
Package ‘hicp’
February 3, 2026

Type Package

Title Harmonised Index of Consumer Prices

Version 1.1.0

Description The Harmonised Index of Consumer Prices (HICP) is the key economic figure to mea-
sure inflation in the euro area.
The methodology underlying the HICP is documented in the HICP Methodological Man-
ual (<https:
//ec.europa.eu/eurostat/web/products-manuals-and-guidelines/w/ks-gq-24-003>).
Based on the manual, this package provides functions to access and work with HICP data from Eu-
rostat's public database (<https://ec.europa.eu/eurostat/data/database>).

License EUPL

Encoding UTF-8

Depends R (>= 3.5.0)

Imports restatapi (>= 0.24.0), data.table (>= 1.16.0)

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

URL https://github.com/eurostat/hicp

BugReports https://github.com/eurostat/hicp/issues

Author Sebastian Weinand [aut, cre]

Maintainer Sebastian Weinand <sebastian.weinand@ec.europa.eu>

Repository CRAN

Date/Publication 2026-02-03 12:40:20 UTC

Contents
chaining . 2
coicop . 4

1

https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/w/ks-gq-24-003
https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/w/ks-gq-24-003
https://ec.europa.eu/eurostat/data/database
https://github.com/eurostat/hicp
https://github.com/eurostat/hicp/issues

2 chaining

coicop.relatives . 6
countries . 8
hicp.data . 9
index.aggregation . 10
linking . 14
rates . 16
tree . 18

Index 21

chaining Chain-linking, rebasing and index conversion

Description

The function unchain() unchains an annually chain-linked index series. The unchained indices can
be aggregated into higher-level indices, which can be chain-linked using the function chain() to
obtain a long-term index series. The function rebase() sets the reference period of the chain-linked
index.

The function convert() allows to convert monthly indices into quarterly and yearly indices or
12-month moving averages.

Usage

unchain(x, t, by=12, settings=list())

chain(x, t, by=12, settings=list())

rebase(x, t, t.ref="first", settings=list())

convert(x, t, type="year", settings=list())

Arguments

x numeric vector of index values.

t date vector of monthly (i.e., one observation per month), quarterly or yearly
frequency in format YYYY-MM-DD.

by for one-month or one-quarter overlap a single integer between 1 and 12 spec-
ifying the price reference period; for annual overlap using a full calendar year
NULL.

t.ref character specifying the index reference period either in format YYYY for a calen-
dar year or YYYY-MM for a specific month or quarter. Can also be first or last
to use the first or last available period. If t.ref contains multiple entries, these
are processed in the order provided, and the first match is used for the rebasing.

type type of converted index. Either year (for annual average), quarter (for quar-
terly average), or 12mavg (for a 12-month moving average).

chaining 3

settings list of control settings to be used. The following settings are supported:

• chatty : logical indicating if package-specific warnings and info messages
should be printed or not. The default is getOption("hicp.chatty").

• freq : character specifying the frequency of t. Allowed values are month,
quarter, year, and auto (the default). For auto, the frequency is internally
derived from t.

• na.rm : logical indicating if averages for calendar years should also be
computed when there are NAs and less than 12 months (or 4 quarters) present
(for na.rm=TRUE). For the 12-month moving average in convert(), the
calculations are always based on the last 12 months (or 4 quarters), meaning
that only NAs are excluded. The default is na.rm=FALSE.

Details

The function unchain() sets the value of the first price reference period to NA although the value
could be set to 100 (if by is not NULL) or 100 divided by the average of the year (if by=NULL). This
is wanted to avoid aggregation of these values. The function chain() finally sets the values back to
100.

Value

The functions unchain(), chain(), rebase(), and convert(..., type="12mavg") return nu-
meric values of the same length as x.

For type="year" and type="quarter", the function convert() returns a named numeric vector
of the length of quarters or years available in t, where the names correspond to the last month of
the year or quarter.

Author(s)

Sebastian Weinand

References

European Commission, Eurostat, Harmonised Index of Consumer Prices (HICP) - Methodological
Manual - 2024 edition, Publications Office of the European Union, 2024, doi:10.2785/055028.

