Package ‘kerntools’

January 28, 2026
Type Package

Title Kernel Functions and Tools for Machine Learning Applications
Version 1.2.1

Description Kernel functions for diverse types of data (including, but not
restricted to: nonnegative and real vectors, real matrices, categorical
and ordinal variables, sets, strings), plus other utilities like kernel
similarity, kernel Principal Components Analysis (PCA) and features'
importance for Support Vector Machines (SVMs), which expand other 'R
packages like 'kernlab'.

License GPL (>=3)
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2

'

Suggests knitr, rmarkdown, spelling, testthat (>= 3.0.0)
Config/testthat/edition 3

Imports dplyr, ggplot2, kernlab, methods, reshape2, stats, stringi
VignetteBuilder knitr

Depends R (>=2.10)

Language en-US

URL https://github.com/elies-ramon/kerntools,
https://elies-ramon.github.io/kerntools/

BugReports https://github.com/elies-ramon/kerntools/issues
NeedsCompilation no

Author Elies Ramon [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-7953-8115>)

Maintainer Elies Ramon <eramon@everlyrusher.com>
Repository CRAN
Date/Publication 2026-01-28 18:30:02 UTC

https://github.com/elies-ramon/kerntools
https://elies-ramon.github.io/kerntools/
https://github.com/elies-ramon/kerntools/issues
https://orcid.org/0000-0002-7953-8115

2 Contents

Contents
ACC . o e e e 3
Acc rnd . .. e e e 3
A@EIegate_IMP o o e i e e e e e e e e e e e 4
Boots_ CI e 5
BrayCurtis e e e 6
centerK L e e e e e 7
CeNLETX e e e e e e e e e e e e e e 7
Chi2 . . . e 8
clinear e 9
COSNOIML e e e e 10
COSNOIMX . & & v v v v v e 11
desparsify e e e e e 11
Dirac e e e e e 12
dummy_data e e 13
dummy_var e e e 14
estimate_gamma i e e e e e e e e e e 14
S 15
Frobenius 16
frobNorm e e e e 16
heatK e e e e 17
histK . . . e e e e e e 18
Jaccard L e e 19
Kendall e 21
KPCA . . e 22
KPCA_arrows o o o e e 24
KPCA_IMD o 25
KTA . e e e e e e 26
Laplace e e 26
Linear e 27
MINMAX . . .t v v v e e e e e e e e e e e e e e e e e e 28
MKC . . e 28
10100] 29
Normal _CI e 30
plothmp e e e 31
Prec . . . e e e 32
Procrustes e e e e e e 33
RBF . . . e 34
Rec . . . e 35
showdata 36
sSimK . . e 36
SOIl . . . e 37
SPE . e e 38
SPectrum L e e e e e e e 38
SVIN_IMP .« o v ot e e e e e e e e e e 40
TSS . e 41

VONNGUMANN o ot e e e e e e e e e e e 42

Acc 3

Index 43

Acc Accuracy

Description

‘Acc()‘ computes the accuracy between the output of a classification model and the actual values of
the target. It can also compute the weighted accuracy, which is useful in imbalanced classification
problems. The weighting is applied according to the class frequencies in the target. In balanced
problems, weighted Acc = Acc.

Usage

Acc(ct, weighted = FALSE)

Arguments

ct Confusion Matrix.

weighted If TRUE, the weighted accuracy is returned. (Defaults: FALSE).
Value

Accuracy of the model (a single value).

Examples

y <= c(rep("a",3),rep("b",2))
y_pred <- c(rep("a",2),rep("b",3))
ct <- table(y,y_pred)

Acc(ct)

Acc(ct,weighted=TRUE)

Acc_rnd Accuracy of a random model

Description

‘Acc_rnd()‘ computes the expected accuracy of a random classifier based on the class frequencies
of the target. This measure can be used as a benchmark when contrasted to the accuracy (in test) of
a given prediction model.

Usage

Acc_rnd(target, freq = FALSE)

4 aggregate_imp

Arguments
target A character vector or a factor. Alternatively, a numeric vector (see below).
freq TRUE if ‘target‘ contains the frequencies of the classes (in this case, ‘target’
should be numeric), FALSE otherwise. (Defaults: FALSE).
Value

Expected accuracy of a random classification model (a single value).

Examples

Expected accuracy of a random model:
target <- c(rep(”a”,5),rep("b",2))
Acc_rnd(target)

This is the same than:

freqs <- ¢(5/7,2/7)

Acc_rnd(fregs, freq=TRUE)

aggregate_imp Aggregate importances

Description
‘aggregate_imp() sums the importances present in a matrix or data.frame according to some user-
specified grouping criterion.

Usage

aggregate_imp(X, lev = NULL, samples = "rows")

Arguments
X Matrix or data.frame containing the importances (in rows or in columns).
lev (optional) The grouping elements. ‘lev‘ should be as long as the dimension (cols
or rows) that one wants to aggregate. If this parameter is absent, the colnames
(if samples="rows") or rownames will be used to that effect. In that case, it is
expected that the col/rownames follow this pattern: "V_Y", and the variables
with the same "V" will be summed. (Check the colnames of a typical output of
‘dummy_data()‘ for more info).
samples Samples are in rows or in columns? (Defaults: "rows").
Value

X, a matrix or data.frame containing the aggregated importances.

Boots_CI 5

Examples

importances <- matrix(rnorm(90),nrow=3,ncol=30)

rownames(importances) <- c("samplel”,"sample2"”,"”sample3”)
colnames(importances) <- paste@("Feat”,

rep(1:5,times=2x(1:5)), "_", unlist(lapply(2*(1:5),function(x)LETTERS[1:x]1)))
The grouping criterion is:

groups <- paste@("Feat”,1:5)

aggregate_imp(X=importances, samples="rows", lev=groups)

We can also use the colnames:

colnames(importances)

aggregate_imp(X=importances, samples="rows")

Boots_CI Confidence Interval using Bootstrap

Description

‘Boots_CI()‘ computes the Confidence Interval (CI) of a performance measure (for instance, accu-
racy) via bootstrapping.

Usage
Boots_CI(target, pred, index = "acc"”, nboots, confidence = 95, ...)
Arguments
target Numeric vector containing the actual values.
pred Numeric vector containing the predicted values. (The order should be the same
than the target’s).
index Performance measure name, in lowercase. (Defaults: "acc").
nboots Number of bootstrapping replicas.
confidence Confidence level; for instance, 95% or 99%. (Defaults: 95).
Further arguments to be passed to the performance measures functions; notably,
multi.class="macro" or multi.class="micro" for the macro or micro performance
measures. (Defaults: "macro").
Value

A vector containing the bootstrap estimate of the performance and its CI.

Examples

y <- c(rep("a",30),rep("b",20))

y_pred <- c(rep("a",20),rep("b",30))

Computing Accuracy with their 95%CI

Boots_CI(target=y, pred=y_pred, index="acc", nboots=1000, confidence=95)

6 BrayClurtis

BrayCurtis Kernels for count data

Description

Ruzicka and Bray-Curtis are kernel functions for absolute or relative frequencies and count data.
Both kernels have as input a matrix or data.frame with dimension NxD and N>1, D>1, containing
strictly non-negative real numbers. Samples should be in the rows. Thus, when working with
relative frequencies, ‘rowSums(X)* should be 1 (or 100, or another arbitrary number) for all rows
(samples) of the dataset.

