
Package ‘amt’
January 30, 2026

Type Package

Title Animal Movement Tools

Version 0.3.1.0

Description Manage and analyze animal movement data. The functionality of
'amt' includes methods to calculate home ranges, track statistics
(e.g. step lengths, speed, or turning angles), prepare data for
fitting habitat selection analyses, and simulation of space-use from
fitted step-selection functions.

License GPL-3

URL https://github.com/jmsigner/amt

Depends R (>= 4.1)

Imports checkmate, circular, ctmm, data.table, dplyr (>= 0.7.0),
fitdistrplus, FNN, graphics, grDevices, KernSmooth, lubridate,
MASS, methods, purrr, Rdpack, rlang, sf, sfheaders, stats,
survival, terra, tibble, tidyr (>= 1.0.0), utils

Suggests adehabitatLT, broom, ggplot2, ggraph, geosphere, knitr,
leaflet, moveHMM, rmarkdown, sessioninfo, suncalc, tidygraph,
tinytest, units

VignetteBuilder knitr

RdMacros Rdpack

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

NeedsCompilation no

Author Johannes Signer [aut, cre],
Brian Smith [ctb],
Bjoern Reineking [ctb],
Ulrike Schlaegel [ctb],
John Fieberg [ctb],
Josh O'Brien [ctb],
Bernardo Niebuhr [ctb],

1

https://github.com/jmsigner/amt

2 Contents

Alec Robitaille [ctb],
Tal Avgar [ctb],
Gerben IJntema [ctb],
Scott LaPoint [dtc]

Maintainer Johannes Signer <jsigner@gwdg.de>

Repository CRAN

Date/Publication 2026-01-30 21:22:03 UTC

Contents
amt_fisher . 4
amt_fisher_covar . 5
as.data.frame.uhc_data . 5
as_sf_lines . 6
as_sf_points . 7
as_track . 8
available_distr . 8
bandwidth_pi . 9
bandwidth_ref . 10
bbox . 10
calculate_sdr . 11
calc_w . 12
centroid . 13
check_time_unit . 13
coercion . 14
conf_envelope . 15
convert_angles . 16
coords . 17
cum_ud . 17
deer . 18
diff . 18
distributions . 19
distr_name . 20
extent . 21
Extract.uhc_data . 22
extract_covariates . 22
filter_min_n_burst . 24
fit_clogit . 25
fit_ctmm . 25
fit_distr . 26
fit_logit . 27
flag_defunct_clusters . 28
flag_duplicates . 29
flag_fast_steps . 30
flag_roundtrips . 31
from_to . 32
get_amt_fisher_covars . 33

Contents 3

get_crs . 33
get_displacement . 34
get_distr . 34
get_max_dist . 35
get_sh_forest . 36
has_crs . 36
hr_akde . 37
hr_area . 39
hr_isopleths . 40
hr_kde_lscv . 41
hr_kde_ref_scaled . 42
hr_overlaps . 43
hr_overlap_feature . 44
hr_to_sf . 44
hr_ud . 45
inspect . 46
issf_drop_stratum . 47
issf_w_form . 47
log_rss . 48
make_issf_model . 51
make_start . 51
movement_metrics . 52
nsd . 54
od . 54
params . 56
plot.hr . 57
plot.log_rss . 57
plot.uhc_data . 59
plot.uhc_envelopes . 60
plot_sl . 60
prep_uhc . 61
random_numbers . 65
random_points . 65
random_steps . 67
random_steps_simple . 68
range . 69
redistribution_kernel . 70
remove_capture . 71
remove_incomplete_strata . 72
sampling_period . 73
sdr . 73
sh . 74
sh_forest . 74
simulate_path . 75
site_fidelity . 76
speed . 77
ssf_formula . 77
ssf_weights . 78

4 amt_fisher

steps . 78
summarize_sampling_rate . 81
summarize_sl . 82
summarize_speed . 82
time_of_day . 83
track . 84
tracked_from_to . 85
track_align . 86
track_resample . 86
transform_coords . 87
trast . 88
ua_distr . 89
uhc_hab . 89
uhc_hsf_locs . 90
uhc_issf_locs . 91
update_distr_man . 92
update_sl_distr . 93

Index 97

amt_fisher GPS tracks from four fishers

Description

This file includes spatial data from 4 fisher (Pekania pennanti). These location data were collected
via a 105g GPS tracking collar (manufactured by E-obs GmbH) and programmed to record the
animal’s location every 10 minutes, continuously. The data re projected in NAD84 (epsg: 5070).
The data usage is permitted for exploratory purposes. For other purposes please get in contact (Scott
LaPoint).

Usage

amt_fisher

Format

A tibble with 14230 rows and 5 variables:

x_ the x-coordinate

y_ the y-coordinate

t_ the timestamp

sex the sex of the animal

id the id of the animal

name the name of the animal

amt_fisher_covar 5

Source

https://www.datarepository.movebank.org/handle/10255/move.330

References

For more information, contact Scott LaPoint sdlapoint@gmail.com

amt_fisher_covar Environmental data for fishers

Description

A list with three entries that correspond to the following three layer: land use, elevation and popu-
lation density.

Usage

amt_fisher_covar

Format

A list with three where each entry is a SpatRast.

Source
https://lpdaac.usgs.gov/dataset_discovery/aster/aster_products_table
http://dup.esrin.esa.it/page_globcover.php
http://sedac.ciesin.columbia.edu/data/collection/gpw-v3/sets/browse

as.data.frame.uhc_data

Coerce a uhc_data object to data.frame

Description

Coerces uhc_data from list to data.frame

Usage

S3 method for class 'uhc_data'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

6 as_sf_lines

Arguments

x [uhc_data] An object of class uhc_data, as returned by the function prep_uhc().

row.names Included for consistency with generic as.data.frame(). Currently ignored.

optional Included for consistency with generic as.data.frame(). Currently ignored.

... Included for consistency with generic as.data.frame(). Currently ignored.

Details

This coercion aims to keep all of the information contained in the uhc_data list in the resulting
data.frame representation. Factors are converted to numeric, but the levels are retained in the
column "label".

Value

Returns a data.frame with columns:

• var: The name of the variable

• x: The x-coordinate of the density plot (the value of var).

• y: The y-coordinate of the density plot (the probability density for a numeric var and the
proportion for a factor var).

• dist: The distribution represented. Either "U" for used, "A" for available, or "S" for sampled.

• iter: The iteration number if dist == "S".

• label: The label if var is a factor.

Author(s)

Brian J. Smith

See Also

prep_uhc(), conf_envelope()

as_sf_lines Export track to lines

Description

Exports a track to (multi)lines from the sf package.

Usage

as_sf_lines(x, ...)

as_sf_points 7

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... Further arguments, none implemented.

Value

A tibble with a sfc-column

as_sf_points Coerces a track to points

Description

Coerces a track to points from the sf package.

Usage

as_sf_points(x, ...)

S3 method for class 'steps_xy'
as_sf_points(x, end = TRUE, ...)

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... Further arguments, none implemented.

end [logical(1)=TRUE]
For steps, should the end or start points be used?

Value

A data data.frame with a sfc-column

8 available_distr

as_track Coerce to track

Description

Coerce other classes to a track_xy.

Usage

as_track(x, ...)

S3 method for class 'sfc_POINT'
as_track(x, ...)

S3 method for class 'steps_xyt'
as_track(x, ...)

S3 method for class 'data.frame'
as_track(x, ...)

Arguments

x Object to be converted to a track.
... Further arguments, none implemented.

Value

An object of class track_xy(t)

available_distr Display available distributions for step lengths and turn angles.

Description

Display available distributions for step lengths and turn angles.

Usage

available_distr(which_dist = "all", names_only = FALSE, ...)

Arguments

which_dist [char(1)="all"]{"all", "ta", "sl"}
Should all distributions be returned, or only distributions for turn angles (ta)
or step lengths (sl).

names_only [logical(1)=FALSE]
Indicates if only the names of distributions should be returned.

... none implemented.

bandwidth_pi 9

Value

A tibble with the purpose of the distribution (turn angles [ta] or step length [sl]) and the distribution
name.

bandwidth_pi hr_kde_pi wraps KernSmooth::dpik to select bandwidth for kernel
density estimation the plug-in-the-equation method in two dimensions.

Description

This function calculates bandwidths for kernel density estimation by wrapping KernSmooth::dpik.
If correct = TURE, the bandwidth is transformed with power 5/6 to correct for using an univariate
implementation for bivariate data (Gitzen et. al 2006).

Usage

hr_kde_pi(x, ...)

S3 method for class 'track_xy'
hr_kde_pi(x, rescale = "none", correct = TRUE, ...)

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... Further arguments, none implemented.
rescale [character(1)]

Rescaling method for reference bandwidth calculation. Must be one of "unit-
var", "xvar", or "none".

correct Logical scalar that indicates whether or not the estimate should be correct for
the two dimensional case.

Value

The bandwidth, the standardization method and correction.

References

Gitzen, R. A., Millspaugh, J. J., & Kernohan, B. J. (2006). Bandwidth selection for fixed-kernel
analysis of animal utilization distributions. Journal of Wildlife Management, 70(5), 1334-1344.

See Also

KernSmooth::dpik

10 bbox

bandwidth_ref Reference bandwidth

Description

Calculate the reference bandwidth for kernel density home-range range estimates.

Usage

hr_kde_ref(x, ...)

S3 method for class 'track_xy'
hr_kde_ref(x, rescale = "none", ...)

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... Further arguments, none implemented.
rescale [character(1)]

Rescaling method for reference bandwidth calculation. Must be one of "unit-
var", "xvar", or "none".

Value

The estimated bandwidth in x and y direction.

bbox Get bounding box of a track.

Description

Get bounding box of a track.

Usage

bbox(x, ...)

S3 method for class 'track_xy'
bbox(x, spatial = TRUE, buffer = NULL, ...)

S3 method for class 'steps_xy'
bbox(x, spatial = TRUE, buffer = NULL, ...)

calculate_sdr 11

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... Further arguments, none implemented.
spatial [logical(1)=TRUE]

Whether or not to return an object of class sf-Polygon-object or not.
buffer [numeric(0)=NULL]{NULL, >0}

An optional buffer of the bounding box.

Value

If spatial = FALSE a named vector of length four with the extent of the bounding box. Otherwise
a SpatialPolygon or a simple feature polygon with the bounding box.

Examples

data(deer)
bbox(deer)
bbox(deer, spatial = FALSE)
bbox(deer, buffer = 100, spatial = FALSE)

For steps
deer |> steps_by_burst() |> bbox(spatial = FALSE)
deer |> steps_by_burst() |> bbox(buffer = 100, spatial = FALSE)
deer |> steps_by_burst() |> random_steps() |> bbox(spatial = FALSE)

Further manipulations are possible
deer |> bbox() |> sf::st_transform(4326)

calculate_sdr Calculate SDR

Description

Calculates squared displacement rate for a given speed and duration

Usage

calculate_sdr(speed = 50, time, speed_unit = c("km/h", "m/s"))

Arguments

speed [numeric] A speed given in either km/h or m/s.
time [Period] A lubridate Period for which the speed can be sustained.
speed_unit [character] The unit in which speed is given. Should be either "km/h" or

"m/s".

12 calc_w

Value

Returns a numeric vector (of length 1) with the SDR in m^2/s.

Author(s)

Johannes Signer and Brian J. Smith

See Also

get_displacement()

Examples

Assume a cheetah can sprint 100 km/h for 60 seconds
calculate_sdr(speed = 100, time = seconds(60), speed_unit = "km/h")
46296.3 m^2/s

What is expected displacement in 1 h at that SDR?
get_displacement(46296.3, hours(1))
12909.95 m = 12.9 km/h (much slower than sprint speed!)

calc_w Calculate w(x)

Description

Calculates the value of the exponential habitat selection function

Usage

calc_w(f, b, newdata)

Arguments

f [formula]
A model formula.

b [numeric] A named vector of coefficients.
newdata [data.frame]

A data.frame to predict eHSF values.

Details

This is actually like to be w(x) * phi(x) for an iSSF.

centroid 13

centroid Calculate the centroid of a track.

Description

Calculate the centroid of a track.

Usage

centroid(x, ...)

S3 method for class 'track_xy'
centroid(x, spatial = FALSE, ...)

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... Further arguments, none implemented.
spatial [logical(1)=FALSE]

Whether or not to return a SpatialPoints-object.

Value

The centroid of a track as numeric vector if spatial = FALSE, otherwise as SpatialPoints.

Examples

data(deer)
centroid(deer)

check_time_unit Calculate Speed

Description

Calculates speed

Usage

check_time_unit(tu)

Arguments

tu The time_unit parameter to check.

14 coercion

Details

Calculate Change in NSD

Calculates change in NSD

Check time_unit Parameter

Internal function to check time_unit parameter in various cleaning functions.

coercion Coerce a track to other formats.

Description

Several other packages provides methods to analyze movement data, and amt provides coercion
methods to some packages.

Usage

as_sf(x, ...)

S3 method for class 'steps_xy'
as_sf(x, end = TRUE, ...)

as_sp(x, ...)

as_ltraj(x, ...)

S3 method for class 'track_xy'
as_ltraj(x, id = "animal_1", ...)

S3 method for class 'track_xyt'
as_ltraj(x, ...)

as_telemetry(x, ...)

S3 method for class 'track_xyt'
as_telemetry(x, ...)

as_moveHMM(x, ...)

S3 method for class 'track_xy'
as_moveHMM(x, ...)

Arguments

x [track_xy, track_xyt]
A track created with make_track.

conf_envelope 15

... Further arguments, none implemented.
end [logical(1)=TRUE]

For steps, should the end or start points be used?
id [numeric,character,factor]

Animal id(s).

