
Working with the manifestoR package

Jirka Lewandowski jirka.lewandowski@wzb.eu

21/03/2016 (updated 29/01/2026)

Contents

1 Downloading documents from the Manifesto Corpus 3

1.1 Loading the package . 3

1.2 Connecting to the Manifesto Project Database API . 3

1.3 Downloading the Manifesto Project Dataset . 3

1.4 Downloading documents . 3

1.5 Viewing original documents . 9

1.6 Accessing the category scheme and category descriptions . 9

2 Processing and analysing the corpus documents 10

2.1 Working with the CMP codings . 10

2.2 Working with additional layers of codings . 11

2.3 Text mining tools . 12

2.4 Selecting relevant parts of text . 13

2.5 Using the document metadata . 15

3 Efficiency and reproducibility: caching and versioning 17

4 Exporting documents 19

5 Scaling texts 20

5.1 Using manifestoR’s scaling functions . 20

5.2 Writing custom scaling functions . 21

5.3 Bootstrapping scaling function distributions and standard errors 23

6 Additional Information 29

6.1 Contacting the Manifesto Project team . 29

6.2 Contributing to manifestoR . 29

1

mailto:jirka.lewandowski@wzb.eu

7 References 30

Hint: See https://manifesto-project.wzb.eu for additional tutorials, documentation, data, and election
programmes.

2

https://manifesto-project.wzb.eu

1 Downloading documents from the Manifesto Corpus

When publishing work using the Manifesto Corpus, please make sure to cite it correctly and to give the
identification number of the corpus version used for your analysis.

You can print citation and version information with the function mp_cite().

1.1 Loading the package

First of all, load the manifestoR package with the usual R syntax:

library(manifestoR)

1.2 Connecting to the Manifesto Project Database API

To access the data in the Manifesto Corpus, an account for the Manifesto Project webpage with an API key is
required. If you do not yet have an account, you can create one at https://manifesto-project.wzb.eu/signup.
If you have an account, you can create and download the API key on your profile page.

For every R session using manifestoR and connecting to the Manifesto Corpus database, you need to set the
API key in your work environment. This can be done by passing either a key or the name of a file containing
the key to manifestoR’s mp_setapikey() function (see documentation ?mp_setapikey for details). Thus,
your R script using manifestoR usually will start like this:

library(manifestoR)
mp_setapikey("manifesto_apikey.txt")

This R code presumes that you have stored and downloaded the API key in a file name manifesto_apikey.txt
in your current R working directory.

Note that it is a security risk to store the API key file or a script containing the key in public repositories.

1.3 Downloading the Manifesto Project Dataset

You can download the Manifesto Project Dataset (MPDS) with the function mp_maindataset(). By default
the most recent update is returned, but you can specify older versions to get for reproducibility (type
mp_coreversions() for a list of version and ?mp_maindataset for usage information). For analysing the
dataset using scaling functions, refer to the section Using manifestoR’s scaling functions below.

1.4 Downloading documents

(Bulk-)Downloading documents works via the function mp_corpus(...). It can be called with a logical
expression specifying the subset of the Manifesto Corpus that you want to download:

my_corpus <- mp_corpus(countryname == "Austria" & edate > as.Date("2000-01-01"))

Connecting to Manifesto Project DB API...
Connecting to Manifesto Project DB API... corpus version: 2025-1
Connecting to Manifesto Project DB API... corpus version: 2025-1
Connecting to Manifesto Project DB API... corpus version: 2025-1

3

Your query resulted in 33 requested document items containing corpus metadata. Of these
items 1 could not be retrieved (reasons: 1 having no machine-readable texts).

my_corpus

<<ManifestoCorpus>>
Metadata: corpus specific: 0, document level (indexed): 0
Content: documents: 32

mp_corpus returns a ManifestoCorpus object, a subclass of Corpus as defined in the natural language
processing package tm (Feinerer & Hornik 2015). Following tms logic, a ManifestoCorpus consists of
ManifestoDocuments. Documents in corpus can be indexed via their manifesto_id (consisting of the CMP
party code, an underscore, and either the election year, if unambigous, or the election year and month) or
via their position in the corpus. For both, corpus and documents, tm provides accessor functions to the
corpus and documents content and metadata:

head(content(my_corpus[["42110_200211"]]))

[1] “"Wir können heute die Existenzgrundlagen"
[2] "künftiger Generationen zerstören."
[3] "Oder sie sichern”."
[4] "Dr. Eva Glawischnig"
[5] "Österreich braucht jetzt Weitblick."
[6] "Nachhaltigkeit für zukünftige Generationen"

head(content(my_corpus[[1]]))