Usage
BrayCurtis(X)

Ruzicka(X)

Arguments

X Matrix or data.frame that contains absolute or relative frequencies.

Details

For more info about these measures, please check Details in ?vegan::vegdist(). Note that, in
the vegan help page, "Ruzicka" corresponds to "quantitative Jaccard". ‘BrayCurtis(X)‘ gives the
same result than ‘1-vegan::vegdist(X,method="bray")‘, and the same with ‘Ruzicka(data)‘ and ‘1-
vegan::vegdist(data,method="jaccard")".

Value

Kernel matrix (dimension: NxN).

Examples

data <- soil$abund

Kruz <- Ruzicka(data)
Kbray <- BrayCurtis(data)
Kruz[1:5,1:5]
Kbray[1:5,1:5]

centerK 7

centerK Centering a kernel matrix

Description
It is equivalent to compute ‘K‘ over centered data (i.e. the mean of each column is subtracted) in
Feature Space.

Usage

centerK(K)

Arguments

K Kernel matrix (class "matrix").

Value

Centered ‘K* (class "matrix").

Examples

dat <- matrix(rnorm(250),ncol=50,nrow=5)
K <- Linear(dat)
centerkK(K)

centerX Centering a squared matrix by row or column

Description

It centers a numeric matrix with dimension N x N by row (rows=TRUE) or column (rows=FALSE).

Usage

centerX(X, rows = TRUE)

Arguments
X Numeric matrix or data.frame of any size.
rows If TRUE, the operation is done by row; otherwise, it is done by column. (De-
faults: TRUE).
Value

Centered X (class "matrix").

8 Chi2

Examples

dat <- matrix(rnorm(25),ncol=5,nrow=5)
centerX(dat)

Chi2 Chi-squared kernel

Description

‘Chi2()* computes the basic x? kernel for bag-of-words (BoW) or bag-of-visual-words data. This
kernel computes the similarity between two nonnegative vectors that represent the occurrence counts
of words in two different documents.

Usage

Chi2(X, g = NULL)

Arguments
X Matrix or data.frame (dimension NxD) that contains nonnegative numbers. Each
row represents the counts of words of N documents, while each column is a
word.
g Gamma hyperparameter. If g=0 or NULL, ‘Chi2()‘ returns the LeCam distances
between the documents instead of the y? kernel matrix. (Defaults=NULL).
Value

Kernel matrix (dimension: NxN).

References

Zhang, Jianguo, et al. Local features and kernels for classification of texture and object categories:
A comprehensive study. International journal of computer vision 73 (2007): 213-238. Link

Examples

Example dataset: word counts in 4 documents

documents <- matrix(c(o, 1, 3, 2, 1, o, 1, 1, 6,4,3,1,3,5,6,2), nrow=4,byrow=TRUE)
rownames (documents) <- paste@("doc"”,1:4)

colnames(documents) <- c("animal”,"”life"”,"tree”,"ecosystem”)

documents

Chi2(documents, g=NULL)

https://inria.hal.science/inria-00548574/document

cLinear 9

cLinear Compositional kernels

Description

‘cLinear()‘ is the compositional-linear kernel, which is useful for compositional data (relative fre-
quencies or proportions). ‘Aitchison()‘ is akin to the RBF kernel for this type of data. Thus, the
expected input for both kernels is a matrix or data.frame containing strictly non-negative or (even
better) positive numbers. This input has dimension NxD, with N>1 samples and D>1 compositional
features.

Usage

cLinear(X, cos.norm = FALSE, feat_space = FALSE, zeros = "none")

Aitchison(X, g = NULL, zeros = "none")

Arguments
X Matrix or data.frame that contains the compositional data.
cos.norm Should the resulting kernel matrix be cosine normalized? (Defaults: FALSE).
feat_space If FALSE, only the kernel matrix is returned. Otherwise, the feature space is
also returned. (Defaults: FALSE).
zeros "none" to warrant that there are no zeroes in X, "pseudo” to replace zeroes by a
pseudocount. (Defaults="none").
g Gamma hyperparameter. If g=0 or NULL, the matrix of squared Aitchison dis-
tances is returned instead of the Aitchison kernel matrix. (Defaults=NULL).
Details

In compositional data, samples (rows) sum to an arbitrary or irrelevant number. This is most clear
when working with relative frequencies, as all samples add to 1 (or 100, or other uninformative
value). Zeroes are a typical challenge when using compositional approaches. They introduce ambi-
guity because they can have multiple causes; a zero may signal a true absence, or a value so small
that it is below the detection threshold of an instrument. A simple approach to deal with zeroes is
replacing them by a pseudocount. More sophisticated approaches are reviewed elsewhere; see for
instance the R package ‘zCompositions*.

Value

Kernel matrix (dimension: NxN).

References

Ramon, E., Belanche-Mufioz, L. et al (2021). kernInt: A kernel framework for integrating super-
vised and unsupervised analyses in spatio-temporal metagenomic datasets. Frontiers in microbiol-
ogy 12 (2021): 609048. doi: 10.3389/fmicb.2021.609048

10 cosNorm

Examples

data <- soil$abund

This data is sparse and contains a lot of zeroes. We can replace them by pseudocounts:
Kclin <- clLinear(data,zeros="pseudo")
Kclin[1:5,1:5]

With the feature space:
Kclin <- clLinear(data,zeros="pseudo"”,feat_space=TRUE)

With cosine normalization:
Kcos <- clinear(data,zeros="pseudo"”,cos.norm=TRUE)
Kcos[1:5,1:5]

Aitchison kernel:
Kait <- Aitchison(data,g=0.0001,zeros="pseudo")
Kait[1:5,1:5]

cosNorm Cosine normalization of a kernel matrix

Description

It is equivalent to compute K using the normalization ‘X/sqrt(sum(X”2))‘ in Feature Space.

Usage

cosNorm(K)

Arguments

K Kernel matrix (class "matrix").

Value

Cosine-normalized K (class "matrix").

References

Ah-Pine, J. (2010). Normalized kernels as similarity indices. In Advances in Knowledge Discovery
and Data Mining: 14th Pacific-Asia Conference, PAKDD 2010, Hyderabad, India, June 21-24,
2010. Proceedings. Part IT 14 (pp. 362-373). Springer Berlin Heidelberg. Link

Examples

dat <- matrix(rnorm(250),ncol=50,nrow=5)
K <- Linear(dat)
cosNorm(K)

https://hal.science/hal-01504523/document

cosnormX 11

cosnormX Cosine normalization of a matrix

Description
Normalizes a numeric matrix dividing each row (if rows=TRUE) or column (if rows=FALSE) by
their L2 norm. Thus, each row (or column) has unit norm.

Usage

cosnormX(X, rows = TRUE)

Arguments
X Numeric matrix or data.frame of any size.
rows If TRUE, the operation is done by row; otherwise, it is done by column. (De-
faults: TRUE).
Value

Cosine-normalized X.