See Also

aggregate

Examples

EXAMPLE 1

sample monthly price index:
t <- seq.Date(from=as.Date("2022-12-01"), to=as.Date("2025-12-01"), by="1 month")
p <- rnorm(n=length(t), mean=100, sd=5)

rebase index to new reference period:
rebase(x=p, t=t, t.ref=c("1996","2023")) # 1996 not present so 2023 is used

https://doi.org/10.2785/055028

4 coicop

rebase(x=p, t=t, t.ref=c("1996","first")) # 1996 not present so first period is used

convert into quarterly index:
convert(x=p, t=t, type="q") # first quarter is not complete so NA

unchaining and chaining gives initial results:
100*p/p[1]
chain(unchain(p, t, by=12), t, by=12)

use annual overlap:
100*p/mean(p[1:12])
(res <- chain(unchain(p, t, by=NULL), t, by=NULL))
note that for backwards compability, each month in the first
year receives an index value of 100. this allows the same
computation again:
chain(unchain(res, t, by=NULL), t, by=NULL)

EXAMPLE 2: Working with published HICP data

library(data.table)
library(restatapi)
options(restatapi_cores=1) # set cores for testing on CRAN
options(hicp.chatty=FALSE) # suppress package messages and warnings

import monthly price indices for euro area:
dtm <- hicp::data(id="prc_hicp_minr", filters=list(unit="I25", geo="EA"))
dtm[, "time":=as.Date(paste0(time, "-01"))]
setkeyv(x=dtm, cols=c("unit","coicop18","time"))

unchain, chain, and rebase all euro area indices by COICOP:
dtm[, "dec_ratio" := unchain(x=values, t=time), by="coicop18"]
dtm[, "chained_index" := chain(x=dec_ratio, t=time), by="coicop18"]
dtm[, "index_own" := rebase(x=chained_index, t=time, t.ref="2025"), by="coicop18"]

convert all monthly indices into annual averages:
dta <- dtm[, as.data.table(

x=convert(x=values, t=time, type="year"),
keep.rownames=TRUE), by="coicop18"]

setnames(x=dta, c("coicop18","time","index"))
plot(index~as.Date(time), data=dta[coicop18=="TOTAL",], type="l")

coicop COICOP codes and special aggregates

Description

Valid COICOP codes can be flagged by is.coicop(). The function level() returns their level
(e.g. 2-digit division or 5-digit subclass level).

For HICP data, special aggregates like food or energy have their own codes, which can be flagged
by is.spec.agg(). The function spec.agg() provides the composition of special aggregates.

The function label() translates the codes into their descriptions.

coicop 5

Usage

flag COICOP, bundle and special aggregate codes:
is.coicop(id, settings=list())
is.bundle(id, settings=list())
is.spec.agg(id, settings=list())

derive the level of COICOP codes:
level(id, settings=list())

label codes:
label(id, settings=list())

get the composition of a special aggregate:
spec.agg(id=NULL, settings=list())

Arguments

id character vector of COICOP or special aggregate codes.

settings list of control settings to be used. The following settings are supported:

• coicop.version : character specifying the COICOP version to be used.
See details for the allowed values. The default is getOption("hicp.coicop.version").

• coicop.prefix : character specifying a prefix for the COICOP codes. The
default is getOption("hicp.coicop.prefix").

• all.items.code : character specifying the code internally used for the all-
items index. The default is taken from getOption("hicp.all.items.code").
If the character is named, the function label() uses the name as the label
of the all-items code.

Details

The following COICOP versions are supported:

• Classification of Individual Consumption According to Purpose (COICOP-1999): coicop1999

• European COICOP (version 1, ECOICOP): ecoicop1

• ECOICOP adapted to the needs of the HICP (version 1, ECOICOP-HICP): ecoicop1.hicp

• COICOP-2018 (including the voluntary 6-digit codes): coicop2018

• ECOICOP (version 2, ECOICOP 2): ecoicop2

• ECOICOP adapted to the needs of the HICP (version 2, ECOICOP 2 HICP): ecoicop2.hicp

The COICOP version can be set temporarily in the function settings or globally via options("hicp.coicop.version").
For ecoicop1.hicp, some COICOP codes are merged into bundles (e.g. 08X, 0531_2), deviating
from the expected code structure. Although such bundle codes are no valid COICOP codes, they
are internally resolved into their underlying codes and processed in that way if they can be found in
the package’s internal bundle code dictionary.

None of the COICOP versions include a code for the all-items index. The internal package code for
the all-items index is defined by options("hicp.all.items.code"). Its level is always 1 and the
label All-items by default.

https://unstats.un.org/unsd/classifications/Econ/Structure
https://op.europa.eu/web/eu-vocabularies/concept-scheme/-/resource?uri=http://data.europa.eu/ed1/ecoicop/ecoicop
https://op.europa.eu/web/eu-vocabularies/concept-scheme/-/resource?uri=http://data.europa.eu/ed1/ecoicop/ecoicop-hicp
https://unstats.un.org/unsd/classifications/Econ
https://op.europa.eu/web/eu-vocabularies/concept-scheme/-/resource?uri=http://data.europa.eu/ed1/ecoicop2/ecoicop2
https://op.europa.eu/web/eu-vocabularies/concept-scheme/-/resource?uri=http://data.europa.eu/ed1/ecoicop2/ecoicop2-hicp

6 coicop.relatives

For HICP data from Eurostat’s database, COICOP codes are usually prefixed by “CP”. Whether
such a prefix is expected can be defined in options("hicp.coicop.prefix").