Value

An object of the class to which coercion is performed to.

conf_envelope Create confidence envelopes from a uhc_data_frame

Description

Simplifies sampled distributions in a uhc_data_frame to confidence envelopes

Usage

conf_envelope(x, levels = c(0.95, 1))

Arguments

x [uhc_data] An object of class uhc_data_frame, as returned by the function
as.data.frame.uhc_data().

levels [numeric] A numeric vector specifying the desired confidence levels. Defaults
to c(0.95, 1) to create 95% and 100% confidence intervals.

Details

This can dramatically improve plotting time for UHC plots by simplifying the many sampled lines
down to the boundaries of a polygon.

Value

Returns a data.frame with columns:

• var: The name of the variable

• x: The x-coordinate of the density plot (the value of var).

• label: If var is a factor, the label for the value given by x.

• U: The y-coordinate of the density plot for the use distribution.

• A: The y-coordinate of the density plot for the availability distribution.
• CI*_lwr: The lower bound of the confidence envelope for the corresponding confidence level.
• CI*_upr: The upper bound of the confidence envelope for the corresponding confidence level.

16 convert_angles

Author(s)

Brian J. Smith

See Also

prep_uhc(), plot.uhc_envelopes()

convert_angles Converts angles to radians

Description

Converts angles to radians

Usage

as_rad(x)

as_degree(x)

Arguments

x [numeric]
Angles in degrees or rad.

Value

A numeric vector with the converted angles.

Examples

as_rad(seq(-180, 180, 30))

The default unit of turning angles is rad.
data(deer)
deer |> steps() |> mutate(ta_ = as_degree(ta_))

coords 17

coords Coordinates of a track.

Description

Coordinates of a track.

Usage

coords(x, ...)

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... Further arguments, none implemented.

Value
[tibble]
The coordinates.

Examples

data(deer)
coords(deer)

cum_ud Calculate a cumulative UD

Description

Calculate the cumulative utilization distribution (UD).

Usage

hr_cud(x, ...)

S3 method for class 'SpatRaster'
hr_cud(x, ...)

Arguments

x [RasterLayer]
Containing the Utilization Distribution (UD).

... Further arguments, none implemented.

18 diff

Value
[RasterLayer]
The cumulative UD.

Note

This function is typically used to obtain isopleths.

deer Relocations of 1 red deer

Description

826 GPS relocations of one red deer from northern Germany. The data is already resampled to a
regular time interval of 6 hours and the coordinate reference system is transformed to epsg:3035.

Usage

deer

Format

A track_xyt

x_ the x-coordinate

y_ the y-coordinate

t_ the timestamp

burst_ the burst a particular points belongs to.

Source

Verein für Wildtierforschung Dresden und Göttingen e.V.

diff Difference in x and y

Description

Difference in x and y coordinates.

Usage

diff_x(x, ...)

diff_y(x, ...)

distributions 19

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... Further arguments, none implemented.

Value

Numeric vector

distributions Functions create statistical distributions

Description

make_distributions creates a distribution suitable for using it with integrated step selection func-
tions

Usage

make_distribution(name, params, vcov = NULL, ...)

make_exp_distr(rate = 1)

make_hnorm_distr(sd = 1)

make_lnorm_distr(meanlog = 0, sdlog = 1)

make_unif_distr(min = -pi, max = pi)

make_vonmises_distr(kappa = 1, vcov = NULL)

make_gamma_distr(shape = 1, scale = 1, vcov = NULL)

Arguments

name [char(1)]
Short name of distribution. See available_distr() for all currently imple-
mented distributions.

params [list]
A named list with parameters of the distribution.

vcov [matrix]
A matrix with variance and covariances.

... none implemented.
rate [double(1)>0]

The rate of the exponential distribution.

20 distr_name

sd [double(1)>0]
The standard deviation of the half-normal distribution.

meanlog [double(1)>0]
The standard deviation of the half-normal distribution.

sdlog [double(1)>0]
The standard deviation of the half-normal distribution.

min [double(1)]
The minimum of the uniform distribution.

max [double(1)]
The minimum of the uniform distribution.

kappa [double(1)>=0]
Concentration parameter of the von Mises distribution.

shape, scale [double(1)>=0]
Shape and scale of the Gamma distribution

Value

A list of class amt_distr that contains the name (name) and parameters (params) of a distribution.

distr_name Name of step-length distribution and turn-angle distribution

Description

Name of step-length distribution and turn-angle distribution

Usage

sl_distr_name(x, ...)

S3 method for class 'random_steps'
sl_distr_name(x, ...)

S3 method for class 'fit_clogit'
sl_distr_name(x, ...)

ta_distr_name(x, ...)

ta_distr_name(x, ...)

S3 method for class 'random_steps'
ta_distr_name(x, ...)

S3 method for class 'fit_clogit'
ta_distr_name(x, ...)

extent 21

Arguments

x Random steps or fitted model

... None implemented.

Value

Character vector of length 1.

extent Extent of a track

Description

Obtain the extent of a track in x y or both directions

Usage

extent_x(x, ...)

extent_y(x, ...)

extent_both(x, ...)

extent_max(x, ...)

Arguments

x [track_xy, track_xyt, steps]
Either a track created with mk_track or track, or steps.

... Further arguments, none implemented.

Value

Numeric vector with the extent.

22 extract_covariates

Extract.uhc_data Subset a uhc_data object

Description

Subset a uhc_data object

Usage

S3 method for class 'uhc_data'
x[i]

Arguments

x [uhc_data] A uhc_data object to subset.
i [numeric or character] A numeric vector to subset variables by position or a

character vector to subset variables by name.

extract_covariates Extract covariate values

Description

Extract the covariate values at relocations, or at the beginning or end of steps.

Usage

extract_covariates(x, ...)

S3 method for class 'track_xy'
extract_covariates(x, covariates, ...)

S3 method for class 'random_points'
extract_covariates(x, covariates, ...)

S3 method for class 'steps_xy'
extract_covariates(x, covariates, where = "end", ...)

extract_covariates_along(x, ...)

S3 method for class 'steps_xy'
extract_covariates_along(x, covariates, ...)

extract_covariates_var_time(x, ...)

extract_covariates 23

S3 method for class 'track_xyt'
extract_covariates_var_time(
x,
covariates,
when = "any",
max_time,
name_covar = "time_var_covar",
...

)

S3 method for class 'steps_xyt'
extract_covariates_var_time(
x,
covariates,
when = "any",
max_time,
name_covar = "time_var_covar",
where = "end",
...

)

Arguments

x [track_xy, track_xyt, steps]
Either a track created with mk_track or track, or steps.

... Additional arguments passed to terra::extract().
covariates [SpatRaster]

The (environmental) covariates. For extract_covariates_var_time the argu-
ment covariates need to have a z-column (i.e. the time stamp).

where [character(1)="end"]{"start", "end", "both"}
For steps this determines if the covariate values should be extracted at the be-
ginning or the end of a step. or end.

when [character(1)="any"]{"any", "before", "after"}
Specifies for for extract_covariates_var_time whether to look before, after
or in both direction (any) for the temporally closest environmental raster.

max_time [Period(1)]
The maximum time difference between a relocation and the corresponding raster.
If no rasters are within the specified max. distance NA is returned.

name_covar [character(1)="time_var_covar"]
The name of the new column.

Details

extract_covariates_along extracts the covariates along a straight line between the start and the
end point of a (random) step. It returns a list, which in most cases will have to be processed further.

Value

A tibble with additional columns for covariate values.

24 filter_min_n_burst

Examples

data(deer)
sh_forest <- get_sh_forest()
mini_deer <- deer[1:20,]
mini_deer |> extract_covariates(sh_forest)
mini_deer |> steps() |> extract_covariates(sh_forest)

Illustration of extracting covariates along the a step
mini_deer |> steps() |> random_steps() |>

extract_covariates(sh_forest) |> # extract at the endpoint
(\(.) mutate(., for_path = extract_covariates_along(., sh_forest)))() |>
1 = forest, lets calc the fraction of forest along the path
mutate(for_per = purrr::map_dbl(for_path, function(x) mean(x == 1)))

filter_min_n_burst Filter bursts by number of relocations

Description

Only retain bursts with a minimum number (= min_n) of relocations.

Usage

filter_min_n_burst(x, ...)

S3 method for class 'track_xy'
filter_min_n_burst(x, min_n = 3, ...)

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... Further arguments, none implemented.
min_n [numeric(1)=3]

Indicating the minimum number of relocations (=fixes per burst).

Value

A tibble of class track_xy(t).

fit_clogit 25

fit_clogit Fit a conditional logistic regression

Description

This function is a wrapper around survival::clogit, making it usable in a piped workflow.

Usage

fit_clogit(data, formula, more = NULL, summary_only = FALSE, ...)

fit_ssf(data, formula, more = NULL, summary_only = FALSE, ...)

fit_issf(data, formula, more = NULL, summary_only = FALSE, ...)

Arguments

data [data.frame]
The data used to fit a model.

formula [formula]
The model formula.

more [list]
Optional list that is passed on the output.

summary_only [logical(1)=FALSE]
If TRUE only a broom::tidy summary of the model is returned.

... Additional arguments, passed to survival::clogit.

Value

A list with the following entries

• model: The model output.

• sl_: The step length distribution.

• ta_: The turn angle distribution.

fit_ctmm Fit a continuous time movement model with ctmm

Description

Fit a continuous time movement model with ctmm

Usage

fit_ctmm(x, model, uere = NULL, ...)

26 fit_distr

Arguments

x [track_xyt]
A track created with make_track that includes time.

model [character(1)="bm"]{"iid", "bm","ou","ouf", "auto"}
The autocorrelation model that should be fit to the data. iid corresponds to un-
correlated independent data, bm to Brownian motion, ou to an Ornstein-Uhlenbeck
process, ouf to an Ornstein-Uhlenbeck forage process. auto will use model se-
lection with AICc to find the best model.

uere User Equivalent Range Error, see ?ctmm::uere for more details.

... Additional parameters passed to ctmm::ctmm.fit or ctmm::ctmm.select for
model = "auto"

Value

An object of class ctmm from the package ctmm.

References

C. H. Fleming, J. M. Calabrese, T. Mueller, K.A. Olson, P. Leimgruber, W. F. Fagan, “From fine-
scale foraging to home ranges: A semi-variance approach to identifying movement modes across
spatiotemporal scales”, The American Naturalist, 183:5, E154-E167 (2014).

Examples

data(deer)
mini_deer <- deer[1:20,]
m1 <- fit_ctmm(mini_deer, "iid")
summary(m1)

fit_distr Fit distribution to data

Description

Wrapper to fit a distribution to data. Currently implemented distributions are the exponential distri-
bution (exp), the gamma distribution (gamma) and the von Mises distribution (vonmises).

Usage

fit_distr(x, dist_name, na.rm = TRUE)

fit_logit 27

Arguments

x [numeric(>1)]
The observed data.

dist_name [character(1)]{"exp", "gamma", "unif", "vonmises"}
The name of the distribution.

na.rm [logical(1)=TRUE]
Indicating whether NA should be removed before fitting the distribution.

Value

An amt_distr object, which consists of a list with the name of the distribution and its parameters
(saved in params).

Examples

set.seed(123)
dat <- rexp(1e3, 2)
fit_distr(dat, "exp")

fit_logit Fit logistic regression

Description

This function is a wrapper around stats::glm for a piped workflows.

Usage

fit_logit(data, formula, ...)

fit_rsf(data, formula, ...)

Arguments

data [data.frame]
The data used to fit a model.

formula [formula]
The model formula.

... Further arguments passed to stats::glm.

Value

A list with the model output.

28 flag_defunct_clusters

flag_defunct_clusters Flag Defunct Clusters

Description

Flags defunct clusters at the end of a track

Usage

flag_defunct_clusters(x, zeta, eta, theta, ...)

S3 method for class 'track_xyt'
flag_defunct_clusters(x, zeta, eta, theta, ...)

Arguments

x [track_xyt] A track_xyt object.
zeta [numeric] See details.
eta [numeric] See details.
theta [numeric] See details.
... Addtional arguments. None currently implemented.

Details

Locations at the end of a trajectory may represent a dropped collar or an animal mortality. In
some cases, the device may be recording locations for quite some time that are not biologically
meaningful. This function aims to flag those locations at the end of the trajectory that belong to a
mortality (or similar) cluster. The first location at the cluster remains unflagged, but all subsequent
locations are flagged.

The algorithm detects steps that represent zero movement, within a precision threshold given by
zeta. That is, if zeta = 5 (units determined by CRS; typically meters), all points that differ by
less than 5 will be considered zero movement. Consecutive steps of zero movement (within the
tolerance) form a cluster. The parameter eta gives the cutoff for the minimum number of zero steps
to be considered a cluster. Finally, the algorithm requires that clusters persist without a non-zero
step for a minimum amount of time, given by theta.

Value

Returns x (a track_xyt) with a flagging column added (x$defunct_cluster_).

Author(s)

Brian J. Smith and Johannes Signer, based on code by Tal Avgar

See Also

flag_duplicates(), flag_fast_steps(), flag_roundtrips()

flag_duplicates 29

flag_duplicates Flag Low Quality Duplicates

Description

Flags locations with duplicate timestamps by DOP and distance

Usage

flag_duplicates(x, gamma, time_unit = "mins", DOP = "dop", ...)

S3 method for class 'track_xyt'
flag_duplicates(x, gamma, time_unit = "mins", DOP = "dop", ...)

Arguments

x [track_xyt] A track_xyt object.
gamma [numeric or Period] The temporal tolerance defining duplicates. See details

below. If numeric, its units are defined by time_unit. If Period, time_unit
is ignored.

time_unit [character] Character string giving time unit for gamma. Should be "secs",
"mins", or "hours". Ignored if class(gamma) == "Period".

DOP [character] A character string giving the name of the column containing the
dilution of precision (DOP) data. See details below.

... Additional arguments. None currently implemented.