Examples

dat <- matrix(rnorm(50),ncol=5,nrow=10)

cosnormX(dat)
desparsify This function deletes those columns and/or rows in a ma-
trix/data.frame that only contain 0s.
Description

This function deletes those columns and/or rows in a matrix/data.frame that only contain Os.

Usage

desparsify(X, dim = 2)

Arguments
X Numeric matrix or data.frame of any size.
dim A numeric vector. 1 indicates that the function should be applied to rows, 2 to

columns, c¢(1, 2) indicates rows and columns. (Defaults: 2).

12

Value

Dirac

X with less rows or columns. (Class: the same than X).

Examples

dat <- matrix(rnorm(150),ncol=50,nrow=30)
dat[c(2,6,12),] <- @

dat[,c(30,40,50)] <- 0@
dim(desparsify(dat))
dim(desparsify(dat,dim=c(1,2)))

Dirac

Kernels for categorical variables

Description

From a matrix or data.frame with dimension NxD, where N>1, D>0, ‘Dirac()‘ computes the simplest
kernel for categorical data. Samples should be in the rows and features in the columns. When there
is a single feature, ‘Dirac()‘ returns 1 if the category (or class, or level) is the same in two given
samples, and 0 otherwise. Instead, when D>1, the results for the D features are combined doing a
sum, a mean, or a weighted mean.

Usage

Dirac(X, comp = "mean"”, coeff = NULL, feat_space = FALSE)

Arguments

X

comp

coeff

feat_space

Value

Matrix (class "character") or data.frame (class "character", or columns = "fac-
tor"). The elements in X are assumed to be categorical in nature.

When D>1, this argument indicates how the variables of the dataset are com-

non

bined. Options are: "mean", "sum" and "weighted". (Defaults: "mean")
* "sum" gives the same importance to all variables, and returns an unnormal-
ized kernel matrix.

* "mean" gives the same importance to all variables, and returns a normalized
kernel matrix (all its elements range between 0 and 1).

» "weighted" weights each variable according to the ‘coeff parameter, and
returns a normalized kernel matrix.

(optional) A vector of weights with length D.

If FALSE, only the kernel matrix is returned. Otherwise, the feature space is
also returned. (Defaults: FALSE).

Kernel matrix (dimension: NxN), or a list with the kernel matrix and the feature space.

dummy_data 13

References

Belanche, L. A., and Villegas, M. A. (2013). Kernel functions for categorical variables with ap-
plication to problems in the life sciences. Artificial Intelligence Research and Development (pp.
171-180). IOS Press. Link

Examples

Categorical data

summary (C02)

Kdirac <- Dirac(C02[,1:3])

Display a subset of the kernel matrix:
Kdirac[c(1,15,50,65),c(1,15,50,65)]

dummy_data Convert categorical data to dummies.

Description

Given a matrix or data.frame containing character/factors, this function performs one-hot-encoding.

Usage

dummy_data(X, lev = NULL)

Arguments
X A matrix, or a data.frame containing factors. (If the columns are of any other
class, they will be coerced into factors anyway).
lev (optional) A vector with the categories ("levels") of each factor.
Value

X (class: "matrix") after performing one-hot-encoding.

Examples

summary (C02)
C02_dummy <- dummy_data(CO2[,1:3],lev=dummy_var(C02[,1:31))
C02_dummy[1:10,1:5]

https://upcommons.upc.edu/bitstream/handle/2117/23347/KernelCATEG_CCIA2013.pdf

14 estimate_gamma

dummy_var Levels per factor variable

Description

This function gives the categories ("levels") per categorical variable ("factor").

Usage

dummy_var (X)

Arguments
X A matrix, or a data.frame containing factors. (If the columns are of any other
class, they will be coerced into factors anyway).
Value

A list with the levels.

Examples

summary (showdata)
dummy_var (showdata)

estimate_gamma Gamma hyperparameter estimation (RBF kernel)

Description

This function returns an estimation of the optimum value for the gamma hyperparameter (required
by the RBF kernel function) using different heuristics:

D criterion It returns the inverse of the number of features in X.

Scale criterion It returns the inverse of the number of features, normalized by the total variance of
X.

Quantiles criterion A range of values, computed with the function ‘kernlab::sigest()*.

Usage

estimate_gamma(X)

Arguments

X Matrix or data.frame that contains real numbers ("integer", "float" or "double").

F1 15

Value

A list with the gamma value estimation according to different criteria.

Examples

data <- matrix(rnorm(150),ncol=50,nrow=30)
gamma <- estimate_gamma(data)

gamma
K <- RBF(data, g = gamma$scale_criterion)
K[1:5,1:5]
F1 F1 score
Description

‘F1()* computes the F1 score between the output of a classification prediction model and the actual
values of the target.

Usage
F1(ct, multi.class = "macro")
Arguments
ct Confusion Matrix.
multi.class Should the results of each class be aggregated, and how? Options: "none",
"macro”, "micro". (Defaults: "macro").
Details

F1 corresponds to the harmonic mean of Precision and Recall.

Value

F1 (a single value).

Examples

y <- c(rep("a",3),rep("b",2))
y_pred <- c(rep("a"”,2),rep("b",3))
ct <- table(y,y_pred)

F1(ct)

16 frobNorm

Frobenius Frobenius kernel

Description

‘Frobenius()‘ computes the Frobenius kernel between numeric matrices.

Usage

Frobenius(DATA, cos.norm = FALSE, feat_space = FALSE)

Arguments
DATA A list of M matrices or data.frames containing only real numbers (class "inte-
ger", "float" or "double"). All matrices or data.frames should have the same
number of rows and columns.
cos.norm Should the resulting kernel matrix be cosine normalized? (Defaults: FALSE).
feat_space If FALSE, only the kernel matrix is returned. Otherwise, the feature space is
also returned. (Defaults: FALSE).
Details

The Frobenius kernel is the same than the Frobenius inner product between matrices.

Value

Kernel matrix (dimension:NxN), or a list with the kernel matrix and the feature space.

Examples

datal <- matrix(rnorm(250000),ncol=500,nrow=500)
data2 <- matrix(rnorm(250000),ncol=500,nrow=500)
data3 <- matrix(rnorm(250000),ncol=500,nrow=500)

Frobenius(list(datal,data2,data3))

frobNorm Frobenius normalization

Description

This function computes the Frobenius normalization of a matrix.

Usage
frobNorm(X)

heatK 17
Arguments
X Numeric matrix of any size. It may be a kernel matrix.
Value
Frobenius-normalized X (class: "matrix").
Examples
dat <- matrix(rnorm(50),ncol=5,nrow=10)
frobNorm(dat)
heatK Kernel matrix heatmap
Description
‘heatK()‘ plots the heatmap of a kernel matrix.
Usage
heatK(
K,
cos.norm = FALSE,
title = NULL,
color = c("red”, "yellow"),
name_leg = NULL,
raster = FALSE
)
Arguments
K Kernel matrix (class "matrix").
cos.norm If TRUE, the cosine normalization is applied to the kernel matrix so its elements
have a maximum value of 1. (Defaults: FALSE).
title Heatmap title (optional).
color A vector of length 2 containing two colors. The first color will be used to repre-
sent the minimum value and the second the maximum value of the kernel matrix.
name_leg Title of the legend.
raster In large kernel matrices, raster = TRUE will draw quicker and better-looking
heatmaps. (Defaults=FALSE).
Value

A ‘ggplot2* heatmap.