Value

The functions is.coicop(), is.bundle() and is.spec.agg() return a logical vector, the function
level() an integer vector and the function label() a character vector. All function outputs have
the same length as id.

The function spec.agg() returns a named list with the special aggregate composition.

Author(s)

Sebastian Weinand

References

European Commission, Eurostat, Harmonised Index of Consumer Prices (HICP) - Methodological
Manual - 2024 edition, Publications Office of the European Union, 2024, Annex 11.1, doi:10.2785/
055028.

See Also

child, parent, tree

Examples

example codes:
ids <- c("TOTAL","CP01","CP011","CP99","FOOD","NRG")
ids[is.coicop(ids)] # all-items is no valid COICOP code
ids[is.spec.agg(ids)]
level(ids) # special aggregates without level
label(ids)

coicop.relatives COICOP relatives

Description

The functions parent() and child() derive the higher-level parents or lower-level children of a
COICOP code.

Usage

child(id, usedict=TRUE, closest=TRUE, k=1, settings=list())

parent(id, usedict=TRUE, closest=TRUE, k=1, settings=list())

https://doi.org/10.2785/055028
https://doi.org/10.2785/055028

coicop.relatives 7

Arguments

id character vector of COICOP codes.

usedict logical indicating if parents or children should be derived from the full code
dictionary defined by settings$coicop.version (if set to TRUE) or only from
the codes present in id.

closest logical indicating if the closest parents or children should be derived or the k-th
ones defined by k. For example, if set to TRUE, the closest parent could be the
direct parent for one code (e.g. 031->03) and the grandparent for another (e.g.
0321->03).

k integer specifying the k-th relative (e.g., 1 for direct parents or children, 2 for
grandparents and grandchildren, ...). Multiple values allowed, e.g., k=c(1,2).
Only relevant if closest=FALSE.

settings list of control settings to be used. The following settings are supported:

• coicop.version : character specifying the COICOP version to be used.
See coicop for the allowed values. The default is getOption("hicp.coicop.version").

• coicop.prefix : character specifying a prefix for the COICOP codes. The
default is getOption("hicp.coicop.prefix").

• all.items.code : character specifying the code internally used for the all-
items index. The default is taken from getOption("hicp.all.items.code").

• simplify : logical indicating if the output should be simplified into a vec-
tor if possible. The default is FALSE. If both a COICOP bundle code and
the underlying codes are the parent or child, only the latter codes are kept
(e.g., c(08X,082)->082). Note that simplification usually only works for
parent().

Value

A list with the same length as id.

Author(s)

Sebastian Weinand

See Also

coicop, tree

Examples

no children of CP01 present in id:
child(id="CP01", usedict=FALSE)

still no direct child present:
child(id=c("CP01","CP0111"), usedict=FALSE, closest=FALSE, k=1)

but a grandchild of CP01 is found:
child(id=c("CP01","CP0111"), usedict=FALSE, closest=TRUE)

8 countries

now, get the children directly from the code dictionary:
child(id=c("CP01","CP0111"), usedict=TRUE)

which works analogously for parents:
parent(id=c("CP01","CP0111"), usedict=TRUE)

countries European aggregates and countries

Description

The function countries() lists all countries with available HICP data in their protocol order.

The functions is.ea(), is.eu() and is.eea() indicate if a country belongs to one of the European
aggregate at a specific date.

Usage

countries(group="All", t=Sys.Date())

is.ea(id, t=Sys.Date())

is.eu(id, t=Sys.Date())

is.eea(id, t=Sys.Date())

Arguments

group character specifying the scope. Allowed values are All for all countries, EA for
euro area countries, EU for the Member States of the European Union and EEA
for members of the European Economic Area.

id character vector of country codes.

t date vector in format YYYY-MM-DD. Must be of length one for countries().

Details

The functions is.ea(), is.eu() and is.eea() can be used to flag the evolving composition of Eu-
ropean aggregates by letting t advance in time. By contrast, for the fixed composition of European
aggregates at a specific date, t can be fixed at this date.

Value

For countries(), a named vector of countries.

For is.ea(), is.eu() and is.eea(), a logical vector of the same length as id.

Author(s)

Sebastian Weinand

hicp.data 9

References

European Commission, Eurostat, Harmonised Index of Consumer Prices (HICP) - Methodological
Manual - 2024 edition, Publications Office of the European Union, 2024, Annex 11.2, doi:10.2785/
055028.