Details

Locations are considered duplicates if their timestamps are within gamma of each other. However,
the function runs sequentially through the track object, so that only timestamps after the focal
point are flagged as duplicates (and thus removed from further consideration). E.g., if gamma =
minutes(5), then all locations with timestamp within 5 minutes after the focal location will be
considered duplicates.

When duplicates are found, (1) the location with the lowest dilution of precision (given by DOP
column) is kept. If there are multiple duplicates with equally low DOP, then (2) the one closest
in space to previous location is kept. In the event of exact ties in DOP and distance, (3) the first
location is kept. This is unlikely unless there are exact coordinate duplicates.

In the case that the first location in a trajectory has a duplicate, there is no previous location with
which to calculate a distance. In that case, the algorithm skips to (3) and keeps the first location.

In the event your data.frame does not have a DOP column, you can insert a dummy with constant
values such that all duplicates will tie, and distance will be the only criterion (e.g., x$dop <- 1).
In the event you do have an alternate measure of precision where larger numbers are more precise
(e.g., number of satellites), simply multiply that metric by -1 and pass it as if it were DOP.

Internally, the function drops duplicates as it works sequentially through the data.frame. E.g.,
if location 5 was considered a duplicate of location 4 – and location 4 was higher quality – then

30 flag_fast_steps

location 5 would be dropped. The function would then move on to location 6 (since 5 was already
dropped). However, the object returned to the user has all the original rows of x – i.e., locations are
flagged rather than removed.

Value

Returns x (a track_xyt) with a flagging column added (x$duplicate_).

Author(s)

Brian J. Smith, based on code by Johannes Signer and Tal Avgar

See Also

flag_fast_steps(), flag_roundtrips(), flag_defunct_clusters()

flag_fast_steps Flag Fast Steps

Description

Flags locations that imply SDR exceeding a threshold

Usage

flag_fast_steps(x, delta, time_unit = "secs", ...)

S3 method for class 'track_xyt'
flag_fast_steps(x, delta, time_unit = "secs", ...)

Arguments

x [track_xyt] A track_xyt object.
delta [numeric] The threshold SDR over which steps are flagged. See details.
time_unit [character] Character string giving time unit. Should be "secs", "mins", or

"hours". See details.

... Addtional arguments. None currently implemented.

Details

Locations are flagged if the SDR from the previous location to the current location exceeds delta.
Internally, flagged locations are dropped from future consideration.

The time_unit should be the same time unit with which the SDR threshold was calculated. SDR
is typically calculated in m^2/s, so time_unit defaults to "secs". The spatial unit is determined
by the CRS, which should typically be in meters.

flag_roundtrips 31

Value

Returns x (a track_xyt) with a flagging column added (x$fast_step_).

Author(s)

Brian J. Smith, based on code by Johannes Signer and Tal Avgar

See Also

flag_duplicates(), flag_roundtrips(), flag_defunct_clusters()

flag_roundtrips Flag Fast Round Trips

Description

Flags locations that imply fast round trips

Usage

flag_roundtrips(x, delta, epsilon, time_unit = "secs", ...)

S3 method for class 'track_xyt'
flag_roundtrips(x, delta, epsilon, time_unit = "secs", ...)

Arguments

x [track_xyt] A track_xyt object.
delta [numeric] The threshold SDR for flagging. Locations that imply both legs of a

round trip with SDR > delta/epsilon are flagged. See details.
epsilon [numeric] A scaling factor to create the threshold for flagging.
time_unit [character] Character string giving time unit. Should be "secs", "mins", or

"hours". See details.

... Addtional arguments. None currently implemented.

Details

Locations implying a single fast step can be flagged using flag_fast_steps(). However, it is
more likely that a single location is imprecise if it implies an unrealistically fast out-and-back round
trip. In that case, the user might be willing to scale the threshold SDR. In this function, delta gives
the base SDR and epsilon is the scaling factor, such that locations are considered for flagging if
the SDR from the previous location (location i - 1) to the focal location (i) [call it sdr1] and the
focal location (i) to the next location (i + 1) [call it sdr2] both have SDR > delta/epsilon.

In that case, the SDR from the previous location (i - 1) to the next location (i + 1) is computed; i.e.,
the SDR assuming we omit the focal location (i) [call it sdr3]. The remaining locations should be

32 from_to

closer together than they are to the omitted location. Thus the focal location is flagged if (sdr1 >
epsilon * sdr3) & (sdr2 > epsilon * sdr3).

Note that epsilon both decreases delta in the out-and-back case and increases sdr3 (between the
remaining neighbors).

Internally, flagged locations are dropped from future consideration.

The time_unit should be the same time unit with which the SDR threshold was calculated. SDR
is typically calculated in m^2/s, so time_unit defaults to "secs". The spatial unit is determined
by the CRS, which should typically be in meters. The epsilon parameter is unitless.

Value

Returns x (a track_xyt) with a flagging column added (x$fast_roundtrip_).

Author(s)

Brian J. Smith, based on code by Johannes Signer and Tal Avgar

See Also

flag_duplicates(), flag_fast_steps(), flag_defunct_clusters()

from_to Duration of tracks

Description

Function that returns the start (from), end (to), and the duration (from_to) of a track.

Usage

from_to(x, ...)

S3 method for class 'track_xyt'
from_to(x, ...)

from(x, ...)

S3 method for class 'track_xyt'
from(x, ...)

to(x, ...)

S3 method for class 'track_xyt'
to(x, ...)

get_amt_fisher_covars 33

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... Further arguments, none implemented.

Value

A vector of class POSIXct.

get_amt_fisher_covars Helper function to get fisher covars

Description

The current version of terra (1.7.12) requires SpatRasters to be wrapped in order to be saved
locally. This function unwraps the covariates for the fisher data and returns a list.

Usage

get_amt_fisher_covars()

Value

A list with covariates

get_crs Obtains the Coordinate Reference Systems

Description

Returns the proj4string of an object.

Usage

get_crs(x, ...)

Arguments

x [any]
Object to check.

... Further arguments, none implemented.

Value

The proj4string of the CRS.

34 get_distr

Examples

data(deer)
get_crs(deer)

get_displacement Calculate Expected Displacement

Description

Calculates expected displacement for a given SDR and time span

Usage

get_displacement(delta, time_span)

Arguments

delta [numeric] A squared displacement rate (SDR), such as that returned by calculate_sdr().
Units assumed to be m^2/s.

time_span [Period] A lubridate Period giving the time span for which to calculate
expected displacement.

Value

Returns a numeric vector (of length 1) with the expected displacement in meters.

Author(s)

Johannes Signer and Brian J. Smith

See Also

calculate_sdr()

get_distr Obtain the step length and/or turn angle distributions from random
steps or a fitted model.

Description

Obtain the step length and/or turn angle distributions from random steps or a fitted model.

get_max_dist 35

Usage

sl_distr(x, ...)

S3 method for class 'random_steps'
sl_distr(x, ...)

S3 method for class 'fit_clogit'
sl_distr(x, ...)

ta_distr(x, ...)

S3 method for class 'random_steps'
ta_distr(x, ...)

S3 method for class 'fit_clogit'
ta_distr(x, ...)

Arguments

x Random steps or fitted model

... None implemented.

Value

An amt distribution

get_max_dist Get the maximum distance

Description

Helper function to get the maximum distance from a fitted model.

Usage

get_max_dist(x, ...)

S3 method for class 'fit_clogit'
get_max_dist(x, p = 0.99, ...)

Arguments

x [fitted_issf]
A fitted integrated step-selection function.

... Further arguments, none implemented.
p [numeric(1)]{0.99} The quantile of the step-length distribution.

36 has_crs

get_sh_forest Helper function to get forest cover

Description

The current version of terra (1.7.12) requires SpatRasters to be wrapped in order to be saved
locally. This function unwraps the the forest layer and returns a SpatRast.

Usage

get_sh_forest()

Value

A SpatRast with forest cover.

has_crs Check for Coordinate Reference Systems (CRS)

Description

Checks if an object has a CRS.

Usage

has_crs(x, ...)

Arguments

x [any]
Object to check.

... Further arguments, none implemented.

Value

Logic vector of length 1.

Examples

data(deer)
has_crs(deer)

hr_akde 37

hr_akde Home ranges

Description

Functions to calculate animal home ranges from a track_xy*. hr_mcp, hr_kde, and hr_locoh cal-
culate the minimum convex polygon, kernel density, and local convex hull home range respectively.

Usage

hr_akde(x, ...)

S3 method for class 'track_xyt'
hr_akde(
x,
model = fit_ctmm(x, "iid"),
keep.data = TRUE,
trast = make_trast(x),
levels = 0.95,
wrap = FALSE,
...

)

hr_kde(x, ...)

S3 method for class 'track_xy'
hr_kde(
x,
h = hr_kde_ref(x),
trast = make_trast(x),
levels = 0.95,
keep.data = TRUE,
wrap = FALSE,
...

)

hr_locoh(x, ...)

S3 method for class 'track_xy'
hr_locoh(
x,
n = 10,
type = "k",
levels = 0.95,
keep.data = TRUE,
rand_buffer = 1e-05,
...

38 hr_akde

)

hr_mcp(x, ...)

hr_od(x, ...)

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... Further arguments, none implemented.

model A continuous time movement model. This can be fitted either with ctmm::ctmm.fit
or fit_ctmm.

keep.data [logic(1)]
Should the original tracking data be included in the estimate?

trast [SpatRast]
A template raster for kernel density home-ranges.

levels [numeric]
The isopleth levels used for calculating home ranges. Should be 0 < level < 1.

wrap [logical(1)]
If TRUE the UD is wrapped (see terra::wrap()).

h [numeric(2)]
The bandwidth for kernel density estimation.

n [integer(1)]
The number of neighbors used when calculating local convex hulls.

type k, r or a. Type of LoCoH.

rand_buffer [numeric(1)]
Random buffer to avoid polygons with area 0 (if coordinates are numerically
identical).

Value

A hr-estimate.

References

Worton, B. J. (1989). Kernel methods for estimating the utilization distribution in home-range
studies. Ecology, 70(1), 164-168. C. H. Fleming, W. F. Fagan, T. Mueller, K. A. Olson, P. Leimgru-
ber, J. M. Calabrese, “Rigorous home-range estimation with movement data: A new autocorrelated
kernel-density estimator”, Ecology, 96:5, 1182-1188 (2015).

Fleming, C. H., Fagan, W. F., Mueller, T., Olson, K. A., Leimgruber, P., & Calabrese, J. M. (2016).
Estimating where and how animals travel: an optimal framework for path reconstruction from au-
tocorrelated tracking data. Ecology, 97(3), 576-582.

hr_area 39

Examples

data(deer)
mini_deer <- deer[1:100,]

MCP ---
mcp1 <- hr_mcp(mini_deer)
hr_area(mcp1)

calculated MCP at different levels
mcp1 <- hr_mcp(mini_deer, levels = seq(0.3, 1, 0.1))
hr_area(mcp1)

CRS are inherited
get_crs(mini_deer)
mcps <- hr_mcp(mini_deer, levels = c(0.5, 0.95, 1))
has_crs(mcps)

Kernel density estimaiton (KDE) ---
kde1 <- hr_kde(mini_deer)
hr_area(kde1)
get_crs(kde1)

akde
data(deer)
mini_deer <- deer[1:20,]
ud1 <- hr_akde(mini_deer) # uses an iid ctmm
ud2 <- hr_akde(mini_deer, model = fit_ctmm(mini_deer, "ou")) # uses an OU ctmm

od

data(deer)
ud1 <- hr_od(deer) # uses an iid ctmm
ud2 <- hr_akde(deer, model = fit_ctmm(deer, "ou")) # uses an OU ctmm

hr_area Home-range area

Description

Obtain the area of a home-range estimate, possible at different isopleth levels.

Usage

hr_area(x, ...)

S3 method for class 'hr'
hr_area(x, units = FALSE, ...)

40 hr_isopleths

S3 method for class 'SpatRaster'
hr_area(x, level = 0.95, ...)

S3 method for class 'akde'
hr_area(x, units = FALSE, ...)

Arguments

x An object of class hr

... Further arguments, none implemented.
units [logic(1)]

Should areas be returned as units? If FALSE areas are returned as numeric values.

level The level at which the area will be calculated.

Value

A tibble with the home-range level and the area.

hr_isopleths Home-range isopleths

Description

Obtain the isopleths of a home-range estimate, possible at different isopleth levels.

Usage

hr_isopleths(x, ...)

S3 method for class 'PackedSpatRaster'
hr_isopleths(x, levels, descending = TRUE, ...)

S3 method for class 'SpatRaster'
hr_isopleths(x, levels, descending = TRUE, ...)

S3 method for class 'mcp'
hr_isopleths(x, descending = TRUE, ...)

S3 method for class 'locoh'
hr_isopleths(x, descending = TRUE, ...)

S3 method for class 'hr_prob'
hr_isopleths(x, descending = TRUE, ...)

S3 method for class 'akde'
hr_isopleths(x, conf.level = 0.95, descending = TRUE, ...)

hr_kde_lscv 41

Arguments

x An object of class hr

... Further arguments, none implemented.
levels [numeric]

The isopleth levels used for calculating home ranges. Should be 0 < level < 1.
descending [logical = TRUE]

Indicating if levels (and thus the polygons) should be ordered in descending
(default) or not.

conf.level The confidence level for isopleths for aKDE.

Value

A tibble with the home-range level and a simple feature columns with the isoploth as multipoly-
gon.

hr_kde_lscv Least square cross validation bandwidth

Description

Use least square cross validation (lscv) to estimate bandwidth for kernel home-range estimation.

Usage

hr_kde_lscv(
x,
range = do.call(seq, as.list(c(hr_kde_ref(x) * c(0.1, 2), length.out = 100))),
which_min = "global",
rescale = "none",
trast = make_trast(x)

)

Arguments

x [track_xy, track_xyt]
A track created with make_track.

range numeric vector with different candidate h values.

which_min A character indicating if the global or local minimum should be searched for.
rescale [character(1)]

Rescaling method for reference bandwidth calculation. Must be one of "unit-
var", "xvar", or "none".

trast A template raster.