18 histK

Examples

data <- matrix(rnorm(150),ncol=50,nrow=30)
K <- Linear(data)
heatK(K)

histK Kernel matrix histogram

Description

‘histK()* plots the histogram of a kernel matrix.

Usage
histK(K, main = "Histogram of K", vn = FALSE, ...)
Arguments
K Kernel matrix (class "matrix").
main Plot title.
vn If TRUE, the value of the von Neumann entropy is shown in the plot. (Defaults:
FALSE).
further arguments and graphical parameters passed to ‘plot.histogram®.
Details

Information about the von Neumann entropy can be found at *?vonNeumann()’.

Value

An object of class "histogram".

Examples

data <- matrix(rnorm(150),ncol=50,nrow=30)
K <- RBF(data,g=0.01)
histK(K)

Jaccard

19

Jaccard

Kernels for sets

Description

‘Intersect()‘ or ‘Jaccard()‘ compute the kernel functions of the same name, which are useful for set
data. Their input is a matrix or data.frame with dimension NxD, where N>1, D>0. Samples should
be in the rows and features in the columns. When there is a single feature, ‘Jaccard()‘ returns 1
if the elements of the set are exactly the same in two given samples, and O if they are completely
different (see Details). Instead, in the multivariate case (D>1), the results (for both ‘Intersect() and
‘Jaccard()*) of the D features are combined with a sum, a mean, or a weighted mean.

Usage

Jaccard(X, elements = LETTERS, comp = "sum", coeff = NULL)

Intersect(
X,

elements = LETTERS,

n n

comp = "sum”,
coeff = NULL,

feat_space = FALSE

Arguments

X

elements

comp

coeff

feat_space

Matrix (class "character") or data.frame (class "character", or columns = "fac-
tor"). The elements in X are assumed to be categorical in nature.

All potential elements (symbols) that can appear in the sets. If there are some
elements that are not of interest, they can be excluded so they are not taken into
account by these kernels. (Defaults: LETTERS).

When D>1, this argument indicates how the variables of the dataset are com-

non

bined. Options are: "mean", "sum" and "weighted". (Defaults: "mean"
* "sum" gives the same importance to all variables, and returns an unnormal-
ized kernel matrix.

* "mean" gives the same importance to all variables, and returns a normalized
kernel matrix (all its elements range between 0 and 1).

» "weighted" weights each variable according to the ‘coeff parameter, and
returns a normalized kernel matrix.

(optional) A vector of weights with length D.

(not available for the Jaccard kernel). If FALSE, only the kernel matrix is re-
turned. Otherwise, the feature space is returned too. (Defaults: FALSE).

20 Jaccard

Details

Let A, B be two sets. Then, the Intersect kernel is defined as:

KIntersect(A7 B) = |A N B|

And the Jaccard kernel is defined as:

Kjaccard(4,B) = |AN B|/|AU B|

This specific implementation of the Intersect and Jaccard kernels expects that the set members
(elements) are character symbols (length=1). In case the set data is multivariate (D>1 columns,
and each one contains a set feature), elements for the D sets should come from the same domain
(universe). For instance, a dataset with two variables, so the elements in the first one are col-
ors c("green","black”,"white","red") and the second are names c("Anna","Elsa","Maria") is not al-
lowed. In that case, set factors should be recoded to colors ¢("g","b","w","r") and names c("A","E","M")

and, if necessary, 'Intersect()’ (or ‘Jaccard()‘) should be called twice.

Value

Kernel matrix (dimension: NxN), or a list with the kernel matrix and the feature space.

References

Bouchard, M., Jousselme, A. L., and Doré, P. E. (2013). A proof for the positive definiteness of the
Jaccard index matrix. International Journal of Approximate Reasoning, 54(5), 615-626.

Ruiz, F., Angulo, C., and Agell, N. (2008). Intersection and Signed-Intersection Kernels for In-
tervals. Frontiers in Artificial Intelligence and Applications. 184. 262-270. doi: 10.3233/978-1-
58603-925-7-262.

Examples

Sets data

Generating a dataset with sets containing uppercase letters

random_set <- function(x)paste(sort(sample(LETTERS,x,FALSE)),sep="",collapse = "")
max_setsize <- 4

setsdata <- matrix(replicate(20,random_set(sample(2:max_setsize,1))),nrow=4,ncol=5)

Computing the Intersect kernel:
Intersect(setsdata,elements=LETTERS, comp="sum")

Computing the Jaccard kernel weighting the variables:
coeffs <- ¢(0.1,0.15,0.15,0.4,0.20)
Jaccard(setsdata,elements=LETTERS, comp="weighted"”, coeff=coeffs)

Kendall 21

Kendall Kendall’s tau kernel

Description

‘Kendall()* computes the Kendall’s tau, which happens to be a kernel function for ordinal variables,
ranks or permutations.

Usage
Kendall(X, NA.as.@ = TRUE, samples.in.rows = FALSE, comp = "mean")

Arguments

X When evaluating a single ordinal feature, X should be a numeric matrix or
data.frame. If data is multivariate, X should be a list, and each ordinal/ranking
feature should be placed in a different element of the list (see Examples).

NA.as.0 Should NAs be converted to 0s? (Defaults: TRUE).
samples.in.rows

If TRUE, the samples are considered to be in the rows. Otherwise, it is assumed
that they are in the columns. (Defaults: FALSE).

comp If X is a list, this argument indicates how the ordinal/ranking variables are com-
bined. Options are: "mean" and "sum". (Defaults: "mean").

Value

Kernel matrix (dimension: NxN).

References

Jiao, Y. and Vert, J.P. The Kendall and Mallows kernels for permutations. International Conference
on Machine Learning. PMLR, 2015. Link

Examples

3 people are given a list of 10 colors. They rank them from most (1) to least
(10) favorite

color_list <- c("black”,"blue"”,"green","grey"”,"lightblue"”,"orange”, "purple”,
"red”,"white"”,"yellow")

surveyl <- 1:10

survey2 <- 10:1

survey3 <- sample(10)

color <- cbind(surveyl,survey2,survey3) # Samples in columns

rownames(color) <- color_list

Kendall(color)

The same 3 people are asked the number of times they ate 5 different kinds of
food during the last month:

https://proceedings.mlr.press/v37/jiao15.html

22 kPCA

food <- matrix(c(1e, 1,18, 25,30, 7, 5,20, 5, 12, 7,20, 20, 3,22),ncol=5,nrow=3)
rownames (food) <- colnames(color)

colnames(food) <- c("spinach”, "chicken”, "beef” , "salad"”,"lentils")

(we can observe that, for person 2, vegetables << meat, while for person 3

is the other way around)

Kendall(food, samples.in.rows=TRUE)

We can combine this results:
dataset <- list(color=color,food=t(food)) #All samples in columns
Kendall (dataset)

kPCA Kernel PCA

Description

‘kPCA()‘ computes the kernel PCA from a kernel matrix and, if desired, produces a plot. The
contribution of the original variables to the Principal Components (PCs), sometimes referred as
"loadings", is NOT returned (to do so, go to ‘kPCA_imp()*).