Examples

EU member states in 2025:
countries(group="EU", t=as.Date("2025-01-01"))

check which of the following countries belong to euro area in 2025:
is.ea(id=c("HR","BG"), t=as.Date("2025-01-01"))

check over time:
is.ea(id="BG", t=as.Date(c("2024-01-01","2025-01-01","2026-01-01")))

hicp.data Download HICP data

Description

These functions are simple wrappers of functions in the restatapi package.

The function datasets() lists all available HICP data sets in Eurostat’s public database, while
the function datafilters() gives the allowed values that can be used for filtering a data set. The
function data() downloads a specific data set with filtering on key parameters and time, if supplied.

Usage

datasets(pattern="^prc_hicp", ...)

datafilters(id, ...)

data(id, filters=list(), date.range=NULL, flags=FALSE, ...)

Arguments

pattern character for pattern matching on data set identifier. See also grepl.

id data set identifier, which can be obtained from datasets().

filters named list of filters to be applied to the data request. Allowed values for filter-
ing can be retrieved from datafilters(). For HICP data, typical filter vari-
ables are the index reference period (unit: I15, I25), the country (geo: EA,
DE, FR,...) or the COICOP code (coicop18: CP01, CP02, SERV, ...).

date.range character vector of start and end date used for filtering on time dimension. These
must follow the pattern YYYY(-MM)?. An open interval can be defined by setting
one date to NA.

flags logical indicating if data flags should be returned or not.

https://doi.org/10.2785/055028
https://doi.org/10.2785/055028

10 index.aggregation

... further arguments that can be passed to the functions:

• get_eurostat_toc for datasets()
• get_eurostat_dsd for datafilters()
• get_eurostat_data for data()

Value

A data.table.

Author(s)

Sebastian Weinand

Source

See Eurostat’s public database at https://ec.europa.eu/eurostat/web/main/data/database.

Examples

set cores for testing on CRAN:
library(restatapi)
options(restatapi_cores=1)

view available HICP data sets:
datasets()

get allowed filters for item weights:
datafilters(id="prc_hicp_iw")

download item weights since 2015 for euro area:
data(id="prc_hicp_iw", filters=list("geo"="EA"), date.range=c("2015", NA))

index.aggregation Index number functions and aggregation

Description

Lower-level price indices can be aggregated into higher-level indices in a single step using the
bilateral index formulas below or gradually following the COICOP tree structure with the function
aggregate.tree().

The functions aggregate() and disaggregate() can be used for the calculation of user-defined
aggregates (e.g., HICP special aggregates). For aggregate(), lower-level indices are aggregated
into the respective total. For disaggregate(), they are deducted from the total to receive a subag-
gregate.

https://ec.europa.eu/eurostat/web/main/data/database

index.aggregation 11

Usage

bilateral price index formulas:
jevons(x)
carli(x)
harmonic(x)
laspeyres(x, w0)
paasche(x, wt)
fisher(x, w0, wt)
toernqvist(x, w0, wt)
walsh(x, w0, wt)

aggregation into user-defined aggregates:
aggregate(x, w0, wt, id, formula=laspeyres, agg=list(), settings=list())

disaggregation into user-defined aggregates:
disaggregate(x, w0, id, agg=list(), settings=list())

gradual aggregation following the COICOP tree:
aggregate.tree(x, w0, wt, id, formula=laspeyres, settings=list())

Arguments

x numeric vector of price relatives between two periods, typically obtained from
unchain().

w0, wt numeric vector of weights in the base period w0 (e.g., for the Laspeyres index)
or current period wt (e.g., for the Paasche index).

id character vector of aggregate codes. For aggregate.tree(), only valid COICOP
(bundle) codes are processed.

formula function or named list of functions specifying the index formula(s) used for
aggregation. Each function must return a scalar and have the argument x. For
weighted index formulas, the arguments w0 and/or wt must be available as well.

agg list of user-defined aggregates to be calculated. For disaggregate(), the list
must have names specifying the aggregate from which indices are deducted.
Each list element is a vector of codes that can be found in id. See settings$exact
for further specification of this argument.

settings list of control settings to be used. The following settings are supported:

• chatty : logical indicating if package-specific warnings and info messages
should be printed or not. The default is getOption("hicp.chatty").

• coicop.version : character specifying the COICOP version to be used.
See coicop for the allowed values. The default is getOption("hicp.coicop.version").

• coicop.prefix : character specifying a prefix for the COICOP codes. The
default is getOption("hicp.coicop.prefix").

• all.items.code : character specifying the code internally used for the all-
items index. The default is taken from getOption("hicp.all.items.code").

• exact : logical indicating if the codes in agg must all be present in id for
aggregation or not. If FALSE, aggregation is carried out using the codes

12 index.aggregation

present in agg. If TRUE and some codes cannot be found in id, NA is re-
turned. The default is TRUE.

• names : character of names for the aggregates in agg. If not supplied, the
aggregates are numbered.