42 hr_kde_ref_scaled

Details

hr_kde_lscv calculates least square cross validation bandwidth. This implementation is based on
Seaman and Powell (1996). If whichMin is "global" the global minimum is returned, else the local
minimum with the largest candidate bandwidth is returned.

Value

vector of length two.

References

Seaman, D. E., & Powell, R. A. (1996). An evaluation of the accuracy of kernel density estimators
for home range analysis. Ecology, 77(7), 2075-2085.

hr_kde_ref_scaled Select a bandwidth for Kernel Density Estimation

Description

Use two dimensional reference bandwidth to select a bandwidth for kernel density estimation. Find
the smallest value for bandwidth (h) that results in n polygons (usually n=1) contiguous polygons
at a given level.

Usage

hr_kde_ref_scaled(
x,
range = hr_kde_ref(x)[1] * c(0.01, 1),
trast = make_trast(x),
num.of.parts = 1,
levels = 0.95,
tol = 0.1,
max.it = 500L

)

Arguments

x A track_xy*.

range Numeric vector, indicating the lower and upper bound of the search range. If
range is to large with regard to trast, the algorithm will fail.

trast A template RasterLayer.

num.of.parts Numeric numeric scalar, indicating the number of contiguous polygons desired.
This will usually be one.

levels The home range level.

tol Numeric scalar, indicating which difference of to stop.

max.it Numeric scalar, indicating the maximum number of acceptable iterations.

hr_overlaps 43

Details

This implementation uses a bisection algorithm to the find the smallest value value for the kernel
bandwidth within range that produces an home-range isopleth at level consisting of n polygons.
Note, no difference is is made between the two dimensions.

Value

list with the calculated bandwidth, exit status and the number of iteration.

References

Kie, John G. "A rule-based ad hoc method for selecting a bandwidth in kernel home-range analy-
ses." Animal Biotelemetry 1.1 (2013): 1-12.

hr_overlaps Methods to calculate home-range overlaps

Description

Methods to calculate the overlap of two or more home-range estimates.

Usage

hr_overlap(x, ...)

S3 method for class 'hr'
hr_overlap(x, y, type = "hr", conditional = FALSE, ...)

S3 method for class 'list'
hr_overlap(
x,
type = "hr",
conditional = FALSE,
which = "consecutive",
labels = NULL,
...

)

Arguments

x, y A home-range estimate

... Further arguments, none implemented.
type [character](1)

Type of index, should be one of hr, phr, vi, ba, udoi, or hd.
conditional [logical](1)

Whether or not conditional UDs are used. If TRUE levels from that were used to
estimate home ranges will be used.

44 hr_to_sf

which [character = "consecutive"]
Should only consecutive overlaps be calculated or all combinations?

labels [character=NULL]
Labels for different instances. If NULL (the default) numbers will be used.

Value

data.frame with the isopleth level and area in units of the coordinate reference system.

hr_overlap_feature Calculate the overlap between a home-range estimate and a polygon

Description

Sometimes the percentage overlap between a spatial polygon an a home-range is required.

Usage

hr_overlap_feature(x, sf, direction = "hr_with_feature", feature_names = NULL)

Arguments

x A home-range estimate.

sf An object of class sf containing polygons

direction The direction.

feature_names optional feature names

Value

A tibble

hr_to_sf Convert home ranges to sfc

Description

Convert a list column with many home-range estimates to a tibble with a geometry column (as
used by the sf-package).

Usage

hr_to_sf(x, ...)

S3 method for class 'tbl_df'
hr_to_sf(x, col, ...)

hr_ud 45

Arguments

x A tibble with a list column with individual home ranges.

... Additional columns that should be transferred to the new tibble.

col The column where the home

Value

A data.frame with a simple feature column (from the sf) package.

Examples

data("amt_fisher")
hr <- amt_fisher |> nest(data = -id) |>

mutate(hr = map(data, hr_mcp), n = map_int(data, nrow)) |>
hr_to_sf(hr, id, n)

hr <- amt_fisher |> nest(data = -id) |>
mutate(hr = map(data, hr_kde), n = map_int(data, nrow)) |>
hr_to_sf(hr, id, n)

hr_ud Obtain the utilization distribution of a probabilistic home-range esti-
mate

Description

Obtain the utilization distribution of a probabilistic home-range estimate

Usage

hr_ud(x, ...)

Arguments

x [hr_prob] The home-range estimate

... Further arguments, none implemented.

Value

SpatRaster

46 inspect

inspect Inspect a track

Description

Provides a very basic interface to leaflet and lets the user inspect relocations on an interactive
map.

Usage

inspect(x, ...)

S3 method for class 'track_xy'
inspect(x, popup = NULL, cluster = TRUE, ...)

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... Further arguments, none implemented.
popup [character(nrow(x))]

Optional labels for popups.
cluster [logical(1)]

If TRUE points are clustered at lower zoom levels.

Value

An interactive leaflet map.

Note

Important, x requires a valid coordinate reference system.

See Also

leaflet::leaflet()

Examples

data(sh)
x <- track(x = sh$x, y = sh$y, crs = 31467)

inspect(x)
inspect(x, cluster = FALSE)
inspect(x, popup = 1:nrow(x), cluster = FALSE)

issf_drop_stratum 47

issf_drop_stratum Create formula without stratum from iSSF

Description

Creates a formula without stratum variable

Usage

issf_drop_stratum(object, l)

Arguments

object [fit_clogit] Fitted iSSF.

l [list] List returned by prep_test_dat.fit_clogit()

issf_w_form Create habitat formula from iSSF

Description

Creates a formula without movement variables

Usage

issf_w_form(object, l)

Arguments

object [fit_clogit] Fitted iSSF.

l [list] List returned by prep_test_dat.fit_clogit()

48 log_rss

log_rss Calculate log-RSS for a fitted model

Description

Calculate log-RSS(x1, x2) for a fitted RSF or (i)SSF

Usage

log_rss(object, ...)

S3 method for class 'glm'
log_rss(object, x1, x2, ci = NA, ci_level = 0.95, n_boot = 1000, ...)

S3 method for class 'fit_clogit'
log_rss(object, x1, x2, ci = NA, ci_level = 0.95, n_boot = 1000, ...)

Arguments

object [fit_logit, fit_clogit]
A fitted RSF or (i)SSF model.

... Further arguments, none implemented.
x1 [data.frame]

A data.frame representing the habitat values at location x_1. Must contain all
fitted covariates as expected by predict().

x2 [data.frame]
A 1-row data.frame representing the single hypothetical location of x_2. Must
contain all fitted covariates as expected by predict().

ci [character]
Method for estimating confidence intervals around log-RSS. NA skips calculat-
ing CIs. Character string "se" uses standard error method and "boot" uses
empirical bootstrap method.

ci_level [numeric]
Level for confidence interval. Defaults to 0.95 for a 95% confidence interval.

n_boot [integer]
Number of bootstrap samples to estimate confidence intervals. Ignored if ci !=
"boot".

Details

This function assumes that the user would like to compare relative selection strengths from at least
one proposed location (x1) to exactly one reference location (x2).

The objects object$model, x1, and x2 will be passed to predict(). Therefore, the columns of x1
and x2 must match the terms in the model formula exactly.

log_rss 49

Value

Returns a list of class log_rss with four entries:

• df: A data.frame with the covariates and the log_rss

• x1: A data.frame with covariate values for x1.

• x2: A data.frame with covariate values for x2.

• formula: The formula used to fit the model.

Author(s)

Brian J. Smith

References

• Avgar, T., Lele, S.R., Keim, J.L., and Boyce, M.S.. (2017). Relative Selection Strength:
Quantifying effect size in habitat- and step-selection inference. Ecology and Evolution, 7,
5322–5330.

• Fieberg, J., Signer, J., Smith, B., & Avgar, T. (2021). A "How to" guide for interpreting
parameters in habitat-selection analyses. Journal of Animal Ecology, 90(5), 1027-1043.

See Also

See Avgar et al. 2017 for details about relative selection strength.

Default plotting method available: plot.log_rss()

Examples

RSF ---
Fit an RSF, then calculate log-RSS to visualize results.

Load packages
library(ggplot2)

Load data
data("amt_fisher")
amt_fisher_covar <- get_amt_fisher_covars()

Prepare data for RSF
rsf_data <- amt_fisher |>

filter(name == "Lupe") |>
make_track(x_, y_, t_) |>
random_points() |>
extract_covariates(amt_fisher_covar$elevation) |>
extract_covariates(amt_fisher_covar$popden) |>
extract_covariates(amt_fisher_covar$landuse) |>
mutate(lu = factor(landuse))

Fit RSF
m1 <- rsf_data |>

50 log_rss

fit_rsf(case_ ~ lu + elevation + popden)

Calculate log-RSS
data.frame of x1s
x1 <- data.frame(lu = factor(50, levels = levels(rsf_data$lu)),

elevation = seq(90, 120, length.out = 100),
popden = mean(rsf_data$popden))

data.frame of x2 (note factor levels should be same as model data)
x2 <- data.frame(lu = factor(50, levels = levels(rsf_data$lu)),

elevation = mean(rsf_data$elevation),
popden = mean(rsf_data$popden))

Calculate (use se method for confidence interval)
logRSS <- log_rss(object = m1, x1 = x1, x2 = x2, ci = "se")

Plot
ggplot(logRSS$df, aes(x = elevation_x1, y = log_rss)) +

geom_hline(yintercept = 0, linetype = "dashed", color = "gray") +
geom_ribbon(aes(ymin = lwr, ymax = upr), fill = "gray80") +
geom_line() +
xlab(expression("Elevation " * (x[1]))) +
ylab("log-RSS") +
ggtitle(expression("log-RSS" * (x[1] * ", " * x[2]))) +
theme_bw()

SSF ---
Fit an SSF, then calculate log-RSS to visualize results.

Load data
data(deer)
sh_forest <- get_sh_forest()

Prepare data for SSF
ssf_data <- deer |>

steps_by_burst() |>
random_steps(n = 15) |>
extract_covariates(sh_forest) |>
mutate(forest = factor(forest, levels = 1:0,

labels = c("forest", "non-forest")),
cos_ta = cos(ta_),
log_sl = log(sl_))

Fit an SSF (note model = TRUE necessary for predict() to work)
m2 <- ssf_data |>

fit_clogit(case_ ~ forest + strata(step_id_), model = TRUE)

Calculate log-RSS
data.frame of x1s
x1 <- data.frame(forest = factor(c("forest", "non-forest")))
data.frame of x2
x2 <- data.frame(forest = factor("forest", levels = levels(ssf_data$forest)))
Calculate
logRSS <- log_rss(object = m2, x1 = x1, x2 = x2, ci = "se")

make_issf_model 51

Plot
ggplot(logRSS$df, aes(x = forest_x1, y = log_rss)) +

geom_hline(yintercept = 0, linetype = "dashed", color = "gray") +
geom_errorbar(aes(ymin = lwr, ymax = upr), width = 0.25) +
geom_point(size = 3) +
xlab(expression("Forest Cover " * (x[1]))) +
ylab("log-RSS") +
ggtitle(expression("log-RSS" * (x[1] * ", " * x[2]))) +
theme_bw()

make_issf_model Create an issf-model object from scratch

Description

In order to simulate from an issf a

Usage

make_issf_model(
coefs = c(sl_ = 0),
sl = make_exp_distr(),
ta = make_unif_distr()

)

Arguments

coefs A named vector with the coefficient values.

sl The tentative step-length distribution.

ta The tentative turn-angle distribution.

Value

An object of fit_clogit.

make_start Create an initial step for simulations

Description

An initial step for simulations. This step can either be created by defining a step from scratch or by
using an observed step.

52 movement_metrics

Usage

make_start(x, ...)

S3 method for class 'numeric'
make_start(
x = c(0, 0),
ta_ = 0,
time = Sys.time(),
dt = hours(1),
crs = NA,
...

)

S3 method for class 'track_xyt'
make_start(x, ta_ = 0, dt = hours(1), ...)

S3 method for class 'steps_xyt'
make_start(x, ...)

Arguments

x [steps_xyt,numeric(2)]
A step of class steps_xyt or the start coordinates..

... Further arguments, none implemented.
ta_ [numeric(1)]{0}

The initial turn-angle.
time [POSIXt(1)]{Sys.time()}

The time stamp when the simulation starts.
dt [Period(1)]{hours(1)}

The sampling rate of the simulations.
crs [int(1)]{NA}

The coordinate reference system of the start location given as EPSG code.

movement_metrics Movement metrics

Description

Functions to calculate metrics such as straightness, mean squared displacement (msd), intensity use,
sinuosity, mean turn angle correlation (tac) of a track.

Usage

straightness(x, ...)

cum_dist(x, ...)

movement_metrics 53

tot_dist(x, ...)

msd(x, ...)

intensity_use(x, ...)

sinuosity(x, ...)

tac(x, ...)

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... Further arguments, none implemented.

Details

The intensity use is calculated by dividing the total movement distance (tot_dist) by the square
of the area of movement (= minimum convex polygon 100).

Value

A numeric vector of length one.

References

• Abrahms B, Seidel DP, Dougherty E, Hazen EL, Bograd SJ, Wilson AM, McNutt JW, Costa
DP, Blake S, Brashares JS, others (2017). “Suite of simple metrics reveals common movement
syndromes across vertebrate taxa.” Movement ecology, 5(1), 12.

• Almeida PJ, Vieira MV, Kajin M, Forero-Medina G, Cerqueira R (2010). “Indices of move-
ment behaviour: conceptual background, effects of scale and location errors.” Zoologia (Cu-
ritiba), 27(5), 674–680.