[1] “"Wir können heute die Existenzgrundlagen"
[2] "künftiger Generationen zerstören."
[3] "Oder sie sichern”."
[4] "Dr. Eva Glawischnig"
[5] "Österreich braucht jetzt Weitblick."
[6] "Nachhaltigkeit für zukünftige Generationen"

meta(my_corpus[["42110_200211"]])

manifesto_id : 42110_200211
party : 42110
date : 200211
language : german
source : MARPOR
has_eu_code : FALSE
is_primary_doc : TRUE
may_contradict_core_dataset: FALSE
md5sum_text : 4e1877c110c3d01db9eaf864310cc0b0
url_original : NA
md5sum_original : NA
annotations : TRUE
handbook : 3
is_copy_of : NA
title : Österreich braucht jetzt die Grünen. Das Wahlprogramm
translation_en : TRUE
id : 42110_200211

4

For more information on the available metadata per document, refer to the section Using the document
metadata below. For more information on how to use the text mining functions provided by tm for the data
from the Manifesto Corpus, refer to the section Processing and analysing the corpus documents below.

If you want to get your results as a tibble/data.frame object instead of a ManifestoCorpus object, you
can simply set the as_tibble parameter of mp_corpus to TRUE or use the convenience shorthand function
mp_corpus_df that does the same. By default it also contains the the main document-level metadata
(“manifesto_id”, “party”, “date”, “language”, “annotations”, “translation_en”) but you can also opt for
“none” or “all” metadata by specifying the tibble_metadata parameter accordingly.

my_corpus_df <- mp_corpus(countryname == "Austria" & edate > as.Date("2000-01-01"),
as_tibble = TRUE)

Your query resulted in 33 requested document items containing corpus metadata. Of these
items 1 could not be retrieved (reasons: 1 having no machine-readable texts).

or alternatively with the shorthand function:
my_corpus_df <- mp_corpus_df(countryname == "Austria" & edate > as.Date("2000-01-01"))
and to include all document-level metadata
my_corpus_df <- mp_corpus_df(countryname == "Austria" & edate > as.Date("2000-01-01"),
tibble_metadata = "all")
my_corpus_df

A tibble: 39,517 x 10
text cmp_code eu_code pos manifesto_id party date language annotations
<chr> <chr> <chr> <int> <chr> <dbl> <dbl> <chr> <lgl>
1 “Wir k~ 305 <NA> 1 42110_200211 42110 200211 german TRUE
2 künfti~ 305 <NA> 2 42110_200211 42110 200211 german TRUE
3 Oder s~ 305 <NA> 3 42110_200211 42110 200211 german TRUE
4 Dr. Ev~ <NA> <NA> 4 42110_200211 42110 200211 german TRUE
5 Österr~ <NA> <NA> 5 42110_200211 42110 200211 german TRUE
6 Nachha~ <NA> <NA> 6 42110_200211 42110 200211 german TRUE
7 Die Zu~ 601 <NA> 7 42110_200211 42110 200211 german TRUE
8 Neue T~ 416 <NA> 8 42110_200211 42110 200211 german TRUE
9 In Ver~ 416 <NA> 9 42110_200211 42110 200211 german TRUE
10 Sorglo~ 107 <NA> 10 42110_200211 42110 200211 german TRUE
i 39,507 more rows
i 1 more variable: translation_en <lgl>

The variable names in the logical expression used for querying the corpus database (countryname and edate
in the example above) can be any column names from the Manifesto Project’s Main Dataset (please keep in
mind that this mechanism always uses the most recent version of the Dataset) or your current R environment.
The Main Dataset itself is available in manifestoR via the function mp_maindataset():

mpds <- mp_maindataset()
print(head(names(mpds)))

[1] "country" "countryname" "oecdmember" "eumember" "edate"
[6] "date"

mp_corpus(rile > 60)

5

Connecting to Manifesto Project DB API... corpus version: 2025-1
Connecting to Manifesto Project DB API... corpus version: 2025-1

Your query resulted in 34 requested document items containing corpus metadata. Of these
items 25 could not be retrieved (reasons: 4 having no real documents coded (see progtype
3 and 99), 21 having no machine-readable texts).

<<ManifestoCorpus>>
Metadata: corpus specific: 0, document level (indexed): 0
Content: documents: 9

... which is the same as
mp_corpus(mpds %>% filter(rile > 60))

Alternatively, you can download election programmes on an individual basis by listing combinations of party
ids and election dates in a data.frame and passing it to mp_corpus(...):

wanted <- data.frame(party = c(41220, 41320),
date = c(201709, 201709))

mp_corpus(wanted)

Connecting to Manifesto Project DB API... corpus version: 2025-1

Warning: No document/metadata found with id 41220_201709. Please double check
your request if it was specified manually.

Connecting to Manifesto Project DB API... corpus version: 2025-1

<<ManifestoCorpus>>
Metadata: corpus specific: 0, document level (indexed): 0
Content: documents: 1

The party ids (41220 and 41320 in the example) are the ids as in the Manifesto Project’s main dataset. They
can be found in the current dataset documentation at https://manifesto-project.wzb.eu/datasets or in the
main dataset.

Note that we received only 1 document, while querying for two. This is because the party with the id 41220
(KPD) did not run for elections in September 2017.