Details

The bilateral index formulas currently available are intended for the aggregation of (unchained)
price relatives x. The Dutot index is therefore not implemented.

Value

The functions jevons(), carli(), harmonic(), laspeyres(), paasche(), fisher(), toernqvist(),
and walsh() return a single aggregated value.

The functions aggregate(), disaggregate() and aggregate.tree() return a data.table with
the sum of weights w0 and wt (if supplied) and the computed aggregates for each index formula
specified by formula.

Author(s)

Sebastian Weinand

References

European Commission, Eurostat, Harmonised Index of Consumer Prices (HICP) - Methodological
Manual - 2024 edition, Publications Office of the European Union, 2024, doi:10.2785/055028.

See Also

unchain, tree, spec.agg

Examples

library(data.table)

EXAMPLE 1

example data with unchained prices and weights:
dt <- data.table("coicop"=c("CP0111","CP0112","CP012","CP021","CP022"),

"price"=c(102,105,99,109,115)/100,
"weight"=c(0.2,0.15,0.4,0.2,0.05))

aggregate directly into overall index:
dt[, laspeyres(x=price, w0=weight)]

same result at top level with gradual aggregation:
(dtagg <- dt[, aggregate.tree(x=price, w0=weight, id=coicop)])

compute user-defined aggregates by disaggregation:
dtagg[, disaggregate(x=laspeyres, w0=w0, id=id,

agg=list("TOTAL"=c("CP01"), "TOTAL"=c("CP022")),

https://doi.org/10.2785/055028

index.aggregation 13

settings=list(names=c("A","B")))]

which can be similarly derived by aggregation:
dtagg[, aggregate(x=laspeyres, w0=w0, id=id,

agg=list(c("CP021","CP022"), c("CP011","CP012","CP021")),
settings=list(names=c("A","B")))]

same aggregates by several index formulas:
dtagg[, aggregate(x=laspeyres, w0=w0, id=id,

agg=list(c("CP021","CP022"), c("CP011","CP012","CP021")),
formula=list("lasp"=laspeyres, "jev"=jevons, "mean"=mean),
settings=list(names=c("A","B")))]

no aggregation if one index is missing:
dtagg[, aggregate(x=laspeyres, w0=w0, id=id,

agg=list(c("CP01","CP02","CP03")),
settings=list(exact=TRUE))]

or just use the available ones:
dtagg[, aggregate(x=laspeyres, w0=w0, id=id,

agg=list(c("CP01","CP02","CP03")),
settings=list(exact=FALSE))]

EXAMPLE 2: Index aggregation using published HICP data

library(restatapi)
options(restatapi_cores=1) # set cores for testing on CRAN
options(hicp.chatty=FALSE) # suppress package messages and warnings

import monthly price indices for euro area since 2014:
dtp <- hicp::data(id="prc_hicp_minr",

date.range=c("2014-12", NA),
filters=list(unit="I25", geo="EA"))

dtp[, "time":=as.Date(paste0(time, "-01"))]
dtp[, "year":=as.integer(format(time, "%Y"))]
setnames(x=dtp, old="values", new="index")

unchain all indices for aggregation:
dtp[, "dec_ratio" := unchain(x=index, t=time), by="coicop18"]

import euro area item weights since 2014:
dtw <- hicp::data(id="prc_hicp_iw",

date.range=c("2014",NA),
filters=list(geo="EA"))

dtw[, "time":=as.integer(time)]
setnames(x=dtw, old=c("time","values"), new=c("year","weight"))

merge price indices and item weights:
dtall <- merge(x=dtp, y=dtw, by=c("geo","coicop18","year"), all.x=TRUE)
dtall <- dtall[year <= year(Sys.Date())-1,]

derive COICOP tree at lowest possible level:
dtall[weight>0 & !is.na(dec_ratio),

14 linking

"tree":=tree(id=coicop18, w=weight, flag=TRUE, settings=list(w.tol=0.1)),
by="time"]

except for rounding, we receive total weight of 1000 in each period:
dtall[tree==TRUE, sum(weight), by="time"]

(1) compute all-items HICP in one step using only lowest-level indices:
hicp.own <- dtall[tree==TRUE,

list("laspey"=laspeyres(x=dec_ratio, w0=weight)),
by="time"]

setorderv(x=hicp.own, cols="time")
hicp.own[, "chain_laspey" := chain(x=laspey, t=time, by=12)]
hicp.own[, "chain_laspey_25" := rebase(x=chain_laspey, t=time, t.ref="2025")]

(2) compute all-items HICP gradually through all higher-levels:
hicp.own.all <- dtall[weight>0 & !is.na(dec_ratio),

aggregate.tree(x=dec_ratio, w0=weight, id=coicop18),
by="time"]

setorderv(x=hicp.own.all, cols="time")
hicp.own.all[, "chain_laspey" := chain(x=laspeyres, t=time, by=12), by="id"]
hicp.own.all[, "chain_laspey_25" := rebase(x=chain_laspey, t=time, t.ref="2025"), by="id"]

(3) compare all-items HICP from direct and gradual aggregation:
all(abs(hicp.own.all[id=="TOTAL", chain_laspey_25]-hicp.own$chain_laspey_25)<0.1)
no differences -> consistent in aggregation

linking Linking-in new index series

Description

The function link() links a new index series (x.new) to an existing one (x) using the overlap
periods in t.overlap. In the resulting linked index series, the new index series starts after the
existing one.