• Swihart RK, Slade NA (1985). “Testing for independence of observations in animal move-
ments.” Ecology, 66(4), 1176–1184.

Examples

data(deer)

tot_dist(deer)
cum_dist(deer)
straightness(deer)
msd(deer)
intensity_use(deer)

54 od

nsd Net squared displacement (nsd)

Description

The function nsd() calculates the net squared displacement (i.e., the squared distance from the first
location of a track) for a track. The function add_nsd() add a new column to a track or steps object
with the nsd (the column name is nsd_).

Usage

nsd(x, ...)

S3 method for class 'track_xy'
nsd(x, ...)

add_nsd(x, ...)

S3 method for class 'track_xy'
add_nsd(x, ...)

S3 method for class 'steps_xy'
add_nsd(x, ...)

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... Further arguments, none implemented.

Value

Numeric vector (for nsd()) and a tillbe with the original data with a new column for add_nsd().

od Occurrence Distribution

Description

od is a wrapper around ctmm::occurrence. See help(ctmm::occurrence) for more details.
rolling_od estimates occurrence distributions for a subset of a track.

od 55

Usage

rolling_od(x, ...)

S3 method for class 'track_xyt'
rolling_od(
x,
trast,
model = fit_ctmm(x, "bm"),
res.space = 10,
res.time = 10,
n.points = 5,
show.progress = TRUE,
...

)

od(x, ...)

S3 method for class 'track_xyt'
od(x, trast, model = fit_ctmm(x, "bm"), res.space = 10, res.time = 10, ...)

Arguments

x [track_xyt]
A track created with make_track that includes time.

... Further arguments, none implemented.
trast [SpatRaster]

A template raster for the extent and resolution of the result.
model [An output of fit_ctmm]

The autocorrelation model that should be fit to the data. bm corresponds to
Brownian motion, ou to an Ornstein-Uhlenbeck process, ouf to an Ornstein-
Uhlenbeck forage process.

res.space [numeric(1)=10]
Number of grid point along each axis, relative to the average diffusion (per me-
dian timestep) from a stationary point. See also help(ctmm::occurrence).

res.time [numeric(1)=10]
Number of temporal grid points per median timestep.

n.points [numeric(1)=5]
This argument is only relevant for rolling_od and specifies the window size
for the od estimation.

show.progress [logical(1)=TRUE]
Indicates if a progress bar is used.

References

Fleming, C. H., Fagan, W. F., Mueller, T., Olson, K. A., Leimgruber, P., & Calabrese, J. M. (2016).
Estimating where and how animals travel: an optimal framework for path reconstruction from au-
tocorrelated tracking data. Ecology.

56 params

Examples

data(deer)
mini_deer <- deer[1:100,]
trast <- make_trast(mini_deer)
md <- od(mini_deer, trast = trast)
terra::plot(md)

rolling ud
xx <- rolling_od(mini_deer, trast)

params Get parameters from a (fitted) distribution

Description

Get parameters from a (fitted) distribution

Usage

sl_distr_params(x, ...)

S3 method for class 'random_steps'
sl_distr_params(x, ...)

S3 method for class 'fit_clogit'
sl_distr_params(x, ...)

ta_distr_params(x, ...)

S3 method for class 'random_steps'
ta_distr_params(x, ...)

S3 method for class 'fit_clogit'
ta_distr_params(x, ...)

Arguments

x [amt_distr]
A (fitted) distribution

... None

Value

A list with the parameters of the distribution.

plot.hr 57

Examples

data(deer)
d <- deer |> steps() |> random_steps()
sl_distr_params(d)
ta_distr_params(d)

plot.hr Plot a home-range estimate

Description

Plot a home-range estimate

Usage

S3 method for class 'hr'
plot(x, add.relocations = TRUE, ...)

Arguments

x A home-range estimate.
add.relocations

logical(1) indicates if a relocations should be added to the plot.

... Further arguments, none implemented.

Value

A plot

plot.log_rss Plot a log_rss object

Description

Default plot method for an object of class log_rss

Usage

S3 method for class 'log_rss'
plot(x, x_var1 = "guess", x_var2 = "guess", ...)

58 plot.log_rss

Arguments

x [log_rss] An object returned by the function log_rss().
x_var1 [character] The variable to plot on the x-axis. A string of either "guess"

(default – see Details) or the variable name.
x_var2 [character] A second predictor variable to include in the plot. Either "guess"

(default – see Details), NA, or the variable name.
... [any] Additional arguments to be passed to \link{plot}(). Not currently

implemented.

Details

This function provides defaults for a basic plot, but we encourage the user to carefully consider how
to represent the patterns found in their habitat selection model.

The function log_rss() is meant to accept a user-defined input for x1. The structure of x1 likely
reflects how the user intended to visualize the results. Therefore, it is possible to "guess" which
covariate the user would like to see on the x-axis by choosing the column from x1 with the most
unique values. Similarly, if there is a second column with multiple unique values, that could be
represented by a color. Note that if the user needs to specify x_var1, then we probably cannot guess
x_var2. Therefore, if the user specifies x_var1 != "guess" & x_var2 == "guess", the function
will return an error.

This function uses integers to represent colors, and therefore the user can change the default colors
by specifying a custom palette() before calling the function.

Value

A plot.

Examples

Load data
data("amt_fisher")
amt_fisher_covar <- get_amt_fisher_covars()

Prepare data for RSF
rsf_data <- amt_fisher |>

filter(name == "Leroy") |>
make_track(x_, y_, t_) |>
random_points() |>
extract_covariates(amt_fisher_covar$landuse) |>
mutate(lu = factor(landuse))

Fit RSF
m1 <- rsf_data |>

fit_rsf(case_ ~ lu)

Calculate log-RSS
data.frame of x1s
x1 <- data.frame(lu = sort(unique(rsf_data$lu)))
data.frame of x2 (note factor levels should be same as model data)

plot.uhc_data 59

x2 <- data.frame(lu = factor(140,
levels = levels(rsf_data$lu)))
Calculate
logRSS <- log_rss(object = m1, x1 = x1, x2 = x2)

Plot
plot(logRSS)

plot.uhc_data Plot UHC plots

Description

Plot an object of class uhc_data

Usage

S3 method for class 'uhc_data'
plot(x, ...)

Arguments

x [uhc_data] An object of class uhc_data, as returned by the function prep_uhc().

... Included for consistency with generic plot(). Currently ignored.

Details

Makes plots mimicking those in Fieberg et al. (2018), with the bootstrapped distribution in gray,
the observed distribution in black, and the available distribution as a dashed red line.

Author(s)

Brian J. Smith

See Also

prep_uhc(), conf_envelope(), plot.uhc_envelopes()

60 plot_sl

plot.uhc_envelopes Plot simplified UHC plots

Description

Plot an object of class uhc_envelopes

Usage

S3 method for class 'uhc_envelopes'
plot(x, ...)

Arguments

x [uhc_envelopes] An object of class uhc_envelopes, as returned by the func-
tion conf_envelope().

... Included for consistency with generic plot(). Currently ignored.

Details

Makes plots mimicking those in Fieberg et al. (2018), with the bootstrapped distribution in gray,
the observed distribution in black, and the available distribution as a dashed red line. This differs
from plot.uhc_data() in that the bootstrapped distribution (in gray) is drawn as a polygon rather
than (many) lines, speeding up plotting performance.

Author(s)

Brian J. Smith

See Also

prep_uhc(), conf_envelope(), plot.uhc_data()

plot_sl Plot step-length distribution

Description

Plot step-length distribution

prep_uhc 61

Usage

plot_sl(x, ...)

S3 method for class 'fit_clogit'
plot_sl(x, n = 1000, upper_quantile = 0.99, plot = TRUE, ...)

S3 method for class 'random_steps'
plot_sl(x, n = 1000, upper_quantile = 0.99, plot = TRUE, ...)

Arguments

x [fit_clogit|random_steps]
A fitted step selection or random steps.

... Further arguments, none implemented.

n [numeric(1)=1000]{>0}
The number of breaks between 0 and upper_quantile.

upper_quantile [nummeric(1)=0.99]{0-1}
The quantile until where the distribution should be plotted. Typically this will
be 0.95 or 0.99.

plot [logical(1)=TRUE]
Indicates if a plot should be drawn or not.

Value

A plot of the step-length distribution.

Examples

data(deer)

with random steps
deer[1:100,] |> steps_by_burst() |> random_steps() |> plot_sl()
deer[1:100,] |> steps_by_burst() |> random_steps() |> plot_sl(upper_quantile = 0.5)

prep_uhc Prepare Data for UHC Plots for a Fitted Model

Description

Creates data used to make used-habitat calibration plots

62 prep_uhc

Usage

prep_uhc(object, test_dat, n_samp = 1000, n_dens = 512, verbose = TRUE)

S3 method for class 'glm'
prep_uhc(object, test_dat, n_samp = 1000, n_dens = 512, verbose = TRUE)

S3 method for class 'fit_logit'
prep_uhc(object, test_dat, n_samp = 1000, n_dens = 512, verbose = TRUE)

S3 method for class 'fit_clogit'
prep_uhc(object, test_dat, n_samp = 1000, n_dens = 512, verbose = TRUE)

Arguments

object [glm, fit_logit, fit_clogit]
A fitted RSF or (i)SSF model. Should be fit to training dataset separate from the
testing data.

test_dat [data.frame]
A data.frame with testing data from which to sample test points. Should be
separate from the data used to train the model passed to object.

n_samp [numeric = 1000] A vector of length 1 giving the number of samples to use
to characterize the used habitat distribution under the model.

n_dens [numeric = 512] A numeric vector of length 1 giving the number of equally
spaced points at which density (used, available, and sampled) is estimated.
Passed to stats::density.default(), which indicates that n should usually
be specified as a power of 2.

verbose [logical] Should messages be displayed (TRUE) or not (FALSE)?

Details

This function performs the heavy lifting of creating UHC plots. It creates the data used later by the
plot() method, which actually draws the UHC plots. This function (1) creates density plots of the
used and available locations from the test data, and (2) resamples the (a) fitted coefficients and (b)
test data (weighted by the exponential habitat selection function) to create the distribution of used
habitat under the model.

Note that test_dat should contain at least all of the variables that appear in the model object. Any
further habitat variables in test_dat will also have UHC plots generated, treating these variables
as possible candidate variables that are simply not included in this particular model.

Value

Returns a list of class uhc_data with elements:

• orig: List of data.frames, one per variable (see vars). Each data.frame contains the
density plot data (x and y) for the original used (dist == "U") and available (dist == "A")
data.

• samp: List of data.frames, one per variable (see vars). Each data.frame contains the
density plot data (x and y) for each iteration of bootstrap resampling (iter).

prep_uhc 63

• vars: Character vector with names of the habitat variables for which to create UHC plots.

• type: Named character vector with the type for each of vars (either "numeric" or "factor").

• resp: Character vector of length 1 with the name of the response variable.

Author(s)

Brian J. Smith

References

Fieberg, J.R., Forester, J.D., Street, G.M., Johnson, D.H., ArchMiller, A.A., and Matthiopoulos, J.
2018. Used-habitat calibration plots: A new procedure for validating species distribution, resource
selection, and step-selection models. Ecography 41:737–752.

See Also

See Fieberg et al. 2018 for details about UHC plots.

Default plotting method available: plot.uhc_data()

Coercion to data.frame: as.data.frame.uhc_data()

Subsetting method: Extract.uhc_data

Examples

Load packages
library(amt)
library(dplyr)
library(terra)
library(sf)

HSF --
Load data
data(uhc_hsf_locs)
data(uhc_hab)
hab <- rast(uhc_hab, type = "xyz", crs = "epsg:32612")
Convert "cover" layer to factor
levels(hab[[4]]) <- data.frame(id = 1:3,

cover = c("grass", "forest", "wetland"))

Split into train (80%) and test (20%)
set.seed(1)
uhc_hsf_locs$train <- rbinom(n = nrow(uhc_hsf_locs),

size = 1, prob = 0.8)
train <- uhc_hsf_locs[uhc_hsf_locs$train == 1,]
test <- uhc_hsf_locs[uhc_hsf_locs$train == 0,]

Available locations
avail_train <- random_points(st_as_sf(st_as_sfc(st_bbox(hab))),

n = nrow(train) * 10)

64 prep_uhc

avail_test <- random_points(st_as_sf(st_as_sfc(st_bbox(hab))),
n = nrow(test) * 10)

Combine with used
train_dat <- train |>

make_track(x, y, crs = 32612) |>
mutate(case_ = TRUE) |>
bind_rows(avail_train) |>
Attach covariates
extract_covariates(hab) |>
Assign large weights to available
mutate(weight = case_when(
case_ ~ 1,
!case_ ~ 5000

))

test_dat <- test |>
make_track(x, y, crs = 32612) |>
mutate(case_ = TRUE) |>
bind_rows(avail_test) |>
Attach covariates
extract_covariates(hab) |>
Assign large weights to available
mutate(weight = case_when(

case_ ~ 1,
!case_ ~ 5000

))

Fit (correct) HSF
hsf1 <- glm(case_ ~ forage + temp + I(temp^2) + pred + cover,

data = train_dat, family = binomial(), weights = weight)

Drop weights from 'test_dat'
test_dat$weight <- NULL

Prep UHC plots
uhc_dat <- prep_uhc(object = hsf1, test_dat = test_dat,

n_samp = 500, verbose = TRUE)

Plot all variables
plot(uhc_dat)

Plot only first variable
plot(uhc_dat[1])

Plot only "cover" variable
plot(uhc_dat["cover"])

Coerce to data.frame
df <- as.data.frame(uhc_dat)

Simplify sampled lines to confidence envelopes
conf <- conf_envelope(df)

random_numbers 65

Default plot for the envelopes version
plot(conf)

random_numbers Sample random numbers

Description

Sample random numbers from a distribution created within the amt package.

Usage

random_numbers(x, n = 100, ...)