Also, not for every party and election observation of the Manifesto Project Dataset manifesto documents
are available in the Manifesto Project Corpus and for some only the machine-readable texts are available
but not the digitally annotated codes. In case of such missing documents you get an information message
containing the number of missing documents and the reasons for the missingness. For details you can also
check our corpus information webpage.

You can check the document availability of your query beforehand with the function mp_availability(...):

mp_availability(countryname == "Belgium")

Connecting to Manifesto Project DB API... corpus version: 2025-1

6

https://manifesto-project.wzb.eu/information/documents/corpus

Queried for Corpus Version
194 2025-1
Documents found Coded Documents found
166 (85.567%) 48 (24.742%)
Originals found English Translations found
134 (69.072%) 48 (24.742%)
Languages
2 (french dutch)

And you can even use the result of this ability request for further specification of your corpus query as it
is basically a data.frame that contains party-date combinations with the information on the availability of
machine-readable text (manifestos), machine-readable codings (annotations), machine-readable english
translations (translation_en), PDF originals (originals), and language:

avail <- mp_availability(countryname == "Belgium")
wanted_be <- avail %>% dplyr::filter(language == "dutch" & annotations == TRUE)
mp_corpus(wanted_be)

Connecting to Manifesto Project DB API... corpus version: 2025-1

<<ManifestoCorpus>>
Metadata: corpus specific: 0, document level (indexed): 0
Content: documents: 30

Since corpus version 2024-1 there are also english translations available for a large number of documents
in the corpus. You can can simply request them by setting the translation-parameter of the mp_corpus
function to “en”. This returns the english translation instead of the original language text. For documents
that are originally in english, it returns the original english text. In case no translation is available for a
requested document a not-found warning happens.

my_corpus_en = mp_corpus(wanted, translation = "en")

Connecting to Manifesto Project DB API... corpus version: 2025-1
Connecting to Manifesto Project DB API... corpus version: 2025-1

my_corpus_en

<<ManifestoCorpus>>
Metadata: corpus specific: 0, document level (indexed): 0
Content: documents: 1

head(content(my_corpus_en[[1]]))

[1] "It is time for more justice!"
[2] "2017 is a decisive year."
[3] "The SPD is running to set the course for the future of Germany and Europe
with Martin Schulz as chancellor."
[4] "The elections this year are fundamental decisions about what kind of
society we want to live in."
[5] "Values that were taken for granted are at stake."
[6] "We fight for these values, as we have always done in our long history."

7

In case you need parallely both the original language text and the english translations you can make use
of our convenience function mp_corpus_df_bilingual which returns a tibble/data.frame with the “text”
column containing the original language text and a column “text_en” containing the english translation.

mp_corpus_df_bilingual(wanted, translation = "en")

Connecting to Manifesto Project DB API... corpus version: 2025-1

A tibble: 2,750 x 11
text text_en cmp_code eu_code pos manifesto_id party date language
<chr> <chr> <chr> <chr> <int> <chr> <dbl> <dbl> <chr>
1 Es ist Zei~ It is ~ H <NA> 1 41320_201709 41320 201709 german
2 2017 ist e~ 2017 i~ 000 <NA> 2 41320_201709 41320 201709 german
3 Die SPD tr~ The SP~ 305.1 <NA> 3 41320_201709 41320 201709 german
4 Die Wahlen~ The el~ 000 <NA> 4 41320_201709 41320 201709 german
5 Werte, die~ Values~ 503 <NA> 5 41320_201709 41320 201709 german
6 Für diese ~ We fig~ 503 <NA> 6 41320_201709 41320 201709 german
7 Für eine G~ For a ~ 503 <NA> 7 41320_201709 41320 201709 german
8 Unabhängig~ Regard~ 503 <NA> 8 41320_201709 41320 201709 german
9 Unabhängig~ Regard~ 503 <NA> 9 41320_201709 41320 201709 german
10 Unabhängig~ Regard~ 503 <NA> 10 41320_201709 41320 201709 german
i 2,740 more rows
i 2 more variables: annotations <lgl>, translation_en <lgl>

You can get all available documents with english translations by querying first the metadata and then using
the translation_en metadata value. To learn more about querying metadata check the section: Using the
document metadata.

wanted_en = mp_metadata(TRUE) %>%
dplyr::filter(translation_en == TRUE)

Connecting to Manifesto Project DB API... corpus version: 2025-1

... or if you also want to include also the original english documents
wanted_en = mp_metadata(TRUE) %>%
dplyr::filter(translation_en == TRUE | language == "english")

wanted_en %>%
dplyr::select(party, date, manifesto_id, language, annotations, translation_en)