Usage
kPCA(
K’
center = TRUE,
Ktest = NULL,
plot = NULL,
y = NULL,
colors = "black”,

na_col = "grey70",
title = "Kernel PCA",
pos_leg = "right",
name_leg = "",

labels = NULL,

ellipse = NULL

)
Arguments
K Kernel matrix (class "matrix").
center A logical value. If TRUE, the variables are zero-centered before the PCA. (De-
faults: TRUE).
Ktest (optional) An additional kernel matrix corresponding to test samples, with di-

mension Ntest x Ntraining. These new samples are projected (using the color
defined by ‘na_col‘) over the kernel PCA computed from K. Remember than
the data that generated ‘Ktest® should be centered beforehand, using the same
values used for centering ‘K*.

kPCA

plot

colors

na_col

title
pos_leg
name_leg
labels

ellipse

Details

23

(optional) A ‘ggplot2‘ is displayed. The input should be a vector of integers
with length 2, corresponding to the two Principal Components to be displayed
in the plot.

(optional) A factor, or a numeric vector, with length equal to ‘nrow(K)* (number
of samples). This parameter allows to paint the points with different colors.

A single color, or a vector of colors. If ‘y* is numeric, a gradient of colors
between the first and the second entry will be used to paint the points. (Defaults:
"black").

Color of the entries that have a NA in the parameter ‘y‘, or the entries corre-
sponding to ‘Ktest (when ‘Ktest® is not NULL). Otherwise, this parameter is
ignored.

Plot title.
Position of the legend.
Title of the legend. (Defaults: blank)

(optional) A vector of the same length than nrow(K). A name will be displayed
next to each point.

(optional) A float between 0 and 1. An ellipse will be drawn for each group of
points defined by ‘y‘. Here ‘y‘ should be of class "factor." This parameter will
indicate the spread of the ellipse.

As the ordinary PCA, kernel PCA can be used to summarize, visualize and/or create new features of
a dataset. Data can be projected in a linear or nonlinear way, depending on the kernel used. When
the kernel is ‘Linear()‘, kernel PCA is equivalent to ordinary PCA.

Value

A list with two objects:

* The PCA projection (class "matrix"). Please note that if K was computed from a NxD table with
N > D, only the first N-D PCs may be useful.

* (optional) A ‘ggplot2° plot of the selected PCs.

Examples

dat <- matrix(rnorm(150),ncol=50,nrow=30)

K <- Linear(dat)

Projection's coordinates only:

pca <- kPCA(K)

Coordinates + plot of the two first principal components (PC1 and PC2):
pca <- kPCA(K,plot=1:2, colors = "coral2")

pca$plot

24 kPCA_arrows

kPCA_arrows Plot the original variables’ contribution to a PCA plot

Description

‘kPCA_arrows()* draws arrows on a (kernel) PCA plot to represent the contribution of the original
variables to the two displayed Principal Components (PCs).

Usage

kPCA_arrows(plot, contributions, colour = "steelblue"”, size = 4, ...)
Arguments

plot A kernel PCA plot generated by ‘kPCA()".

contributions The variables contributions, for instance obtained via ‘kPCA_imp()*. It is not
mandatory to draw all the original variables; a subset of interest can be passed
on to this argument.

colour Color of arrows and labels. (Defaults: "steelblue").
size Size of the labels. (Defaults: 4).
Additional parameters passed on to geom_segments() and geom_text().

Details

It is important to note that the arrows are scaled to match the samples’ projection plot. Thus, arrows’
directions are correct, but do not expect that their magnitudes match the output of ‘kPCA_imp()‘ or
other functions(‘prcomp®, ‘princomp...‘). (Nevertheless, they should at least be proportional to the
real magnitudes.)

Value

The PCA plot with the arrows (‘ggplot2* object).

Examples

dat <- matrix(rnorm(500),ncol=10,nrow=50)
K <- Linear(dat)

Computing the kernel PCA. The plot represents PC1 and PC2:
kpca <- kPCA(K,plot=1:2)

Computing the contributions to all the PCS:
pcs <- kPCA_imp(dat,secure=FALSE)

We will draw the arrows for PC1 and PC2.
contributions <- t(pcs$loadings[1:2,1)
rownames(contributions) <- 1:10
kPCA_arrows(plot=kpca$plot,contributions=contributions)

kPCA_imp 25

kPCA_imp Contributions of the variables to the Principal Components ("load-
ings")

Description

‘kPCA_imp()* performs a PCA and a kernel PCA simultaneously and returns the contributions of
the variables to the Principal Components (sometimes, these contributions are called "loadings") in
Feature Space. Optionally, it can also return the samples’ projection (cropped to the relevant PCs)
and the values used to centering the variables in Feature Space. It does not return any plot, nor it
projects test data. To do so, please use ‘kPCA()".

Usage
kPCA_imp(DATA, center = TRUE, projected = NULL, secure = FALSE)

Arguments
DATA A matrix or data.frame (NOT a kernel matrix) containing the data in feature
space. Please note that ntow(DATA) should be higher than ncol(DATA). If the
Linear kernel is used, this feature space is simply the original space.
center A logical value. If TRUE, the variables are zero-centered. (Defaults: TRUE).
projected (optional) If desired, the PCA projection (generated, for example, by ‘kPCA()*)
can be included. If DATA is big (especially in the number of rows) this may
save some computation time.
secure (optional) If TRUE, it tests the quality of the loadings This may be slow. (De-
faults: FALSE).
Details

This function may be not valid for all kernels. Do not use it with the RBF, Laplacian, Bray-Curtis,
Jaccard/Ruzicka, or Kendall’s tau kernels unless you know exactly what you are doing.

Value
A list with three objects:
* The PCA projection (class "matrix") using only the relevant Principal Components.
* The loadings.

* The values used to center each variable in Feature Space.

Examples

dat <- matrix(rnorm(150),ncol=30,nrow=50)
contributions <- kPCA_imp(dat)
contributions$loadingslc("PC1","PC2"),1:5]

26 Laplace

KTA Kernel-target alignment

Description

‘KTA()* computes the alignment between a kernel matrix and a target variable.

Usage

KTA(K, vy)

Arguments

K A kernel matrix (class: "matrix").

y The target variable. A factor with two levels.

Value

Alignment value.

Examples

K1 <- RBF(iris[1:100,1:41,g=0.1)
y <- factor(iris[1:100,5])
KTA(KT,y)

Laplace Laplacian kernel

Description

‘Laplace()‘ computes the laplacian kernel between all possible pairs of rows of a matrix or data.frame
with dimension NxD.

Usage

Laplace(X, g = NULL)

Arguments
X Matrix or data.frame that contains real numbers ("integer", "float" or "double").
g Gamma hyperparameter. If g=0 or NULL, ‘Laplace() returns the Manhattan

distance (L1 norm between two vectors). (Defaults=NULL)

Linear 27
Details
Let x;, x; be two real vectors. Then, the laplacian kernel is defined as:
Kpapi(zi,zj) = exp(—=vy[lz; — xj[1)

Value

Kernel matrix (dimension: NxN).

Examples

dat <- matrix(rnorm(250),ncol=50,nrow=>5)
Laplace(dat,g=0.1)

Linear Linear kernel

Description
‘Linear()‘ computes the inner product between all possible pairs of rows of a matrix or data.frame
with dimension NxD.