Arguments

x [amt_distr]
A distribution object.

n [integer(1)=100]{>0}
The number of random draws.

... none implemented.

Value

A numeric vector.

random_points Generate random points

Description

Functions to generate random points within an animals home range. This is usually the first step for
investigating habitat selection via Resource Selection Functions (RSF).

Usage

random_points(x, ...)

S3 method for class 'hr'
random_points(x, n = 100, type = "random", presence = NULL, ...)

S3 method for class 'sf'
random_points(x, n = 100, type = "random", presence = NULL, ...)

S3 method for class 'track_xy'
random_points(x, level = 1, hr = "mcp", n = nrow(x) * 10, type = "random", ...)

66 random_points

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... [any]
None implemented.

n [integer(1)]
The number of random points.

type [character(1)]
Argument passed to sf::st_sample. The default is random.

presence [track]
The presence points, that will be added to the result.

level [numeric(1)]
Home-range level of the minimum convex polygon, used for generating the
background samples.

hr [character(1)]
The home range estimator to be used. Currently only "mcp" and "kde" are im-
plemented.

Value

A tibble with the observed and random points and a new column case_ that indicates if a point is
observed (case_ = TRUE) or random (case_ TRUE).

Note

For objects of class track_xyt the timestamp (t_) is lost.

Examples

data(deer)

track_xyt ---
Default settings
rp1 <- random_points(deer)

plot(rp1)

Ten random points for each observed point
rp <- random_points(deer, n = nrow(deer) * 10)
plot(rp)

Within a home range ---
hr <- hr_mcp(deer, level = 1)

100 random point within the home range
rp <- random_points(hr, n = 100)
plot(rp)

random_steps 67

100 regular point within the home range
rp <- random_points(hr, n = 100, type = "regular")
plot(rp)
100 hexagonal point within the home range
rp <- random_points(hr, n = 100, type = "hexagonal")
plot(rp)

random_steps Generate Random Steps

Description

Function to generate a given number of random steps for each observed step.

Usage

random_steps(x, ...)

S3 method for class 'numeric'
random_steps(
x,
n_control = 10,
angle = 0,
rand_sl = random_numbers(make_exp_distr(), n = 1e+05),
rand_ta = random_numbers(make_unif_distr(), n = 1e+05),
...

)

S3 method for class 'steps_xy'
random_steps(
x,
n_control = 10,
sl_distr = fit_distr(x$sl_, "gamma"),
ta_distr = fit_distr(x$ta_, "vonmises"),
rand_sl = random_numbers(sl_distr, n = 1e+05),
rand_ta = random_numbers(ta_distr, n = 1e+05),
include_observed = TRUE,
start_id = 1,
...

)

S3 method for class 'bursted_steps_xyt'
random_steps(
x,
n_control = 10,
sl_distr = fit_distr(x$sl_, "gamma"),

68 random_steps_simple

ta_distr = fit_distr(x$ta_, "vonmises"),
rand_sl = random_numbers(sl_distr, n = 1e+05),
rand_ta = random_numbers(ta_distr, n = 1e+05),
include_observed = TRUE,
...

)

Arguments

x Steps.

... Further arguments, none implemented.
n_control [integer(1)=10]{>1}

The number of control steps paired with each observed step.
angle [numeric(1) = 0]{-pi < rel_angle < pi}

Angle for the first step.
rand_sl [numeric]

Numeric vector with random step lengths an animal can make. This will usually
be random numbers drawn from a suitable distribution (e.g., gamma or expo-
nential).

rand_ta [numeric]
Numeric vector with relative turning angles an animal can make. This will usu-
ally be random numbers drawn from a suitable distribution (e.g., von Mises or
uniform).

sl_distr [amt_distr]
The step-length distribution.

ta_distr [amt_distr]
The turn-angle distribution.

include_observed

[logical(1) = TRUE]
Indicates if observed steps are to be included in the result.

start_id integer Index where the numbering for step ids start.

Value

A tibble of class random_steps.

random_steps_simple Simulate from an ssf model

Description

Simulate from an ssf model

Usage

random_steps_simple(start, sl_model, ta_model, n.control)

range 69

Arguments

start First step

sl_model Step length model to use

ta_model Turning angle model to use

n.control How many alternative steps are considered each step

Value

Simulated trajectory

range Geographic range

Description

The range that in either x, y or both directions, that a track covers.

Usage

range_x(x, ...)

S3 method for class 'track_xy'
range_x(x, ...)

range_y(x, ...)

S3 method for class 'track_xy'
range_y(x, ...)

range_both(x, ...)

S3 method for class 'track_xy'
range_both(x, ...)

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... Further arguments, none implemented.

Value

Numeric vector with the range.

70 redistribution_kernel

redistribution_kernel Create a redistribution kernel

Description

From a fitted integrated step-selection function for a given position a redistribution kernel is calcu-
lated (i.e., the product of the movement kernel and the selection function).

Usage

redistribution_kernel(
x = make_issf_model(),
start = make_start(),
map,
fun = function(xy, map) {

extract_covariates(xy, map, where = "both")
},
covars = NULL,
max.dist = get_max_dist(x),
n.control = 1e+06,
n.sample = 1,
landscape = "continuous",
compensate.movement = landscape == "discrete",
normalize = TRUE,
interpolate = FALSE,
as.rast = FALSE,
tolerance.outside = 0

)

Arguments

x [fit_issf]
A fitted integrated step-selection function. Generated either with fit_issf()
or make make_issf_model().

start [sim_start]
The start position in space and time. See make_start().

map [SpatRaster]
A SpatRaster with all covariates.

fun [function]
A function that is executed on each location of the redistribution kernel. The
default function is extract_covariates().

covars [tibble]
Additional covariates that might be used in the model (e.g., time of day).

max.dist [numeric(1)]
The maximum distance of the redistribution kernel.

remove_capture 71

n.control [integer(1)]{1e6}
The number of points of the redistribution kernel (this is only important if
landscape = "continuous").

n.sample [integer(1)]{1}
The number of points sampled from the redistribution kernel (this is only impor-
tant if as.rast = FALSE).

landscape [character(1)]{"continuous"}
If "continuous the redistribution kernel is sampled using a random sample of
size n.control. If landscape = "discrete" each cell in the redistribution ker-
nel is used.

compensate.movement

[logical(1)]
Indicates if movement parameters are corrected or not. This only relevant if
landscape = 'discrete'.

normalize [logical(1)]{TRUE}
If TRUE the redistribution kernel is normalized to sum to one.

interpolate [logical(1)]{FALSE}
If TRUE a stochastic redistribution kernel is interpolated to return a raster layer.
Note, this is just for completeness and is computationally inefficient in most
situations.

as.rast [logical(1)]{TRUE}
If TRUE a SpatRaster should be returned.

tolerance.outside

[numeric(1)]{0}
The proportion of the redistribution kernel that is allowed to be outside the map.

remove_capture Removes Capture Effects

Description

Removing relocations at the beginning and/or end of a track, that fall within a user specified period.

Usage

remove_capture_effect(x, ...)

S3 method for class 'track_xyt'
remove_capture_effect(x, start, end, ...)

Arguments

x An object of class track_xyt.
... Further arguments, none implemented.
start A lubirdate::Period, indicating the time period to be removed at the begin-

ning of the track.
end A lubirdate::Period, indicating the time period to be removed at the end of

the track.

72 remove_incomplete_strata

Value

A tibble without observations that fall within the period of the capture effect.

remove_incomplete_strata

Remove strata with missing values for observed steps

Description

Remove strata with missing values for observed steps

Usage

remove_incomplete_strata(x, ...)

S3 method for class 'random_steps'
remove_incomplete_strata(x, col = "ta_", ...)

Arguments

x An object of class random_steps.

... Further arguments, none implemented.

col A character with the column name that will be scanned for missing values.

Value

An object of class random_steps, where observed steps (case_ == TRUE) with missing values (NA)
in the column col are removed (including all random steps).

Examples

mini_deer <- deer[1:4,]

The first step is removed, because we have `NA` turn angles.
mini_deer |> steps() |> random_steps() |> remove_incomplete_strata() |>

select(case_, ta_, step_id_)

sampling_period 73

sampling_period Extract sampling period

Description

Extracts sampling period from a track_xyt object

Usage

sampling_period(x, ...)

Arguments

x [track_xyt] A track_xyt object.

... Further arguments, none implemented.

sdr Calculate SDR for an Object

Description

Calculates SDR for an object of certain class

Usage

sdr(x, time_unit = "secs", append_na = TRUE, ...)

S3 method for class 'track_xyt'
sdr(x, time_unit = "secs", append_na = TRUE, ...)

Arguments

x [track_xyt] Object to calculate SDR from. Currently implemented for track_xyt.
time_unit [character] Character string giving time unit. Should be "secs", "mins", or

"hours".
append_na [logical] Should NA be appended to the end of the vector? Ensures length(result)

== nrow(x) if appending as a column of x.

... Further arguments, none implemented.

Details

time_unit defaults to seconds because calculate_sdr() returns SDR in m^2/s. We assume the
user is also working in a projected CRS with units in meters, thus we expect SDR in m^2/s to be
most relevant.

74 sh_forest

Author(s)

Brian J. Smith and Johannes Signer

See Also

calculate_sdr(), get_displacement()

sh Relocations of one Red Deer

Description

1500 GPS fixes of one red deer from northern Germany.

Usage

sh

Format

A data frame with 1500 rows and 4 variables:

x_epsg31467 the x-coordinate

y_epsg31467 the y-coordinate

day the day of the relocation

time the hour of the relocation

Source

Verein für Wildtierforschung Dresden und Göttingen e.V.

sh_forest Forest cover

Description

Forest cover for the home range of one red deer from northern Germany.

Usage

sh_forest

simulate_path 75

Format

A SpatRast

0 other

1 forest

Source

JRC

References

A. Pekkarinen, L. Reithmaier, P. Strobl (2007): Pan-European Forest/Non-Forest mapping with
Landsat ETM+ and CORINE Land Cover 2000 data.

simulate_path Simulate a movement trajectory.

Description

Function to simulate a movement trajectory (path) from a redistribution kernel.

Usage

simulate_path(x, ...)

Default S3 method:
simulate_path(x, ...)

S3 method for class 'redistribution_kernel'
simulate_path(x, n.steps = 100, start = x$args$start, verbose = FALSE, ...)

Arguments

x [redstirubtion_kernel(1)]
An object of class redistribution_kernel.

... Further arguments, none implemented.
n.steps [integer(1)]{100}

The number of simulation steps.
start [sim_start]

The starting point in time and space for the simulations (see make_start()).
verbose [logical(1)]{FALSE} If TRUE progress of simulations is displayed.

76 site_fidelity

site_fidelity Test for site fidelity of animal movement.

Description

Calculates two indices (mean squared displacement and linearity) to test for site fidelity. Signifi-
cance testing is done by permuting step lengths and drawing turning angles from a uniform distri-
bution.

Usage

site_fidelity(x, ...)

S3 method for class 'steps_xy'
site_fidelity(x, n = 100, alpha = 0.05, ...)

Arguments

x A track

... None implemented

n Numeric scalar. The number of simulated trajectories.

alpha Numeric scalar. The alpha value used for the bootstrapping.

Value

A list of length 4. msd_dat and li_dat is the mean square distance and linearity for the real date.
msd_sim and ‘li_sim“ are the mean square distances and linearities for the simulated trajectories.

References

Spencer, S. R., Cameron, G. N., & Swihart, R. K. (1990). Operationally defining home range:
temporal dependence exhibited by hispid cotton rats. Ecology, 1817-1822.

Examples

real data

data(deer)
ds <- deer |> steps_by_burst()
site_fidelity(ds)

speed 77

speed Speed

Description

Obtain the speed of a track.

Usage

speed(x, ...)

S3 method for class 'track_xyt'
speed(x, append_na = TRUE, ...)

Arguments

x A track_xyt.

... Further arguments, none implemented.
append_na [logical(1)=TRUE]

Should an NA be appended at the end.

Value
[numeric]
The speed in m/s.

ssf_formula Takes a clogit formula and returns a formula without the strata and
the left-hand side

Description

Takes a clogit formula and returns a formula without the strata and the left-hand side

Usage

ssf_formula(formula)

Arguments

formula A formula object

Examples

f1 <- case_ ~ x1 * x2 + strata(step_id_)
ssf_formula(f1)

78 steps

ssf_weights Given a fitted ssf, and new location the weights for each location is
calculated

Description

Given a fitted ssf, and new location the weights for each location is calculated

Usage

ssf_weights(xy, object, compensate.movement = FALSE)

Arguments

xy The new locations.

object The the fitted (i)SSF.
compensate.movement

Whether or not for the transformation from polar to Cartesian coordinates is
corrected.

steps Functions to create and work with steps

Description

step_lengths can be use to calculate step lengths of a track. direction_abs and direction_rel
calculate the absolute and relative direction of steps. steps converts a track_xy* from a point
representation to a step representation and automatically calculates step lengths and relative turning
angles.

Usage

direction_abs(x, ...)

S3 method for class 'track_xy'
direction_abs(
x,
full_circle = FALSE,
zero_dir = "E",
clockwise = FALSE,
append_last = TRUE,
lonlat = FALSE,
...

)

steps 79

direction_rel(x, ...)

S3 method for class 'track_xy'
direction_rel(x, lonlat = FALSE, append_last = TRUE, zero_dir = "E", ...)

step_lengths(x, ...)

S3 method for class 'track_xy'
step_lengths(x, lonlat = FALSE, append_last = TRUE, ...)

steps_by_burst(x, ...)

S3 method for class 'track_xyt'
steps_by_burst(x, lonlat = FALSE, keep_cols = NULL, ...)

steps(x, ...)

S3 method for class 'track_xy'
steps(x, lonlat = FALSE, keep_cols = NULL, ...)