A tibble: 1,960 x 6
party date manifesto_id language annotations translation_en
<dbl> <dbl> <chr> <chr> <lgl> <lgl>
1 11110 200609 11110_200609 swedish TRUE TRUE
2 11220 200609 11220_200609 swedish TRUE TRUE
3 11320 200609 11320_200609 swedish TRUE TRUE
4 11420 200609 11420_200609 swedish TRUE TRUE
5 11520 200609 11520_200609 swedish TRUE TRUE
6 11620 200609 11620_200609 swedish TRUE TRUE
7 11810 200609 11810_200609 swedish TRUE TRUE
8 11110 201009 11110_201009 swedish TRUE TRUE
9 11220 201009 11220_201009 swedish TRUE TRUE
10 11320 201009 11320_201009 swedish TRUE TRUE
i 1,950 more rows

8

... and to query their english text
corpus <- mp_corpus(wanted_en, translation = "en")
... their english text directly as tibble/data.frame
corpusdf <- mp_corpus_df(wanted_en, translation = "en")

Downloaded documents are automatically cached locally. To learn about the caching mechanism read the
section Efficiency and reproducibility: caching and versioning below.

1.5 Viewing original documents

Apart from the machine-readable, annotated documents, the Manifesto Corpus also contains origi-
nal layouted election programmes in PDF format. If available, they can be viewed via the function
mp_view_originals(...), which takes exactly the format of arguments as mp_corpus(...) (see above),
e.g.:

mp_view_originals(party == 41320 & date == 200909)

The original documents are shown in you system’s web browser. All URLs opened by this function refer only
to the Manifesto Project’s Website. If you want to open more than 5 PDF documents at once, you have to
specify the maximum number of URLs allows to be opened manually via the parameter maxn. Since opening
URLs in an external browser costs computing resources on your local machine, make sure to use only values
for maxn that do not slow down or make your computer unresponsive.

mp_view_originals(party > 41000 & party < 41999, maxn = 20)

1.6 Accessing the category scheme and category descriptions

The main dataset and the corpus are using the alphanumerical category codes of the manifesto project
category scheme. To get a data.frame of these codes together with their domains, variable names, titles,
descriptions, labels etc. you can use the function mp_codebook() (or mp_describe_code(...) to show/use
the information for the code(s) you are interested in).

mp_codebook()

Connecting to Manifesto Project DB API...

A tibble: 143 x 8
type domain_code domain_name code variable_name title description_md label
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 main 0 NA 000 peruncod No o~ "Share of unc~ perc~
2 main 1 External Re~ 101 per101 Fore~ "Favourable m~ fore~
3 main 1 External Re~ 102 per102 Fore~ "Negative men~ fore~
4 main 1 External Re~ 103 per103 Anti~ "Negative ref~ anti~
5 main 1 External Re~ 104 per104 Mili~ "The importan~ mili~
6 main 1 External Re~ 105 per105 Mili~ "Negative ref~ mili~
7 main 1 External Re~ 106 per106 Peace "Any declarat~ peace
8 main 1 External Re~ 107 per107 Inte~ "Need for int~ inte~
9 main 1 External Re~ 108 per108 Euro~ "Favourable m~ euro~
10 main 1 External Re~ 109 per109 Inte~ "Negative ref~ inte~
i 133 more rows

9

mp_describe_code("504")

code: 504
title: Welfare State Expansion
description_md: Favourable mentions of need to introduce, maintain or expand any public
social service or social security scheme. This includes, for example,
government funding of:
##
- Health care
##
- Child care
##
- Elder care and pensions
##
- Social housing
##
Note: This category excludes education.

Finally, you can also use mp_view_codebook(...) to start an interactive website for browsing the category
information.

2 Processing and analysing the corpus documents

As in tm, the textual content of a document is returned by the function content:

txt <- content(my_corpus[["42110_200610"]])
class(txt)

[1] "character"

head(txt, n = 4)

[1] "1 Lebensqualität"
[2] "1.1 Grüne Energiewende"
[3] "Lebensqualität bedeutet in einer unversehrten Umwelt zu leben."
[4] "Die Verantwortung dafür liegt bei uns: Wir alle gestalten Umwelt."

2.1 Working with the CMP codings

The central way for accessing the CMP codings is the accessor method codes(...). It can be called on
ManifestoDocuments and ManifestoCorpuss and returns a vector of the CMP codings attached to the
quasi-sentences of the document/corpus in a row:

doc <- my_corpus[["42110_200610"]]
head(codes(doc), n = 15)

[1] NA NA "501" "606" "501" "501" "501" "416" "416" "412" "503" "411"
[13] "501" "416" NA

10

head(codes(my_corpus), n = 15)

[1] "305" "305" "305" NA NA NA "601" "416" "416" "107" "107" "107"
[13] "416" "416" "416"

Thus you can for example use R’s functionality to count the codes or select quasi- sentences (units of texts)
based on their code:

table(codes(doc))

##
104 105 106 107 108 109 201 202 203 303 305 401 402 403 408 409 411 412 413 416
3 9 2 52 36 11 36 17 1 3 1 2 6 20 1 1 38 17 1 13
501 502 503 504 506 601 604 605 606 607 608 701 703 704 706
62 48 83 24 46 14 20 9 10 15 5 33 13 9 32

doc_subcodes <- subset(doc, codes(doc) %in% c(202, 503, 607))
length(doc_subcodes)

[1] 115

length(doc_subcodes)/length(doc)

[1] 0.1489637

More detailed information on the CMP coding scheme can be found in Accessing the category scheme
and category descriptions or in the online documentation of the Manifesto Project coding handbooks at
https://manifesto-project.wzb.eu/information/documents/handbooks.

