generated dates include time? Default is ‘FALSE‘ (dates
only). this will slow down the function

16 ret_lum

Value

A vector of random dates of length ‘x°.

Examples

Generate 5 random dates between two specific dates, sorted
rdate(5, min = as.Date("2020-01-01"), max = as.Date("2020-12-31"), sort = TRUE)

Generate 7 random datetime values (with hours)
rdate(7, include_hours = TRUE)

ret_lum Adjust the Brightness of a Hex Color

Description

Modifies the brightness of a color by multiplying its RGB components by a specified factor.

Mostly for internal usage inside lum_0_100 function.

Usage

ret_lum(hexCol, rgbFact)

Arguments
hexCol Character. The color to adjust, specified in hexadecimal format (e.g., "#FF5733").
rgbFact Numeric. The luminosity factor : - use a factor between 0 and 1 to decrease
luminosity - use a factor >1 to increase it The final Brightness value will be
maintained between 0 and 1.
Value

A modified hex color in hexadecimal format.

Examples

Example 1: Lightening a color
ret_lum("#FF5733", 1.5) # Returns a lighter version of the input color

Example 2: Darkening a color
ret_lum("#FF5733", 0.7) # Returns a darker version of the input color

root 17

root Get Root Directory of Current Source File

Description
Returns the directory path where the current source code file is located, optionally the full file path,
or builds a path relative to it.

This function is especially useful when the same source code is used by multiple users, each using
their own environment with different file paths. It helps avoid writing full paths in raw text inside
source codes by dynamically retrieving the location of the currently active source file in RStudio.

Usage
root(..., includeFName = FALSE)

Arguments
Path components to append to the root directory. If empty, returns only the
directory path. If provided, builds a path using file.path().

includeFName Logical. If TRUE, returns the full file path including the filename instead of just
the directory. Ignored if . . . is provided.

Value
A character string representing either:

* The absolute path of the directory containing the current source file (default)
* The full absolute path including the filename (if includeFName = TRUE)

* A path built from the root directory and the provided components (if . . . given)

Note

This function requires RStudio and will only work within the RStudio IDE. It relies on rstudioapi: : getSourceEditorCont
to retrieve the active source file location.

Examples

Not run:

Get only the directory path of the current source file
my_dir <- root()

print(my_dir)

Example output: "/home/user/my_project/R"

Get the full path including filename

my_file <- root(includeFName = TRUE)

print(my_file)

Example output: "/home/user/my_project/R/my_script.R"

18 Rtimer

Build a path relative to root

data_path <- root("”data”, "input.csv")

print(data_path)

Example output: "/home/user/my_project/R/data/input.csv”

End(Not run)

Rtimer Timer Class for Performance Measurement

Description

Timer Class for Performance Measurement

Timer Class for Performance Measurement

Details

An R6 class for measuring and tracking execution time of code segments. Provides functionality to
add timing checkpoints, calculate time differences, and generate summary reports of performance
metrics.

Public Methods

new() Initialize a new Timer instance.
add(...) Add atiming checkpoint with optional labels.
get(fill = TRUE) Generate timing results as data.table.

Methods
Public methods:

e Rtimer$new()
e Rtimer$add()
* Rtimer$get()

Method new(): Create a new Timer instance

Usage:
Rtimer$new()

Returns: A Rtimer object

Method add(): Add a timestamp
Usage:
Rtimer$add(...)
Arguments:

. Optional named labels attached to the timestamp.

sepThsd 19

Returns: The object itself (invisible) for chaining

Method get(): Return the collected timings as a data. table
Usage:
Rtimer$get(fill = TRUE)
Arguments:
fill Logical; if TRUE, fill missing columns when combining entries

Returns: A data.table containing timestamps and time differences

Examples

Not run:

tmr <- Rtimer$new()
tmr$add(”start")

some code
tmr$add(”end")
result <- tmr$get()
print(result)

End(Not run)

sepThsd Quick Number Formatting with Custom Defaults

Description

A wrapper for the ‘format‘ function, designed to format numbers with custom defaults for thousands
separator, number of significant digits, and scientific notation.

Usage
sepThsd(x, big.mark = " ", digits = 1, scientific = FALSE)
Arguments
X Numeric. The input values to format.
big.mark Character. The separator for thousands (e.g., <" "* for "1 000" or ‘","* for
"1,000"). Default is <" "*.
digits Integer. The number of significant digits to display. Default is ‘1°.
scientific Logical. Should the numbers be displayed in scientific notation? Default is
‘FALSE".
Value

A character vector of formatted numbers.

20 setOption

Examples

Format with a comma as a thousands separator and 3 significant digits
sepThsd(1234567.89, big.mark = ",", digits = 3)

Use scientific notation

sepThsd(1234567.89, scientific = TRUE)

setOption Set Global Option from Named List Element

Description

This function takes an element from a named list as an argument, and sets a global option based on
the list’s name.