S3 method for class 'track_xyt'
steps(x, lonlat = FALSE, keep_cols = NULL, diff_time_units = "auto", ...)

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... Further arguments, none implemented
full_circle [logical(1)=FALSE]

If TRUE angles are returned between 0 and $2pi$, otherwise angles are between
$-pi$ and pi.

zero_dir [character(1)='E']
Indicating the zero direction. Must be either N, E, S, or W.

clockwise [logical(1)=FALSE]
Should angles be calculated clock or anti-clockwise?

append_last [logical(1)=TRUE]
If TRUE an NA is appended at the end of all angles.

lonlat [logical(1)=TRUE]
Should geographical or planar coordinates be used? If TRUE geographic dis-
tances are calculated.

keep_cols [character(1)=NULL]{'start', 'end', 'both'}
Should columns with attribute information be transferred to steps? If keep_cols
= 'start' the attributes from the starting point are use, otherwise the columns
from the end points are used.

diff_time_units

[character(1)='auto']
The unit for time differences, see ?difftime.

80 steps

Details
dierctions_*() returns NA for 0 step lengths.

step_lengths calculates the step lengths between points a long the path. The last value returned
is NA, because no observed step is ’started’ at the last point. If lonlat = TRUE, step_lengths()
wraps sf::st_distance().

Value
[numeric]
For step_lengths() and direction_* a numeric vector.
[data.frame]
For steps and steps_by_burst, containing the steps.

Examples

xy <- tibble(
x = c(1, 4, 8, 8, 12, 12, 8, 0, 0, 4, 2),
y = c(0, 0, 0, 8, 12, 12, 12, 12, 8, 4, 2))

trk <- make_track(xy, x, y)

append last
direction_abs(trk, append_last = TRUE)
direction_abs(trk, append_last = FALSE)

degrees
direction_abs(trk) |> as_degree()

full circle or not: check
direction_abs(trk, full_circle = TRUE)
direction_abs(trk, full_circle = FALSE)
direction_abs(trk, full_circle = TRUE) |> as_degree()
direction_abs(trk, full_circle = FALSE) |> as_degree()

direction of 0
direction_abs(trk, full_circle = TRUE, zero_dir = "N")
direction_abs(trk, full_circle = TRUE, zero_dir = "E")
direction_abs(trk, full_circle = TRUE, zero_dir = "S")
direction_abs(trk, full_circle = TRUE, zero_dir = "W")

clockwise or not
direction_abs(trk, full_circle = TRUE, zero_dir = "N", clockwise = FALSE)
direction_abs(trk, full_circle = TRUE, zero_dir = "N", clockwise = TRUE)

Bearing (i.e. azimuth): only for lon/lat
direction_abs(trk, full_circle = FALSE, zero_dir = "N", lonlat = FALSE, clockwise = TRUE)
direction_abs(trk, full_circle = FALSE, zero_dir = "N", lonlat = TRUE, clockwise = TRUE)

summarize_sampling_rate 81

summarize_sampling_rate

Returns a summary of sampling rates

Description

Returns a summary of sampling rates

Usage

summarize_sampling_rate(x, ...)

S3 method for class 'track_xyt'
summarize_sampling_rate(
x,
time_unit = "auto",
summarize = TRUE,
as_tibble = TRUE,
...

)

summarize_sampling_rate_many(x, ...)

S3 method for class 'track_xyt'
summarize_sampling_rate_many(x, cols, time_unit = "auto", ...)

Arguments

x A track_xyt.

... Further arguments, none implemented.
time_unit [character(1) = "auto"]

Which time unit will be used.

summarize A logical. If TRUE a summary is returned, otherwise raw sampling intervals are
returned.

as_tibble A logical. Should result be returned as tibble or as table.

cols Columns used for grouping.

Value

Depending on summarize and as_tibble, a vector, table or tibble.

Examples

data(deer)
amt::summarize_sampling_rate(deer)

82 summarize_speed

data(amt_fisher)
Add the month
amt_fisher |> mutate(yday = lubridate::yday(t_)) |>
summarize_sampling_rate_many(c("id", "yday"))

summarize_sl Summarize step lengths

Description

Summarizes step lengths for a track_xy* object

Usage

summarize_sl(x, ...)

Arguments

x [track_xy, track_xyt] A track_xy* object.

... Further arguments, none implemented.

summarize_speed Summarize speed

Description

Summarizes speeds for a track_xyt object

Usage

summarize_speed(x, ...)

Arguments

x [track_xyt] A track_xyt object.

... Further arguments, none implemented.

time_of_day 83

time_of_day Time of the day when a fix was taken

Description

A convenience wrapper around suncalc::getSunlightTimes to annotate if a fix was taken during
day or night (optionally also include dawn and dusk).

Usage

time_of_day(x, ...)

S3 method for class 'track_xyt'
time_of_day(x, include.crepuscule = FALSE, ...)

S3 method for class 'steps_xyt'
time_of_day(x, include.crepuscule = FALSE, where = "end", ...)

Arguments

x [track_xyt,steps_xyt]
A track or steps.

... Further arguments, none implemented.
include.crepuscule

[logical(1)=TRUE]
Should dawn and dusk be included.

where [character(1)="end"]{"start", "end", "both"} For steps, should the
start, end or both time points be used?

Value

A tibble with an additional column tod_ that contains the time of the day for each relocation.

Examples

data(deer)
deer |> time_of_day()
deer |> steps_by_burst() |> time_of_day()
deer |> steps_by_burst() |> time_of_day(where = "start")
deer |> steps_by_burst() |> time_of_day(where = "end")
deer |> steps_by_burst() |> time_of_day(where = "both")

84 track

track Create a track_*

Description

Constructor to create a track, the basic building block of the amt package. A track is usually created
from a set of x and y coordinates, possibly time stamps, and any number of optional columns, such
as id, sex, age, etc.

Usage

mk_track(
tbl,
.x,
.y,
.t,
...,
crs = NA_crs_,
order_by_ts = TRUE,
check_duplicates = FALSE,
all_cols = FALSE,
verbose = FALSE

)

make_track(
tbl,
.x,
.y,
.t,
...,
crs = NA_crs_,
order_by_ts = TRUE,
check_duplicates = FALSE,
all_cols = FALSE,
verbose = FALSE

)

track(x, y, t, ..., crs = NULL)

Arguments

tbl [data.frame]
The data.frame from which a track should be created.

.x, .y, .t [expression(1)]
Unquoted variable names of columns containing the x and y coordinates, and
optionally a time stamp.

tracked_from_to 85

... [expression]
Additional columns from tbl to be used in a track. Columns should be provided
in the form of key = val (e.g., for ids this may look like this id = c(1, 1, 1, 2, 2, 2
for three points for ids 1 and 2 each).

crs [crs]
An optional coordinate reference system of the points. Usually just the epsg
code is sufficient.

order_by_ts [logical(1)]
Should relocations be ordered by time stamp, default is TRUE.

check_duplicates

[logical(1)=FALSE]
Should it be checked if there are duplicated time stamp, default is FALSE.

all_cols [logical(1)=FALSE]
Should all columns be carried over to the track object, default is FALSE.

verbose [logical(1)=FALSE]
Inform when tracks are created.

x, y [numeric]
The x and y coordinates.

t [POSIXct]
The time stamp.

Value

If t was provided an object of class track_xyt is returned otherwise a track_xy.

tracked_from_to Subset to tracking dates

Description

Subsets a track_xyt object

Usage

tracked_from_to(x, from = min(x$t_), to = max(x$t_))

Arguments

x [track_xy, track_xyt] A track_xy* object.
from [POSIXt] A date and time defining start of subset.
to [POSIXt] A date and time defining end of subset.

86 track_resample

track_align Selects relocations that fit a new time series

Description

Functions to only selects relocations that can be aligned with a new time series (within some toler-
ance).

Usage

track_align(x, ...)

S3 method for class 'track_xyt'
track_align(x, new.times, tolerance, ...)

Arguments

x A track.

... Further arguments, none implemented.

new.times The new time trajectory.

tolerance The tolerance between observed time stamps and new time stamps in seconds.
This should be either a vector of length 1 or length new.times.

Value

A track_xyt.

track_resample Resample track

Description

Function to resample a track at a predefined sampling rate within some tolerance.

Usage

track_resample(x, ...)

S3 method for class 'track_xyt'
track_resample(x, rate = hours(2), tolerance = minutes(15), start = 1, ...)

transform_coords 87

Arguments

x A track_xyt.

... Further arguments, none implemented.

rate A lubridate Period, that indicates the sampling rate.

tolerance A lubridate Period, that indicates the tolerance of deviations of the sampling
rate.

start A integer scalar, that gives the relocation at which the sampling rate starts.

Value

A resampled track_xyt.

transform_coords Transform CRS

Description

Transforms the CRS for a track.

Usage

transform_coords(x, ...)

S3 method for class 'track_xy'
transform_coords(x, crs_to, crs_from, ...)

transform_crs(x, ...)

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... Further arguments, none implemented.
crs_to [crs(1)]

Coordinate reference system the data should be transformed to, see sf::st_crs.
crs_from [crs(1)]

Coordinate reference system the data are currently in, see sf::sf_crs. If crs_from
is missing, the crs-attribute of the track is used.

Value

A track with transformed coordinates.

See Also

sf::st_transform

88 trast

Examples

data(deer)
get_crs(deer)

project to geographical coordinates (note the CRS is taken automatically from the object deer).
d1 <- transform_coords(deer, crs_to = 4326)

trast Create a template raster layer

Description

For some home-range estimation methods (e.g., KDE) a template raster is needed. This functions
helps to quickly create such a template raster.

Usage

make_trast(x, ...)

S3 method for class 'track_xy'
make_trast(x, factor = 1.5, res = max(c(extent_max(x)/100, 1e-09)), ...)

Arguments

x [track_xy, track_xyt]
A track created with make_track.

... Further arguments, none implemented.

factor [numeric(1)=1.5]{>= 1}
Factor by which the extent of the relocations is extended.

res [numeric(1)]
Resolution of the output raster.

Value

A RastLayer without values.

ua_distr 89

ua_distr Summarize distribution of used and available

Description

Internal function to summarize distribution of numeric or factor variables

Usage

ua_distr(name, type, data, lims, resp, n_dens, avail = TRUE)

Arguments

name [character] Name of the column to summarize.
type [character] Either "numeric" or "factor" as returned by prep_test_dat().
data [data.frame] The data.frame containing the columns and the response vari-

able.
lims [numeric(2)] A numeric vector of length 2 containing the range for the density

calculation for all variables where type == "numeric" as returned by prep_test_dat().
Will be passed to stats::density.default() arguments from and to.

resp [character] Name of the response variable.
n_dens [numeric] A numeric vector of length 1 giving the number of equally spaced

points at which density (used, available, and sampled) is estimated. Passed to
stats::density.default(), which indicates that n should usually be speci-
fied as a power of 2.

avail [logical] Should distribution be calculated for the available locations? De-
faults to TRUE, but should be false when summarizing the bootstrapped "used"
samples.

uhc_hab Simulated habitat rasters for demonstrating UHC plots

Description

Simulated habitat rasters for demonstrating UHC plots

Usage

uhc_hab

90 uhc_hsf_locs

Format

A RasterStack with 1600 cells and 7 variables:

forage Forage biomass in g/m^2^ (resource)

temp mean annual temperature in °C (condition)

pred predator density in predators/100 km^2^ (risk)

cover landcover (forest > grassland > wetland)

dist_to_water distance to the wetland landcover (no effect)

dist_to_cent distance to the centroid of the raster (no effect)

rand random integers (no effect)

uhc_hsf_locs Simulated HSF location data for demonstrating UHC plots

Description

Simulated HSF location data for demonstrating UHC plots

Usage

uhc_hsf_locs

Format

A data.frame with 2000 rows and 2 variables:

x x-coordinate in UTM Zone 12 (EPSG: 32612)

y Y-coordinate in UTM Zone 12 (EPSG: 32612)

These data were simulated assuming an ordinary habitat selection function (HSF), i.e., all points
are independent rather than arising from an underlying movement model.

True parameter values are:

• forage = log(5)/500 (resource)

• temp^2 = -1 * log(2)/36 (condition; quadratic term)

• temp = (log(2)/36) * 26 (condition; linear term)

• pred = log(0.25)/5 (risk)

• cover == "forest" = log(2) (grassland is intercept)

• cover == "wetland" = log(1/2) (grassland is intercept)

Note: temp is modeled as a quadratic term, with the strongest selection occurring at 13 °C and all
other temperatures less selected.

Note: dist_to_water, dist_to_cent, and rand have no real effect on our animal’s selection and
are included for demonstration purposes.

uhc_issf_locs 91

uhc_issf_locs Simulated iSSF location data for demonstrating UHC plots

Description

Simulated iSSF location data for demonstrating UHC plots

Usage

uhc_issf_locs

Format

A data.frame with 371 rows and 3 variables:

x x-coordinate in UTM Zone 12 (EPSG: 32612)

y Y-coordinate in UTM Zone 12 (EPSG: 32612)

t timestamp of location (timezone "US/Mountain")

These data were simulated assuming an movement model, i.e., iSSA.

True movement-free habitat selection parameter values are:

• forage = log(8)/500 (resource)

• temp^2 = -1 * log(8)/36 (condition; quadratic term)

• temp = (log(8)/36) * 26 (condition; linear term)

• pred = log(0.2)/5 (risk)

• cover == "forest" = log(2) (grassland is intercept)

• cover == "wetland" = log(1/2) (grassland is intercept)

• dist_to_cent = -1 * log(10)/500 (keeps trajectory away from boundary)

Note: temp is modeled as a quadratic term, with the strongest selection occurring at 13 °C and all
other temperatures less selected.

Note: dist_to_water and rand have no real effect on our animal’s selection and are included for
demonstration purposes.