2.2 Working with additional layers of codings

Besides the main layer of CMP codings, you can create, store and access additional layers of codings in
ManifestoDocuments by passing a name of the coding layer as additional argument to the function codes():

assigning a dummy code of alternating As and Bs
codes(doc, "my_code") <- rep_len(c("A", "B"), length.out = length(doc))
head(codes(doc, "my_code"))

[1] "A" "B" "A" "B" "A" "B"

You can view the names of the coding layers stored in a ManifestoDocument with the function
code_layers():

code_layers(doc)

[1] "cmp_code" "eu_code" "my_code"

11

Note that certain documents downloaded from the Manifesto Corpus Database already have a second layer
of codes named eu_code. These are codes that have been assigned to quasi-sentences by CMP coders
additionally to the main CMP code to indicate policy statements that should or should not be implemented
on the level of the European union. The documents that were coded in this way are marked in the corpus’
metadata with the flag has_eu_code (see below Using the document metadata). Note that, since these codes
also have been used for computing the per and rile variables in the Manifesto Project Main Dataset, they
are also used in manifestoRs count_codes and rile functions (see below Scaling texts) if the respective
metadata flag is present.

2.3 Text mining tools

Since the Manifesto Corpus uses the infrastructure of the tm package (Feinerer & Hornik 2015), all of tms
filtering and transformation functionality can be applied directly to the downloaded ManifestoCorpus.

library(tm)

Loading required package: NLP

For example, standard natural language processors are available to clean the corpus:

head(content(my_corpus[["42110_200809"]]))

[1] "1. SONNE STATT ÖL: WIR HELFEN BEIM SPAREN"
[2] "Der Umstieg hat begonnen."
[3] "Die Menschen in Österreich fahren weniger Auto"
[4] "und mehr mit dem öffentlichen Verkehr"
[5] "und dem Rad."
[6] "Sie sanieren Häuser und Wohnungen"

corpus_cleaned <- tm_map(my_corpus, removePunctuation)
corpus_nostop <- tm_map(corpus_cleaned, removeWords, stopwords("german"))
head(content(corpus_nostop[["42110_200809"]]))

[1] "1 SONNE STATT ÖL WIR HELFEN BEIM SPAREN"
[2] "Der Umstieg begonnen"
[3] "Die Menschen Österreich fahren weniger Auto"
[4] " mehr öffentlichen Verkehr"
[5] " Rad"
[6] "Sie sanieren Häuser Wohnungen"

So is analysis in form of term document matrices:

tdm <- TermDocumentMatrix(corpus_nostop)
inspect(tdm[c("menschen", "wahl", "familie"),])

<<TermDocumentMatrix (terms: 3, documents: 32)>>
Non-/sparse entries: 79/17
Sparsity : 18%
Maximal term length: 8
Weighting : term frequency (tf)
Sample :

12

Docs
Terms 42110_200211 42110_201309 42110_201909 42320_200211 42320_201710
familie 2 8 13 2 10
menschen 65 144 142 78 126
wahl 2 9 2 2 5
Docs
Terms 42320_201909 42520_200610 42520_201309 42520_201710 42951_201309
familie 15 20 20 19 11
menschen 147 49 72 180 102
wahl 3 0 2 3 12

findAssocs(tdm, "stadt", 0.97) ## find correlated terms, see ?tm::findAssocs

$stadt
numeric(0)

For more information about the functionality provided by the tm, please refer to its documentation.

2.4 Selecting relevant parts of text

For applications in which not the entire text of a document is of interest, but rather a subset of the quasi-
sentences matching certain criteria, manifestoR provides a function subset(...) working just like R’s
internal subset function.

It can, for example, be used to filter quasi-sentences based on codes or the text:

subsetting based on codes (as example above)
doc_subcodes <- subset(doc, codes(doc) %in% c(202, 503, 607))
length(doc_subcodes)

[1] 115

subsetting based on text
doc_subtext <- subset(doc, grepl("Demokratie", content(doc)))

head(content(doc_subtext), n = 3)

[1] "Eine Demokratie benötigt auch die Unterstützung von Forschung jenseits
wirtschaftlicher Interessen."
[2] "In einer Demokratie sollen all jene wählen dürfen, die von den politischen
Entscheidungen betroffen sind."
[3] "Demokratie braucht die Teilhabe der BürgerInnen."

head(codes(doc_subtext), n = 10)

[1] "506" "202" "202" "201" "108" NA "202" "107"

Via tm_map the filtering operations can also be applied to an entire corpus:

13

https://CRAN.R-project.org/package=tm/vignettes/tm.pdf

corp_sub <- tm_map(my_corpus, function(doc) {
subset(doc, codes(doc) %in% c(202, 503, 607))

})

head(content(corp_sub[[3]]))

[1] "Darüber hinaus kamen, über das gesamte Erwerbsleben gerechnet, nur rund ein
Drittel der Arbeitnehmer in den Genuss einer Abfertigung."
[2] "Die damalige sozialistisch dominierte Koalition hat Arbeitsplätze
und Schutz für sozial Bedürftige versprochen, aber tatsächlich steigende
Arbeitslosenzahlen hingenommen, soziale Notlagen zunehmend verschärft und mehr
Menschen in Armut gedrängt."
[3] "Verbesserung der Rechtsdurchsetzung in arbeits- und sozialgerichtlichen
Verfahren."
[4] "Ausbau des Service- und Dienstleistungscharakters der Arbeitsinspektorate."
[5] "hat sich die Einkommensschere zwischen Männern und Frauen immer mehr
geöffnet."
[6] "Ein besonderes Problem bestand darin, dass die Asylverfahren sich oft
mehrere Jahre erstreckten."

head(codes(corp_sub))

[1] "503" "202" "202" "503" "503" "503"

For convenience, it is also possible to filter quasi-sentences with specific codes directly when downloading
a corpus. For this, the additional argument codefilter with a list of CMP codes of interest is passed to
mp_corpus:

corp_sub <- mp_corpus(countryname == "Australia", codefilter = c(103, 104))

Connecting to Manifesto Project DB API... corpus version: 2025-1

Your query resulted in 125 requested document items containing corpus metadata. Of these
items 81 could not be retrieved (reasons: 1 having no real documents coded (see progtype
3 and 99), 24 having no machine-readable texts, 56 having no machine-readable annotations
).

head(content(corp_sub[[1]]))

[1] "In the important area of defense alone, our defense white paper has made
the greatest ever additional provision for the future defense needs of Australia
of any government in more than a quarter of a century."
[2] "Over the next ten years we will invest an additional $32 billion in the
defense of Australia."
[3] "And how proud I am to say to you that when we came into government in March
of 1996 and we found not withstanding what Mr."
[4] "Beazley had told us during the election campaign that our budget was $10."
[5] "5 billion in deficit, that ’wed accumulated as a nation $96 billion of
federal government debt, the one restriction I put on Peter Costello and John
Fahey in getting the budget in shape was you will not cut any money out of
defense."

14

[6] "And not only ’didnt we cut any money out of defense we in fact increased
defense expenditure, and just as well because in that five and a half year
period ’weve had the demands of East Timor, of Bougainville, and now the
commitment to the war against terrorism which is as much our war and our fight
and our struggle as it is for the people of the United States."

head(codes(corp_sub))

[1] "104" "104" "104" "104" "104" "104"

2.5 Using the document metadata

Each document in the Manifesto Corpus has meta information about itself attached. They can be accessed
via the function meta:

meta(doc)

manifesto_id : 42110_200610
party : 42110
date : 200610
language : german
source : MARPOR
has_eu_code : FALSE
is_primary_doc : TRUE
may_contradict_core_dataset: FALSE
md5sum_text : b90378f0c6fca51b464bbe8cd2c96990
url_original : /down/originals/42110_2006.pdf
md5sum_original : 8fd5726c6363864c3ace6e2d497d647e
annotations : TRUE
handbook : 3
is_copy_of : NA
title : Zeit für Grün. Das Grüne Programm
translation_en : TRUE
id : 42110_200610

It is possible to access and also modify specific metadata entries:

meta(doc, "party")

[1] 42110

meta(doc, "manual_edits") <- TRUE
meta(doc)

manifesto_id : 42110_200610
party : 42110
date : 200610
language : german
source : MARPOR
has_eu_code : FALSE

15

is_primary_doc : TRUE
may_contradict_core_dataset: FALSE
md5sum_text : b90378f0c6fca51b464bbe8cd2c96990
url_original : /down/originals/42110_2006.pdf
md5sum_original : 8fd5726c6363864c3ace6e2d497d647e
annotations : TRUE
handbook : 3
is_copy_of : NA
title : Zeit für Grün. Das Grüne Programm
translation_en : TRUE
id : 42110_200610
manual_edits : TRUE

Document metadata can also be bulk-downloaded with the function mp_metadata, taking the same set of
parameters as mp_corpus:

metas <- mp_metadata(countryname == "Spain")
head(metas)

A tibble: 6 x 16
party date language source has_eu_code is_primary_doc may_contradict_core_~1
<dbl> <dbl> <chr> <chr> <lgl> <lgl> <lgl>
1 33220 197706 <NA> <NA> FALSE NA NA
2 33320 197706 spanish CEMP FALSE TRUE FALSE
3 33430 197706 spanish CEMP FALSE TRUE FALSE
4 33610 197706 <NA> <NA> FALSE NA NA
5 33901 197706 <NA> <NA> FALSE NA NA
6 33902 197706 <NA> <NA> FALSE NA NA
i abbreviated name: 1: may_contradict_core_dataset
i 9 more variables: manifesto_id <chr>, md5sum_text <chr>,
url_original <chr>, md5sum_original <chr>, annotations <lgl>,
handbook <chr>, is_copy_of <chr>, title <chr>, translation_en <lgl>