Usage

Linear(X, cos.norm = FALSE, coeff = NULL)

Arguments
X Matrix or data.frame that contains real numbers ("integer", "float" or "double").
cos.norm Should the resulting kernel matrix be cosine normalized? (Defaults: FALSE).
coeff (optional) A vector of length D that weights each one of the features (columns).
When cos.norm=TRUE, ‘Linear() first does the weighting and then the cosine-
normalization.
Value

Kernel matrix (dimension: NxN).

Examples

dat <- matrix(rnorm(250),ncol=50,nrow=>5)
Linear(dat)

28 MKC

minmax Minmax normalization

Description

Minmax normalization. Custom min/max values may be passed to the function.

Usage

minmax (X, rows = FALSE, values = NULL)

Arguments
X Numeric matrix or data.frame of any size.
rows If TRUE, the minmax normalization is done by row; otherwise, it is done by
column. (Defaults: FALSE)
values (optional) A list containing two elements, the "max" values and the "min" val-
ues. If no value is passed, the typical minmax normalization (which normalizes
the dataset between 0 and 1) is computed with the observed maximum and min-
imum value in each column (or row) of X.
Value

Minmax-normalized X.

Examples

dat <- matrix(rnorm(100),ncol=10,nrow=10)

dat_minmax <- minmax(dat)

apply(dat_minmax,2,min) ## Min values = @
apply(dat_minmax,2,max) ## Max values = 1

We can also explicitly state the max and min values:
values <- list(min=apply(dat,2,min),max=apply(dat,2,max))
dat_minmax <- minmax(dat,values=values)

MKC Multiple Kernel (Matrices) Combination

Description

Combination of kernel matrices coming from different datasets / feature types into a single kernel
matrix.

Usage
MKC(K, coeff = NULL)

nmse 29

Arguments
K A three-dimensional NxDxM array containing M kernel matrices.
coeff A vector of length M with the weight of each kernel matrix. If NULL, all kernel
matrices have the same weight. (Defaults: NULL)
Value

A kernel matrix.

Examples

For illustrating a possible use of this function, we work with a dataset
that contains numeric and categorical features.

summary(mtcars)
cat_feat_idx <- which(colnames(mtcars) %in% c("vs"”, "am"))

vs and am are categorical variables. We make a list, with the numeric features
in the first element and the categorical features in the second:

DATA <- list(num=mtcars[,-cat_feat_idx], cat=mtcars[,cat_feat_idx])

Our N, D and M dimensions are:

N <- nrow(mtcars); D <- ncol(mtcars); M <- length(DATA)

Now we prepare a kernel matrix:

K <- array(dim=c(N,N,M))

K[,,1]1 <= Linear(DATA[L[1]]1,cos.norm = TRUE) ## Kernel for numeric data
K[,,2] <- Dirac(DATA[L[2]]) ## Kernel for categorical data

Here, K1 has the same weight than K2 when computing the final kernel, although
K1 has 9 variables and K2 has only 2.

Kconsensus <- MKC(K)

Kconsensus[1:5,1:5]

If we want to weight equally each one of the 11 variables in the final
kernel, K1 will weight 9/11 and K2 2/11.

coeff <- sapply(DATA,ncol)

coeff

Kweighted <- MKC(K, coeff=coeff)

Kweighted[1:5,1:5]

nmse NMSE (Normalized Mean Squared Error)

Description

‘nmse()‘ computes the Normalized Mean Squared Error between the output of a regression model
and the actual values of the target.

30 Normal CI

Usage

nmse(target, pred)

Arguments
target Numeric vector containing the actual values.
pred Numeric vector containing the predicted values. (The order should be the same
than in the target)
Details

The Normalized Mean Squared error is defined as:

NMSE = MSE/((N — 1) xvar(target))

where MSE is the Mean Squared Error.

Value

The normalized mean squared error (a single value).

Examples

y <= 1:10
y_pred <- y+rnorm(10)
nmse(y,y_pred)

Normal_CI Confidence Interval using Normal Approximation

Description

‘Normal_CI()‘ computes the Confidence Interval (CI) of a performance measure (for instance, ac-
curacy) using normal approximation. Thus, it is advisable that the test has a size of, at least, 30
instances.

Usage

Normal_CI(value, ntest, confidence = 95)

Arguments
value Performance value (a single value).
ntest Test set size (a single value).

confidence Confidence level; for instance, 95% or 99%. (Defaults: 95).

plotImp 31

Value

A vector containing the CI.

Examples

Computing accuracy

y <- c(rep("a",30),rep("b",20))

y_pred <- c(rep("a",20),rep("b",30))

ct <- table(y,y_pred)

accuracy <- Acc(ct)

Computing 95%CI

Normal_CI(accuracy, ntest=length(y), confidence=95)

plotImp Importance barplot

Description

‘plotlmp()* displays the barplot of a numeric vector, which is assumed to contain the features im-
portance (from a prediction model) or the contribution of each original variable to a Principal Com-
ponent (PCA). In the barplot, features/PCs are sorted by decreasing importance.

Usage
plotImp(
X,
y = NULL,

relative = TRUE,
absolute = TRUE,

nfeat = NULL,
names = NULL,
main = NULL,
xlim = NULL,
color = "grey",

leftmargin = NULL,
ylegend = NULL,
leg_pos = "right",

)
Arguments
X Numeric vector containing the importances.
y (optional) Numeric vector containing a different, independent variable to be con-
trasted with the feature importances. Should have the same length and order than
X

relative If TRUE, the barplot will display relative importances. (Defaults: TRUE).

32 Prec

absolute If FALSE, the bars may be positive or negative, which will affect the order of the
features Otherwise, the absolute value of ‘x will be taken (Defaults: TRUE).

nfeat (optional) The number of top (most important) features displayed in the plot.

names (optional) The names of the features, in the same order than ‘x*.

main (optional) Plot title.

x1im (optional) A numeric vector. If absent, the minimum and maximum value of ‘x*

will be used to establish the axis’ range.

color Color(s) chosen for the bars. A single value or a vector. (Defaults: "grey").
leftmargin (optional) Left margin space for the plot.

ylegend (optional) It allows to add a text explaining what is ‘y* (only if ‘y* is not NULL).
leg_pos If ‘ylegend‘ is TRUE, the position of the legend. (Defaults: "right").

(optional) Additional arguments (such as ‘axes‘, ‘asp°,...) and graphical param-
eters (such as ‘par). See ‘?graphics::barplot()‘.

Value

A list containing:

* The vector of importances in decreasing order. When ‘nfeat* is not NULL, only the top ‘nfeat*
are returned.

* The cumulative sum of (absolute) importances.

* A numeric vector giving the coordinates of all the drawn bars’ midpoints.

Examples

importances <- rnorm(30)
names_imp <- paste@("Feat”,1:length(importances))

plot1 <- plotImp(x=importances,names=names_imp,main="Barplot")
plot2 <- plotImp(x=importances,names=names_imp,relative=FALSE,
main="Barplot"”,nfeat=10)

plot3 <- plotImp(x=importances,names=names_imp,absolute=FALSE,
main="Barplot"”,color="coral2")

Prec Precision or PPV

Description

‘Prec()‘ computes the Precision of PPV (Positive Predictive Value) between the output of a classi-
fication model and the actual values of the target. The precision of each class can be aggregated.
Macro-precision is the average of the precision of each classes. Micro-precision is the weighted
average.