The function lsf() computes the level-shift factors for linking via the overlap periods in t.overlap
in comparison to the standard one-month overlap method using December of year t-1. The level-
shift factors can then be used to shift the index level of a HICP index series.

Usage

link(x, x.new, t, t.overlap=NULL, settings=list())

lsf(x, x.new, t, t.overlap=NULL, settings=list())

Arguments

x, x.new numeric vector of index values. NA-values in the vectors indicate when the index
series discontinues (for x) or starts (for x.new).

linking 15

t date vector of monthly (i.e., one observation per month), quarterly or yearly
frequency in format YYYY-MM-DD.

t.overlap character specifying the overlap period either in format YYYY for a calendar year
or YYYY-MM for a specific month or quarter. Multiple periods can be provided. If
NULL, all intersecting periods in x and x.new are used.

settings list of control settings to be used. The following settings are supported:

• chatty : logical indicating if package-specific warnings and info messages
should be printed or not. The default is getOption("hicp.chatty").

• freq : character specifying the frequency of t. Allowed values are month,
quarter, year, and auto (the default). For auto, the frequency is internally
derived from t.

• na.rm : logical indicating if averages for calendar years should also be
computed when there are NAs and less than 12 months (or 4 quarters) present
(for na.rm=TRUE).

Value

The function link() returns a numeric vector or a matrix of the same length as t, while lsf()
provides a named numeric vector of the same length as t.overlap.

Author(s)

Sebastian Weinand

See Also

chain

Examples

input data:
set.seed(1)
t <- seq.Date(from=as.Date("2015-01-01"), to=as.Date("2024-05-01"), by="1 month")
x.new <- rnorm(n=length(t), mean=100, sd=5)
x.new <- rebase(x=x.new, t=t, t.ref="2019-12")
x.old <- x.new + rnorm(n=length(x.new), sd=5)
x.old <- rebase(x=x.old, t=t, t.ref="2015")
x.old[t>as.Date("2021-12-01")] <- NA # current index discontinues in 2021
x.new[t<as.Date("2020-01-01")] <- NA # new index starts in 2019-12

linking in new index in different periods:
matplot(x=t,

y=link(x=x.old, x.new=x.new, t=t, t.overlap=c("2021-12","2020","2021")),
col=c("red","blue","green"), type="l", lty=1,
xlab=NA, ylab="Index", ylim=c(80,120))

lines(x=t, y=x.old, col="black")
abline(v=as.Date("2021-12-01"), lty="dashed")
legend(x="topleft",

legend=c("One-month overlap using December 2021",
"Annual overlap using 2021",

16 rates

"Annual overlap using 2020"),
fill=c("red","green","blue"), bty = "n")

compute level-shift factors:
lsf(x=x.old, x.new=x.new, t=t, t.overlap=c("2020","2021"))

level-shift factors can be applied to already chain-linked index series
to obtain linked series using another overlap period:
x.new.chained <- link(x=x.old, x.new=x.new, t=t, t.overlap="2021-12")

level-shift adjustment:
x.new.adj <- ifelse(test=t>as.Date("2021-12-01"),

yes=x.new.chained*lsf(x=x.old, x.new=x.new, t=t, t.overlap="2020"),
no=x.new.chained)

compare:
all.equal(x.new.adj, link(x=x.old, x.new=x.new, t=t, t.overlap="2020"))

rates Change rates and contributions

Description

The function rates() derives monthly, quarterly and annual rates of change from an index series.

The function contrib() computes the contributions of a subcomponent (e.g., food, energy) to the
change rate of the overall index (for chained indices with price reference period December of the
previous year).

Usage

rates(x, t, type="year", settings=list())

contrib(x, w, t, x.all, w.all, type="year", settings=list())

Arguments

x, x.all numeric vector of index values of the subcomponent (x) and the overall index
(x.all).

w, w.all numeric vector of weights of the subcomponent (w) and the overall index (w.all).

t date vector of monthly (i.e., one observation per month), quarterly or yearly
frequency in format YYYY-MM-DD.

type character specifying the type of change rate. Allowed values are month for
monthly change rates, quarter for quarterly change rates, and year for annual
change rates. See also details.

settings list of control settings to be used. The following settings are supported:

• chatty : logical indicating if package-specific warnings and info messages
should be printed or not. The default is getOption("hicp.chatty").

rates 17

• freq : character specifying the frequency of t. Allowed values are month,
quarter, year, and auto (the default). For auto, the frequency is internally
derived from t.