The field …

• … party contains the party id from the Manifesto Project Dataset.
• … date contains the month of the election in the same format as in the Manifesto Project Dataset

(YYYYMM)
• … language specifies the language of the document as a word.
• … has_eu_code is TRUE for documents in which the additional coding layer eu_code is present. These

codes have been assigned to quasi-sentences by CMP coders additionally to the main CMP code to
indicate policy statements that should or should not be implemented on the level of the European
union.

• … is_primary_doc is FALSE only in cases where for a single party and election date multiple manifestos
are available and this is the document not used for coding by the Manifesto Project.

• … may_contradict_core_dataset is TRUE for documents where the CMP codings in the corpus
documents might be inconsistent with the coding aggregates in the Manifesto Project’s Main Dataset.
This applies to manifestos which have been either recoded after they entered the dataset or cases where
the dataset entries are derived from hand-written coding sheets used prior to the digitalization of the
Manifesto Project’s data workflow, but the documents were digitalized and added to the Manifesto
Corpus afterwards.

• … annotations is TRUE whenever there are CMP codings available for the document.
• … handbook an integer that indicates the version of the coding instructions that was used for the coding

(e.g. 4 or 5) (since 2016-6).

16

• … title the title of the manifesto (in original language) (since 2017-1).
• … translation_en is TRUE whenever an english translation is available for the document (since

2024-1).

The other metadata entries have primarily technical functions for communication between the manifestoR
package and the online database (for more information have a look at the online documentation of the
Manifesto Corpus).

3 Efficiency and reproducibility: caching and versioning

To save time and network traffic, manifestoR caches all downloaded data and documents in your com-
puter’s working memory and connects to the online database only when data is required that has not been
downloaded before.

corpus <- mp_corpus(wanted)

Connecting to Manifesto Project DB API... corpus version: 2025-1
Connecting to Manifesto Project DB API... corpus version: 2025-1

subcorpus <- mp_corpus(wanted[3:7,])

Note that in the second query no message informing about the connection to the Manifesto Project’s Database
is printed, since no data is actually downloaded.

This mechanism also ensures reproducibility of your scripts, analyses and results: executing your code
again will yield the same results, even if the Manifesto Project’s Database is updated in the meantime. Since
the cache is only stored in the working memory, however, in order to ensure reproducibility across R sessions,
it is advisable to save the cache to the hard drive at the end of analyses and load it in the beginning:

mp_save_cache(file = "manifesto_cache.RData")

... start new R session ... then:

library(manifestoR)
mp_setapikey("manifesto_apikey.txt")
mp_load_cache(file = "manifesto_cache.RData")

This way manifestoR always works with the same snapshot of the Manifesto Project Database and Corpus,
saves a lot of unnecessary online traffic and also enables you to continue with your analyses offline.

Each snapshot of the Manifesto Corpus is identified via a version number, which is stored in the cache
together with the data and can be accessed via

mp_which_corpus_version()

[1] "2025-1"

When collaborating on a project with other researchers, it is advisable to use the same corpus version for
reproducibility of the results. manifestoR can be set to use a specific version with the functions

17

https://manifesto-project.wzb.eu/information/documents/corpus

mp_use_corpus_version("2015-3")

Note that mp_use_corpus_version instantly updates already locally cached data to the desired new corpus
version and that such updating is not yet implemented for translated manifestos.

In order to guarantee reproducibility of published work, please also mention the corpus version id used
for the reported analyses in the publication.

For updating locally cached data to the most recent version of the Manifesto Project Corpus, manifestoR
provides two functions:

mp_check_for_corpus_update()

$update_available
[1] FALSE
##
$versionid
[1] "2025-1"

mp_update_cache()

[1] "2025-1"

mp_check_for_corpus_update()

$update_available
[1] FALSE
##
$versionid
[1] "2025-1"

For full reproducibility of your final scripts you currently have to take into account that using the approach
of directly specifying a logical expression for mp_corpus*/mp_metadata (e.g. mp_corpus(party == 41320
& date >= 201709)) makes use of the most recent version of the dataset (via mp_maindataset()) and thus
to preserve the version of the dataset used for querying corpus documents and metadata you should query
and filter the dataset directly and then provide the result to the mp_corpus/mp_metadata function:

mpds <- mp_maindataset(version = "MPDS2020a")