Procrustes 33

Usage
Prec(ct, multi.class = "macro”)
Arguments
ct Confusion Matrix.
multi.class Should the results of each class be aggregated, and how? Options: "none",
"macro”, "micro". (Defaults: "macro").
Value

PPV (a single value).

Examples

y <= c(rep(”a",3),rep("b",2))
y_pred <- c(rep("a",2),rep("b",3))
ct <- table(y,y_pred)

Prec(ct)

Procrustes Procrustes Analysis

Description

Procrustes Analysis compares two PCA/PCoA/MDS/other ordination methods’ projections after
"removing" the translation, scaling and rotation effects. Thus, they are compared in their configura-
tion of "maximum similarity". Samples in the two projections should be related. The similarity of
the projections X1 and X2 is quantified using a correlation-like statistic derived from the symmetric
Procrustes sum of squared differences between X1 and X2.

Usage

Procrustes(X1, X2, plot = NULL, labels = NULL)

Arguments
X1 A matrix or data.frame containing a PCA/PCoA/MDS projection.
X2 A second matrix or data.frame containing a different PCA/PCoA/MDS projec-
tion, with the same number of rows than X1.
plot (optional) A ‘ggplot2‘ is displayed. The input should be a vector of integers
with length 2, corresponding to the two Principal Components to be displayed
in the plot.
labels (optional) A vector of the same length than nrow(X1), or instead, nrow(X1)+nrow(X2).

A name will be displayed next to each point.

34 RBF

Details

‘Procrustes()‘ performs a Procrustes Analysis equivalent to ‘vegan::procrustes(X,Y,scale=FALSE,symmetric=TRUE)".

Value

A list containing:

* X1 (zero-centered and scaled).

* X2 superimposed over X1 (after translating, scaling and rotating X2).
* Procrustes correlation between X1 and X2.

* (optional) A ‘ggplot2° plot.

Examples

datal <- matrix(rnorm(900),ncol=30,nrow=30)

data2 <- matrix(rnorm(900),ncol=30,nrow=30)

pcal <- kPCA(Linear(datal),center=TRUE)

pca2 <- kPCA(Linear(data2),center=TRUE)

procr <- Procrustes(pcal,pca2)

Procrustean correlation between pcal and pca2:
procr$pro.cor

With plot (first two axes):

procr <- Procrustes(pcal,pca2,plot=1:2,labels=1:30)
procr$plot

RBF Gaussian RBF (Radial Basis Function) kernel

Description
‘RBF()‘ computes the RBF kernel between all possible pairs of rows of a matrix or data.frame with
dimension NxD.

Usage
RBF (X, g = NULL)

Arguments
X Matrix or data.frame that contains real numbers ("integer", "float" or "double").
g Gamma hyperparameter. If g=0 or NULL, ‘RBF()‘ returns the matrix of squared
Euclidean distances instead of the RBF kernel matrix. (Defaults=NULL).
Details

Let x;, x; be two real vectors. Then, the RBF kernel is defined as:
Krpr(zi, x;) = exp(—7ylz; — ;%)

Sometimes the RBF kernel is given a hyperparameter called sigma. In that case: v = 1/02.

Rec 35

Value

Kernel matrix (dimension: NxN).

Examples

dat <- matrix(rnorm(250),ncol=50,nrow=>5)
RBF (dat,g=0.1)

Rec Recall or Sensitivity or TPR

Description

‘Rec() computes the Recall, also known as Sensitivity or TPR (True Positive Rate), between the
output of a classification model and the actual values of the target.

Usage
Rec(ct, multi.class = "macro")
Arguments
ct Confusion Matrix.
multi.class Should the results of each class be aggregated, and how? Options: "none",
"macro", "micro". (Defaults: "macro").
Value
TPR (a single value).
Examples

y <- c(rep("a",3),rep("b",2))
y_pred <- c(rep("a",2),rep("b",3))
ct <- table(y,y_pred)

Rec(ct)

36 simK

showdata Showdata

Description

A toy dataset that contains the results of a (fictional) survey commissioned from a well-known
streaming platform. The platform invited 100 people to watch footage of their new show before
the premiere. After that, the participants were asked to pick their favorite color, actress, actors and
shows from a list. Finally, they were asked to disclose if they liked the new show.

Usage

showdata

Format
A data.frame with 100 rows and 5 factor variables:

Favorite.color Favorite color
Favorite.actress Favorite actress
Favorite.actor Favorite actor
Favorite.show Favorite show

Liked.new.show Do you like the new show?

Source

Own

simK Kernel matrix similarity

Description

‘simK()‘ computes the similarity between kernel matrices.

Usage

simK(Klist)

Arguments

Klist A list of M kernel matrices with identical NxN dimension.

Details

It is a wrapper of ‘Frobenius()°.

soil 37

Value

Kernel matrix (dimension: MxM).

Examples

K1 <- Linear(matrix(rnorm(7500),ncol=150,nrow=50))
K2 <- Linear(matrix(rnorm(7500),ncol=150,nrow=50))
K3 <- Linear(matrix(rnorm(7500),ncol=150,nrow=50))

simK(list(K1,K2,K3))

soil Soil microbiota (raw counts)

Description

Bacterial abundances in 89 soils from across North and South America.

Usage

soil

Format

A list containing the following elements:

abund Bacterial abundances of 7396 taxa in 88 sites.
metadata Samples’ metadata

taxonomy Taxonomic information

References

Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a
predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol.
2009 Aug;75(15):5111-20. doi: 10.1128/AEM.00335-09.

38 Spectrum

Spe Specificity or TNR

Description

‘Spe()¢ computes the Specificity or TNR (True Negative Rate) between the output of a classification
prediction model and the actual values of the target.

Usage
Spe(ct, multi.class = "macro")
Arguments
ct Confusion Matrix.
multi.class Should the results of each class be aggregated, and how? Options: "none",
"macro", "micro". (Defaults: "macro").
Value
TNR (a single value).
Examples

y <= c(rep("a”,3),rep("b",2))
y_pred <- c(rep("a",2),rep("b",3))
ct <- table(y,y_pred)

Spe(ct)

Spectrum Spectrum kernel

Description

‘Spectrum()‘ computes the basic Spectrum kernel between strings. This kernel computes the sim-
ilarity of two strings by counting how many matching substrings of length / are present in each
one.

Spectrum 39

Usage

Spectrum(
X,
alphabet,
1=17,
group.ids = NULL,
weights = NULL,
feat_space = FALSE,
cos.norm = FALSE

)
Arguments
X Vector of strings (length N).
alphabet Alphabet of reference.
1 Length of the substrings.
group.ids (optional) A vector with ids. It allows to compute the kernel over groups of
strings within X, instead of the individual strings.
weights (optional) A numeric vector as long as x. It allows to weight differently each
one of the strings.
feat_space If FALSE, only the kernel matrix is returned. Otherwise, the feature space (i.e. a
table with the number of times that a substring of length / appears in each string)
is also returned (Defaults: FALSE).
cos.norm Should the resulting kernel matrix be cosine normalized? (Defaults: FALSE).
Details

In large datasets this function may be slow. In that case, you may use the ‘stringdot()‘ function of
the ‘kernlab‘ package, or the ‘spectrumKernel() function of the ‘kebabs‘ package.
Value

Kernel matrix (dimension: NxN), or a list with the kernel matrix and the feature space.