• method : character specifying the method for decomposing the change
rates. Allowed values are ribe (the default) and kirchner.

Details

For monthly frequency, the change rates show the percentage change of x in the current month com-
pared to the previous month (monthly change rates, m-1), compared to three months ago (quarterly
change rates, m-3), or compared to the same month one year before (annual change rates, m-12).

For quarterly frequency, the change rates show the percentage change of x in the current quarter
compared to the previous quarter (quarterly change rates, q-1) or compared to the same quarter one
year before (annual change rates, q-4).

For yearly frequency, the change rates show the percentage change of x in the current year compared
to the previous year (annual change rates, y-1). If x is an annual index produced by convert(), the
annual change rates correspond to annual average change rates.

Value

A numeric vector of the same length as x.

Author(s)

Sebastian Weinand

References

European Commission, Eurostat, Harmonised Index of Consumer Prices (HICP) - Methodological
Manual - 2024 edition, Publications Office of the European Union, 2024, doi:10.2785/055028.

Examples

EXAMPLE 1

sample monthly price index:
t <- seq.Date(from=as.Date("2022-12-01"), to=as.Date("2025-12-01"), by="1 month")
p <- rnorm(n=length(t), mean=100, sd=5)

compute change rates:
rates(x=p, t=t, type="month") # one month to the previous month
rates(x=p, t=t, type="year") # month to the same month of previous year

compute annual average rate of change:
pa <- convert(x=p, t=t, type="y") # now annual frequency
rates(x=pa, t=as.Date(names(pa)), type="year")

compute 12-month average rate of change:
pmvg <- convert(x=p, t=t, type="12mavg") # still monthly frequency
rates(x=pmvg, t=t, type="year")

https://doi.org/10.2785/055028

18 tree

EXAMPLE 2: Ribe contributions using published HICP data

library(data.table)
library(restatapi)
options(restatapi_cores=1) # set cores for testing on CRAN
options(hicp.chatty=FALSE) # suppress package messages and warnings

import monthly price indices:
dtp <- hicp::data(id="prc_hicp_minr", filters=list(unit="I25", geo="EA"))
dtp[, "time":=as.Date(paste0(time, "-01"))]
dtp[, "year":=as.integer(format(time, "%Y"))]
setnames(x=dtp, old="values", new="index")

import item weights:
dtw <- hicp::data(id="prc_hicp_iw", filters=list(geo="EA"))
dtw[, "time":=as.integer(time)]
setnames(x=dtw, old=c("time","values"), new=c("year","weight"))

merge price indices and item weights:
dtall <- merge(x=dtp, y=dtw, by=c("geo","coicop18","year"), all.x=TRUE)

add all-items hicp:
dtall <- merge(x=dtall,

y=dtall[coicop18=="TOTAL", list(geo,time,index,weight)],
by=c("geo","time"), all.x=TRUE, suffixes=c("","_all"))

Ribe contributions by COICOP:
dtall[, "ribe" := contrib(x=index, w=weight, t=time,

x.all=index_all, w.all=weight_all,
type="year", settings=list(method="ribe")), by="coicop18"]

plot annual change rates over time:
plot(rates(x=index, t=time, type="year")~time,

data=dtall[coicop18=="TOTAL",],
type="l", ylim=c(-2,12))

add contribution of energy to plot:
lines(ribe~time, data=dtall[coicop18=="NRG"], col="red")

tree COICOP tree

Description

Following the tree structure of COICOP, the function tree() derives from a given set of COICOP
codes those at the lowest possible level. This can be particularly useful for aggregating from the
lowest to the highest level in a single step.

tree 19

Usage

tree(id, by=NULL, w=NULL, flag=FALSE, settings=list())

Arguments

id character vector of COICOP codes.
by vector specifying the variable to be used for merging the derived COICOP codes,

e.g., a vector of dates to obtain the same composition of COICOP codes over
time. If by=NULL, no merging is performed.

w numeric weight of id. If supplied, it is checked that the weights of children add
up to the weight of their parent (allowing for tolerance settings$w.tol). If
w=NULL, no checking of weight aggregation is performed.

flag logical specifying the function output. For FALSE, a list with the COICOP codes
at each level. For TRUE, a logical vector of the same length as id indicating
which COICOP codes in id define the lowest level.

settings list of control settings to be used. The following settings are supported:
• chatty : logical indicating if package-specific warnings and info messages

should be printed or not. The default is getOption("hicp.chatty").
• coicop.version : character specifying the COICOP version to be used.