True selection-free movement distributions are:

• Step length: gamma(shape = 3, scale = 25)

• Turn angle: vonMises(mu = 0, kappa = 0.5)

92 update_distr_man

update_distr_man Manually update amt_distr

Description

Functions to update amt_distr from iSSF coefficients

Usage

update_gamma(dist, beta_sl, beta_log_sl)

update_exp(dist, beta_sl)

update_hnorm(dist, beta_sl_sq)

update_lnorm(dist, beta_log_sl, beta_log_sl_sq)

update_vonmises(dist, beta_cos_ta)

Arguments

dist [amt_distr] The tentative distribution to be updated respective distributions.
beta_sl [numeric]

The estimate of the coefficient of the step length.
beta_log_sl [numeric]

The estimate of the coefficient of the log of the step length.
beta_sl_sq [character]

The name of the coefficient of the square of the step length.
beta_log_sl_sq [character]

The name of the coefficient of the square of log of the step length.
beta_cos_ta [numeric]

The estimate of the coefficient of cosine of the turning angle.

Details

These functions are called internally by update_sl_distr() and update_ta_distr(). However,
those simple functions assume that the selection-free step-length and turn-angle distributions are
constant (i.e., they do not depend on covariates). In the case of interactions between movement
parameters and covariates, the user will want to manually access these functions to update their
selection-free movement distributions.

Value

A distribution

update_sl_distr 93

Examples

sh_forest <- get_sh_forest()
Fit an SSF, then update movement parameters.
#
#Prepare data for SSF
ssf_data <- deer |>
steps_by_burst() |>
random_steps(n = 15) |>
extract_covariates(sh_forest) |>
mutate(forest = factor(forest, levels = 1:0,
labels = c("forest", "non-forest")),
cos_ta_ = cos(ta_),
log_sl_ = log(sl_))
#
Check tentative distributions
Step length
attr(ssf_data, "sl_")
Turning angle
attr(ssf_data, "ta_")
#
Fit an iSSF (note model = TRUE necessary for predict() to work)
m1 <- ssf_data |>
fit_issf(case_ ~ forest * (sl_ + log_sl_ + cos_ta_) +
strata(step_id_), model = TRUE)
#
Update forest step lengths (the reference level)
forest_sl <- update_gamma(m1$sl_,
beta_sl = m1$model$coefficients["sl_"],
beta_log_sl = m1$model$coefficients["log_sl_"])
#
Update non-forest step lengths
nonforest_sl <- update_gamma(m1$sl_,
beta_sl = m1$model$coefficients["sl_"] +
m1$model$coefficients["forestnon-forest:sl_"],
beta_log_sl = m1$model$coefficients["log_sl_"] +
m1$model$coefficients["forestnon-forest:log_sl_"])
#
Update forest turn angles (the reference level)
forest_ta <- update_vonmises(m1$ta_,
beta_cos_ta = m1$model$coefficients["cos_ta_"])
#
Update non-forest turn angles
nonforest_ta <- update_vonmises(m1$ta_,
beta_cos_ta = m1$model$coefficients["cos_ta_"] +
m1$model$coefficients["forestnon-forest:cos_ta_"])
#

update_sl_distr Update movement distributions

94 update_sl_distr

Description

Update tentative step length or turning angle distribution from a fitted iSSF.

Usage

update_sl_distr(
object,
beta_sl = "sl_",
beta_log_sl = "log_sl_",
beta_sl_sq = "sl_sq_",
beta_log_sl_sq = "log_sl_sq_",
...

)

update_ta_distr(object, beta_cos_ta = "cos_ta_", ...)

Arguments

object [fit_clogit]
A fitted iSSF model.

beta_sl [character]
The name of the coefficient of the step length.

beta_log_sl [character]
The name of the coefficient of the log of the step length.

beta_sl_sq [character]
The name of the coefficient of the square of the step length.

beta_log_sl_sq [character]
The name of the coefficient of the square of log of the step length.

... Further arguments, none implemented.
beta_cos_ta [character]

The name of the coefficient of cosine of the turning angle.

Value

An amt_distr object, which consists of a list with the name of the distribution and its parameters
(saved in params).

Author(s)

Brian J. Smith and Johannes Signer

References

Fieberg J, Signer J, Smith BJ, Avgar T (2020). “A “How-to” Guide for Interpreting Parameters in
Resource-and Step-Selection Analyses.” bioRxiv.

See Also

Wrapper to fit a distribution to data fit_distr()

update_sl_distr 95

Examples

Fit an SSF, then update movement parameters.
data(deer)
mini_deer <- deer[1:100,]
sh_forest <- get_sh_forest()

Prepare data for SSF
ssf_data <- mini_deer |>

steps_by_burst() |>
random_steps(n = 15) |>
extract_covariates(sh_forest) |>
mutate(forest = factor(forest, levels = 1:0,

labels = c("forest", "non-forest")),
cos_ta_ = cos(ta_),
log_sl_ = log(sl_))

Check tentative distributions
Step length
sl_distr_params(ssf_data)
attr(ssf_data, "sl_")
Turning angle
ta_distr_params(ssf_data)

Fit an iSSF
m1 <- ssf_data |>

fit_issf(case_ ~ forest +
sl_ + log_sl_ + cos_ta_ +
strata(step_id_))

Update step length distribution
new_gamma <- update_sl_distr(m1)

Update turning angle distribution
new_vm <- update_ta_distr(m1)

It is also possible to use different step length distributions

exponential step-length distribution
s2 <- mini_deer |> steps_by_burst()
s2 <- random_steps(s2, sl_distr = fit_distr(s2$sl_, "exp"))
m2 <- s2 |>

fit_clogit(case_ ~ sl_ + strata(step_id_))
update_sl_distr(m2)

half normal step-length distribution
s3 <- mini_deer |> steps_by_burst()
s3 <- random_steps(s3, sl_distr = fit_distr(s3$sl_, "hnorm"))
m3 <- s3 |>

mutate(sl_sq_ = sl_^2) |>
fit_clogit(case_ ~ sl_sq_ + strata(step_id_))

update_sl_distr(m3)

96 update_sl_distr

log normal step-length distribution
s4 <- mini_deer |> steps_by_burst()
s4 <- random_steps(s4, sl_distr = fit_distr(s4$sl_, "lnorm"))
m4 <- s4 |>

mutate(log_sl_ = log(sl_), log_sl_sq_ = log(sl_)^2) |>
fit_clogit(case_ ~ log_sl_ + log_sl_sq_ + strata(step_id_))

update_sl_distr(m4)

Index

∗ datasets
amt_fisher, 4
amt_fisher_covar, 5
deer, 18
sh, 74
sh_forest, 74
uhc_hab, 89
uhc_hsf_locs, 90
uhc_issf_locs, 91

[.uhc_data (Extract.uhc_data), 22

add_nsd (nsd), 54
amt_fisher, 4
amt_fisher_covar, 5
as.data.frame, 6
as.data.frame.uhc_data, 5, 15, 63
as_degree (convert_angles), 16
as_ltraj (coercion), 14
as_moveHMM (coercion), 14
as_rad (convert_angles), 16
as_sf (coercion), 14
as_sf_lines, 6
as_sf_points, 7
as_sp (coercion), 14
as_telemetry (coercion), 14
as_track, 8
available_distr, 8

bandwidth_pi, 9
bandwidth_ref, 10
bbox, 10

calc_w, 12
calculate_sdr, 11, 34, 73, 74
centroid, 13
check_time_unit, 13
coercion, 14
conf_envelope, 6, 15, 59, 60
convert_angles, 16
coords, 17

cum_dist (movement_metrics), 52
cum_ud, 17

deer, 18
diff, 18
diff_x (diff), 18
diff_y (diff), 18
direction_abs (steps), 78
direction_rel (steps), 78
distr_name, 20
distributions, 19

extent, 21
extent_both (extent), 21
extent_max (extent), 21
extent_x (extent), 21
extent_y (extent), 21
Extract.uhc_data, 22, 63
extract_covariates, 22
extract_covariates_along

(extract_covariates), 22
extract_covariates_var_time

(extract_covariates), 22

filter_min_n_burst, 24
fit_clogit, 25
fit_ctmm, 25
fit_distr, 26, 94
fit_issf (fit_clogit), 25
fit_logit, 27
fit_rsf (fit_logit), 27
fit_ssf (fit_clogit), 25
flag_defunct_clusters, 28, 30–32
flag_duplicates, 28, 29, 31, 32
flag_fast_steps, 28, 30, 30, 31, 32
flag_roundtrips, 28, 30, 31, 31
from (from_to), 32
from_to, 32

get_amt_fisher_covars, 33

97

98 INDEX

get_crs, 33
get_displacement, 12, 34, 74
get_distr, 34
get_max_dist, 35
get_sh_forest, 36

has_crs, 36
hr_akde, 37
hr_area, 39
hr_cud (cum_ud), 17
hr_isopleths, 40
hr_kde (hr_akde), 37
hr_kde_lscv, 41
hr_kde_pi (bandwidth_pi), 9
hr_kde_ref (bandwidth_ref), 10
hr_kde_ref_scaled, 42
hr_locoh (hr_akde), 37
hr_mcp (hr_akde), 37
hr_od (hr_akde), 37
hr_overlap (hr_overlaps), 43
hr_overlap_feature, 44
hr_overlaps, 43
hr_to_sf, 44
hr_ud, 45
hrest (hr_akde), 37

inspect, 46
integer, 68
intensity_use (movement_metrics), 52
issf_drop_stratum, 47
issf_w_form, 47

log_rss, 48, 58

make_distribution (distributions), 19
make_exp_distr (distributions), 19
make_gamma_distr (distributions), 19
make_hnorm_distr (distributions), 19
make_issf_model, 51
make_lnorm_distr (distributions), 19
make_start, 51
make_track (track), 84
make_trast (trast), 88
make_unif_distr (distributions), 19
make_vonmises_distr (distributions), 19
mk_track (track), 84
movement_metrics, 52
msd (movement_metrics), 52

nsd, 54

od, 54

palette, 58
params, 56
plot, 59, 60
plot.hr, 57
plot.log_rss, 49, 57
plot.uhc_data, 59, 60, 63
plot.uhc_envelopes, 16, 59, 60
plot_sl, 60
prep_test_dat, 89
prep_uhc, 6, 16, 59, 60, 61

random_numbers, 65
random_points, 65
random_steps, 67
random_steps_simple, 68
range, 69
range_both (range), 69
range_x (range), 69
range_y (range), 69
redistribution_kernel, 70
remove_capture, 71
remove_capture_effect (remove_capture),

71
remove_incomplete_strata, 72
rolling_od (od), 54

sampling_period, 73
sdr, 73
sf::st_distance(), 80
sh, 74
sh_forest, 74
simulate_path, 75
sinuosity (movement_metrics), 52
site_fidelity, 76
sl_distr (get_distr), 34
sl_distr_name (distr_name), 20
sl_distr_params (params), 56
speed, 77
ssf_formula, 77
ssf_weights, 78
step_lengths (steps), 78
steps, 78
steps_by_burst (steps), 78
straightness (movement_metrics), 52
summarize_sampling_rate, 81
summarize_sampling_rate_many

(summarize_sampling_rate), 81

INDEX 99

summarize_sl, 82
summarize_speed, 82

ta_distr (get_distr), 34
ta_distr_name (distr_name), 20
ta_distr_params (params), 56
tac (movement_metrics), 52
time_of_day, 83
to (from_to), 32
tot_dist (movement_metrics), 52
track, 84
track_align, 86
track_resample, 86
tracked_from_to, 85
transform_coords, 87
transform_crs (transform_coords), 87
trast, 88

ua_distr, 89
uhc_hab, 89
uhc_hsf_locs, 90
uhc_issf_locs, 91
update_distr_man, 92
update_exp (update_distr_man), 92
update_gamma (update_distr_man), 92
update_hnorm (update_distr_man), 92
update_lnorm (update_distr_man), 92
update_sl_distr, 92, 93
update_ta_distr, 92
update_ta_distr (update_sl_distr), 93
update_vonmises (update_distr_man), 92

	amt_fisher
	amt_fisher_covar
	as.data.frame.uhc_data
	as_sf_lines
	as_sf_points
	as_track
	available_distr
	bandwidth_pi
	bandwidth_ref
	bbox
	calculate_sdr
	calc_w
	centroid
	check_time_unit
	coercion
	conf_envelope
	convert_angles
	coords
	cum_ud
	deer
	diff
	distributions
	distr_name
	extent
	Extract.uhc_data
	extract_covariates
	filter_min_n_burst
	fit_clogit
	fit_ctmm
	fit_distr
	fit_logit
	flag_defunct_clusters
	flag_duplicates
	flag_fast_steps
	flag_roundtrips
	from_to
	get_amt_fisher_covars
	get_crs
	get_displacement
	get_distr
	get_max_dist
	get_sh_forest
	has_crs
	hr_akde
	hr_area
	hr_isopleths
	hr_kde_lscv
	hr_kde_ref_scaled
	hr_overlaps
	hr_overlap_feature
	hr_to_sf
	hr_ud
	inspect
	issf_drop_stratum
	issf_w_form
	log_rss
	make_issf_model
	make_start
	movement_metrics
	nsd
	od
	params
	plot.hr
	plot.log_rss
	plot.uhc_data
	plot.uhc_envelopes
	plot_sl
	prep_uhc
	random_numbers
	random_points
	random_steps
	random_steps_simple
	range
	redistribution_kernel
	remove_capture
	remove_incomplete_strata
	sampling_period
	sdr
	sh
	sh_forest
	simulate_path
	site_fidelity
	speed
	ssf_formula
	ssf_weights
	steps
	summarize_sampling_rate
	summarize_sl
	summarize_speed
	time_of_day
	track
	tracked_from_to
	track_align
	track_resample
	transform_coords
	trast
	ua_distr
	uhc_hab
	uhc_hsf_locs
	uhc_issf_locs
	update_distr_man
	update_sl_distr
	Index