References

Leslie, C., Eskin, E., and Noble, W.S. The spectrum kernel: a string kernel for SVM protein classi-
fication. Pac Symp Biocomput. 2002:564-75. PMID: 11928508. Link

Examples

Examples of alphabets. _ stands for a blank space, a gap, or the
start or the end of sequence)

NT <= c("A","C","G","T","_") # DNA nucleotides
AA <= c("A","C", D", "E""E MGM UHY, T UK LT UMY N TPT QY PR TS T
nymOMWT MYt M"Y fHtcanonical aminoacids

letters_ <- c(letters,"_")
Example of data

http://psb.stanford.edu/psb-online/proceedings/psb02/abstracts/p564.html

40

svm_imp

strings <- c("hello_world"”,"hello_word"”,"hola_mon”,"kaixo_mundua”,

"saluton_mondo

ola_mundo”, "bonjour_le_monde")

n on

names(strings) <- c("english1”,"english_typo”,"catalan”, "basque”,

"esperanto

galician”,"french")

Computing the kernel:
Spectrum(strings,alphabet=letters_,1=2)

svm_imp

SVM feature importance

Description

Recovering the features importances from a SVM model.

Usage
svm_imp(
X,
svindx,
coeff,
result = "absolute”,
cos.norm FALSE,
center FALSE,
scale =
)
Arguments
X Matrix or data.frame that contains real numbers ("integer", "float" or "double").
X is NOT the kernel matrix, but the original dataset used to compute the kernel
matrix.
svindx Indices of the support vectors.
coeff target * alpha.
result A string. If "absolute", the absolute values of the importances are returned. If
"squared", the squared values are returned. Any other input will result in the
original (positive and/or negative) importance values (see Details). (Defaults:
"absolute").
cos.norm Boolean. Was the data cosine normalized prior to training the model? (Defaults:
FALSE).
center Boolean. Was the data centered prior to training the model? (Defaults: FALSE).
scale Boolean. Was the data scaled prior to training the model? (Defaults: FALSE).

TSS 41

Details

This function may be not valid for all kernels. Do not use it with the RBF, Laplacian, Bray-Curtis,
Jaccard/Ruzicka, or Kendall’s tau kernels unless you know exactly what you are doing.

Usually the sign of the importances is irrelevant, thus justifying working with the absolute or
squared values; see for instance Guyon et al. (2002). Some classification tasks are an exception
to this, when it can be demonstrated that the feature space is strictly nonnegative. In that case, a
positive importance implies that a feature contributes to the "positive" class, and the same with a
negative importance and the "negative" class.

Value

The importance of each feature (a vector).

References

Guyon, 1., Weston, J., Barnhill, S., and Vapnik, V. (2002) Gene selection for cancer classification
using support vector machines. Machine learning, 46, 389-422. Link

Examples

datal <- iris[1:100,]

sv_index <- c(24, 42, 58, 99)

coefficients <- c(-0.2670988, -0.3582848, 0.2129282, 0.4124554)

This SV and coefficients were obtained from a model generated with kernlab:

model <- kernlab::ksvm(Species ~ .,data=datal, kernel="vanilladot"”,scaled = TRUE)
sv_index <- unlist(kernlab::alphaindex(model))

coefficients <- kernlab::unlist(coef(model))

Now we compute the importances:
svm_imp(X=datall[,-5],svindx=sv_index,coeff=coefficients,center=TRUE, scale=TRUE)

*od o

TSS Total Sum Scaling

Description

This function transforms a dataset from absolute to relative frequencies (by row or column).

Usage
TSS(X, rows = TRUE)

Arguments
X Numeric matrix or data.frame of any size containing absolute frequencies.
rows If TRUE, the operation is done by row; otherwise, it is done by column. (De-

faults: TRUE).

https://link.springer.com/content/pdf/10.1023/a:1012487302797.pdf

42 vonNeumann

Value

A relative frequency matrix or data.frame with the same dimension than X.

Examples

dat <- matrix(rnorm(50),ncol=5,nrow=10)
TSS(dat) #It can be checked that, after scaling, the sum of each row is equal to 1.

vonNeumann Von Neumann entropy

Description

‘vonNeumann()‘ computes the von Neumann entropy of a kernel matrix. Entropy values close to 0

indicate that all its elements are very similar, which may result in underfitting when training a pre-

diction model. Instead, values close to 1 indicate a high variability which may produce overfitting.
Usage

vonNeumann (K)

Arguments

K Kernel matrix (class "matrix").

Value

Von Neumann entropy (a single value).

References

Belanche-Muiioz, L.A. and Wiejacha, M. (2023) Analysis of Kernel Matrices via the von Neumann
Entropy and Its Relation to RVM Performances. Entropy, 25, 154. doi:10.3390/e25010154. Link

Examples

data <- matrix(rnorm(150),ncol=50,nrow=30)
K <- Linear(data)
vonNeumann (K)

https://pmc.ncbi.nlm.nih.gov/articles/PMC9858626/

Index

x datasets
showdata, 36
soil, 37

Acc, 3

Acc_rnd, 3
aggregate_imp, 4
Aitchison (cLinear), 9

Boots_CI, 5
BrayCurtis, 6

centerkK, 7
centerX, 7
Chi2, 8
cLinear, 9
cosNorm, 10
cosnormX, 11

desparsify, 11
Dirac, 12

dummy_data, 13
dummy_var, 14

estimate_gamma, 14
F1,15
Frobenius, 16

frobNorm, 16

heatk, 17
histkK, 18

Intersect (Jaccard), 19
Jaccard, 19

Kendall, 21
kPCA, 22
kPCA_arrows, 24
kPCA_imp, 25

43

KTA, 26

Laplace, 26
Linear, 27

minmax, 28
MKC, 28

nmse, 29
Normal_CI, 30

plotImp, 31
Prec, 32
Procrustes, 33

RBF, 34
Rec, 35
Ruzicka (BrayCurtis), 6

showdata, 36
simK, 36
soil, 37
Spe, 38
Spectrum, 38
svm_imp, 40

TSS, 41

vonNeumann, 42

	Acc
	Acc_rnd
	aggregate_imp
	Boots_CI
	BrayCurtis
	centerK
	centerX
	Chi2
	cLinear
	cosNorm
	cosnormX
	desparsify
	Dirac
	dummy_data
	dummy_var
	estimate_gamma
	F1
	Frobenius
	frobNorm
	heatK
	histK
	Jaccard
	Kendall
	kPCA
	kPCA_arrows
	kPCA_imp
	KTA
	Laplace
	Linear
	minmax
	MKC
	nmse
	Normal_CI
	plotImp
	Prec
	Procrustes
	RBF
	Rec
	showdata
	simK
	soil
	Spe
	Spectrum
	svm_imp
	TSS
	vonNeumann
	Index