See coicop for the allowed values. The default is getOption("hicp.coicop.version").
• coicop.prefix : character specifying a prefix for the COICOP codes. The

default is getOption("hicp.coicop.prefix").
• all.items.code : character specifying the code internally used for the all-

items index. The default is taken from getOption("hicp.all.items.code").
• max.lvl : integer specifying the maximum (or deepest) COICOP level al-

lowed. If NULL (the default), the maximum level found in id is used.
• w.tol : numeric tolerance for checking of weights. Only relevant if w is not
NULL. The default is 1/100.

Details

The derivation of COICOP codes at the lowest level follows a top-down-approach. Starting from
the top level of the COICOP tree (usually the all-items code), it is checked if

1. the code has children in id,
2. the children’s weights correctly add up to the weight of the parent (if w provided),
3. all children can be found in all the groups in by (if by provided).

Only if all three conditions are met, the children are stored and further processed following the
same three steps. Otherwise, the parent is kept and the processing stops in the respective node. This
process is followed until the lowest level of all codes is reached.
If by is provided, the function tree() first subsets all codes in id to the intersecting levels. This
ensures that the derivation of the COICOP codes does not directly stops if, for example, the all-items
code is missing in one of the groups in by. For example, assume the codes(00,01,02,011,012,021)
for by=1 and (01,011,012,021) for by=2. In this case, the code 00 would be dropped internally
first because its level is not available for by=2. The other codes would be processed since their lev-
els intersect across by. However, since (01,02) do not fulfill the third check, the derivation would
stop and no merged tree would be available though codes (011,012,021) seem to be a solution.

20 tree

Value

Either a list (for flag=FALSE) or a logical vector of the same length as id (for flag=TRUE).

Author(s)

Sebastian Weinand

See Also

child, coicop, parent

Examples

example codes:
ids <- c("CP01","CP011","CP012","CP0111","CP0112")

derive lowest level of COICOP tree from top to bottom:
tree(ids) # (CP0111,CP0112,CP012) at lowest level

or just flag lowest level:
tree(ids, flag=TRUE)

still same codes because weights add up:
tree(id=ids, w=c(0.2,0.08,0.12,0.05,0.03))

now (CP011,CP012) because weights do not correctly add up at lower levels:
tree(id=ids, w=c(0.2,0.08,0.12,0.05,0.01))

again (CP011,CP012) because maximum COICOP level limited to 3 digits:
tree(id=c(ids,"01121"),

w=c(0.2,0.08,0.12,0.02,0.06,0.06),
settings=list(max.lvl=3))

merge (or fix) COICOP tree over groups:
tree(id=c("TOTAL","CP01","CP02","CP011","CP012",

"TOTAL","CP01","CP02","CP011"),
by=c(1,1,1,1,1, 2,2,2,2),
w=c(1,0.3,0.7,0.12,0.18, 1,0.32,0.68,0.15))

for by=1, the lowest level would be (CP011,CP012,CP02).
however, CP012 is missing for by=2. therefore, the merged
COICOP tree consists of (CP01,CP02) at the lowest level.

Index

aggregate, 3
aggregate (index.aggregation), 10

carli (index.aggregation), 10
chain, 15
chain (chaining), 2
chaining, 2
child, 6, 20
child (coicop.relatives), 6
coicop, 4, 7, 11, 19, 20
coicop.relatives, 6
contrib (rates), 16
convert (chaining), 2
countries, 8

data (hicp.data), 9
datafilters (hicp.data), 9
datasets (hicp.data), 9
disaggregate (index.aggregation), 10

fisher (index.aggregation), 10

get_eurostat_data, 10
get_eurostat_dsd, 10
get_eurostat_toc, 10
grepl, 9

harmonic (index.aggregation), 10
hicp.data, 9

index.aggregation, 10
is.bundle (coicop), 4
is.coicop (coicop), 4
is.ea (countries), 8
is.eea (countries), 8
is.eu (countries), 8
is.spec.agg (coicop), 4

jevons (index.aggregation), 10

label (coicop), 4

laspeyres (index.aggregation), 10
level (coicop), 4
link (linking), 14
linking, 14
lsf (linking), 14

paasche (index.aggregation), 10
parent, 6, 20
parent (coicop.relatives), 6

rates, 16
rebase (chaining), 2

spec.agg, 12
spec.agg (coicop), 4

toernqvist (index.aggregation), 10
tree, 6, 7, 12, 18

unchain, 12
unchain (chaining), 2

walsh (index.aggregation), 10

21

	chaining
	coicop
	coicop.relatives
	countries
	hicp.data
	index.aggregation
	linking
	rates
	tree
	Index