Where : optionNameS$element == "value", calling setOption(optionName$element) triggers op-
tions(optionName = "value")
Usage

setOption(listElement)

Arguments

listElement An element from a named list, specified as ‘myList$element®.

Details
The function automatically extracts the list name from the argument. The option is then dynamically
set using ‘options(list_name = element)‘.

Value

The function does not return anything but sets an option that can be retrieved using ‘getOption(list_name)‘.

Examples

Create a temporary list for demonstration
modelOption <- list(modell = "model_1", model2 = "model_2", model3 = "model_3")

Set the option
setOption(modelOption$modell)

Retrieve the option
getOption(”"modelOption”) # Returns "model_1"

Clean up
options(modelOption = NULL)

shiny_Ium_0_100 21

shiny_lum_0_100 Set Shiny Background and Sidebar Colors to a Chosen Shade of Grey

Description

Adjust the background color of a Shiny app’s main body and sidebar based on a specified luminosity
level.

The purpose is the same as lum_0_100() function, avoiding problems with high contrast between
with graphic windows and dark themes.

Usage

shiny_lum_0_100(1lum)

Arguments

lum Numeric. Luminosity level, ranging from O (black) to 100 (white).

Value

The HTML tags for setting the background and sidebar colors.

show_diff Compare two texts or files with diffobj

Description
This function compares two inputs (files or text strings) and displays the differences using the diffobj
package with syntax highlighting.

Usage

show_diff(inputl, input2)

Arguments
inputil A character string. Either a file path or text content to compare.
input2 A character string. Either a file path or text content to compare.
Value

A diffobj object containing the visual comparison of the two inputs.

22 timer

Examples

Compare two text strings
show_diff("Hello\nWorld"”, "Hello\nR World")

Compare two files
Not run:
show_diff("filel.txt", "file2.txt")

End(Not run)
Mix file and text
Not run:

show_diff("file.txt"”, "New content\nWith changes")

End(Not run)

timer allow organized tracking of R code execution time

Description

The ‘timer* function allows you to append timeStamps to a data.table, and include additional meta-
data provided as arguments. The last call calculates time differences between timeStamps.

Usage
timer(timer_table = data.table(), end = FALSE, ...)
Arguments
timer_table A data.table containing the timer log to continue from. Defaults to an empty
‘data.table().
end A logical, inidicating the end of the timer, defaulted to FALSE. ’timer()’ calls
must be placed at the beginning of each part : therefore, this ’closing’ step is
necessary to compute time for the last part. Time differences between timeS-
tamps are calculated only when closing the timer.
Additional specifications. Use named arguments to provide documentation on
the code parts you are timing : naming the current step, the version of the code
you are trying, or any other useful specification
Value

A ‘data.table‘ containing the original data, plus one new timeStamp, and optionally computed time
differences :

e ‘timeStamp‘: The current timeStamp (‘POSIXct®).

e ‘timeStamp_num‘: timeStamp converted to numeric, useful for intermediary calculations.

timer 23

e ‘dt_num‘: The time difference in seconds between consecutive rows as a numeric value.
o ‘dt_text‘: The formatted time difference in seconds with milliseconds as a character string.

* Additional columns for any information provided by the user via “...“. It allows documentation
about the current step running, substeps, which version is being tested, ...

Examples

compare code speed between using a loop, or the mean() function
library(data. table)

library(dplyr)
tmr <- data.table() # Initialize timer
vec <- rnorm(1e6) # Example vector

tmr <- timer(tmr, method = "loop”) # timeStamp : 1st step
total <- @

for (i in seq_along(vec)) total <- total + vec[i]

mean_loop <- total / length(vec)

tmr <- timer(tmr, method = "mean()") # timeStamp : 1st step
mean_func <- mean(vec)

tmr <- timer(tmr, end = TRUE) # timeStamp : close timer ==============
t_stepl <- tmr[method == "loop"J$dt_num
t_step2 <- tmr[method == "mean()"J$dt_num

diff_pc <- (t_step2/t_stepl - 1) x 100
diff_txt <- format(diff_pc, nsmall = @, digits = 1)

view speed difference
print(tmr %>% select(-matches(”_num$")))
paste@("speed difference : ", diff_txt, "%")

Index

cols_pad, 2
compareVars, 3
countSwitches, 4

foldAllBr, 5
importAll, 6

left_join_checks, 8
loadCheck, 9
lum_0_100, 10

printif, 10

quickExport, 11
quickSave, 13

ralpha_fold, 13
ralpha_unfold, 14
rdate, 15
ret_lum, 16
root, 17
Rtimer, 18

sepThsd, 19
setOption, 20
shiny_lum_0_100, 21
show_diff, 21

timer, 22

24

	cols_pad
	compareVars
	countSwitches
	foldAllBr
	importAll
	left_join_checks
	loadCheck
	lum_0_100
	printif
	quickExport
	quickSave
	ralpha_fold
	ralpha_unfold
	rdate
	ret_lum
	root
	Rtimer
	sepThsd
	setOption
	shiny_lum_0_100
	show_diff
	timer
	Index