Connecting to Manifesto Project DB API... corpus version: 2025-1

wanted <- mpds %>% filter(party == 41320 & date >= 201709)
wanted

A tibble: 1 x 174
country countryname oecdmember eumember edate date party partyname
<dbl> <chr> <dbl> <dbl> <date> <dbl> <dbl> <chr>
1 41 Germany 10 10 2017-09-24 201709 41320 Social Democr~
i 166 more variables: partyabbrev <chr>, parfam <dbl>, coderid <dbl>,
manual <dbl>, coderyear <dbl>, testresult <dbl>, testeditsim <dbl>,
pervote <dbl>, voteest <dbl>, presvote <dbl>, absseat <dbl>,

18

totseats <dbl>, progtype <dbl>, datasetorigin <dbl>, corpusversion <chr>,
total <dbl>, peruncod <dbl>, per101 <dbl>, per102 <dbl>, per103 <dbl>,
per104 <dbl>, per105 <dbl>, per106 <dbl>, per107 <dbl>, per108 <dbl>,
per109 <dbl>, per110 <dbl>, per201 <dbl>, per202 <dbl>, per203 <dbl>, ...

mp_corpus(wanted)

<<ManifestoCorpus>>
Metadata: corpus specific: 0, document level (indexed): 0
Content: documents: 1

... can alternatively also be passed directly to the mp_corpus function
mp_corpus(mpds %>% filter(party == 41320 & date >= 201709))

For more detailed information on the caching mechanism and on how to use and load specific snap-
shots of the Manifesto Corpus, refer to the R documentations of the functions mentioned here as well
mp_use_corpus_version, mp_corpusversions, mp_which_corpus_version.

4 Exporting documents

If required ManifestoCorpus as well as ManifestoDocument objects can be converted to R’s internal
data.frame format and processed further:

doc_df <- as_tibble(as.data.frame(doc))
head(doc_df)

A tibble: 6 x 5
text cmp_code eu_code my_code pos
<chr> <chr> <chr> <chr> <int>
1 1 Lebensqualität <NA> <NA> A 1
2 1.1 Grüne Energiewende <NA> <NA> B 2
3 Lebensqualität bedeutet in einer unversehrten ~ 501 <NA> A 3
4 Die Verantwortung dafür liegt bei uns: Wir all~ 606 <NA> B 4
5 Ein Umdenken in der Energiepolitik ist eine we~ 501 <NA> A 5
6 Wir Grüne stehen für eine Energiewende hin zu ~ 501 <NA> B 6

The function also provides a parameter to include all available metadata in the export:

doc_df_with_meta <- as.data.frame(doc, with.meta = TRUE)
print(names(doc_df_with_meta))

[1] "text" "cmp_code"
[3] "eu_code" "my_code"
[5] "pos" "manifesto_id"
[7] "party" "date"
[9] "language" "source"
[11] "has_eu_code" "is_primary_doc"
[13] "may_contradict_core_dataset" "md5sum_text"
[15] "url_original" "md5sum_original"
[17] "annotations" "handbook"

19

[19] "is_copy_of" "title"
[21] "translation_en" "id"
[23] "manual_edits"

For more information on the available metadata per document, refer to the section Using the document
metadata above.

Note again that also all functionality provided by tm, such as writeCorpus is available on a
ManifestoCorpus.

5 Scaling texts

Scaling of political content refers to the estimation of its location in a policy space (Grimmer & Stewart
2013). manifestoR provides several functions to scale coded documents by known routines such as the RILE
measure (see sections Using manifestoR’s scaling functions), as well as infrastructure to create new scales
(see section Writing custom scaling functions) and statistical analysis routines for the distributions of scaling
functions (see section Bootstrapping scaling function distributions and standard errors).

5.1 Using manifestoR’s scaling functions

Implementationwise, a scaling function in manifestoR takes a data.frame of cases and outputs a position
value for each case. The Manifesto Project Dataset (MPDS) can be downloaded in manifestoR using the
function mp_maindataset() (see section Downloading the Manifesto Project Dataset above). Then you can
e.g. compute the RILE scores of cases from the main dataset by calling:

mpds <- mp_maindataset()

Connecting to Manifesto Project DB API...
Connecting to Manifesto Project DB API... corpus version: 2025-1

rile(subset(mpds, countryname == "Albania"))

[1] 1.592900e+01 -1.146300e+01 1.027400e+01 1.111100e+01 7.176000e+00
[6] 1.792300e+01 5.405000e+00 5.882000e+00 -7.298000e+00 -1.354000e+01
[11] 6.012000e+00 4.232200e+01 1.431200e+01 2.220446e-16 -9.090000e+00
[16] -9.350000e-01 -2.187000e+00 -9.180000e-01 5.596200e+01 -1.304900e+01
[21] 8.059000e+00 9.919000e+00 -4.166000e+00 7.760000e-01 5.710000e-01
[26] -2.187000e+00 -9.180000e-01 5.596200e+01 2.718500e+01 2.428600e+01
[31] 9.919000e+00 -4.166000e+00 2.247200e+01 5.710000e-01 -2.187000e+00
[36] -9.180000e-01 -4.166000e+00 2.247200e+01 -1.917600e+01 -1.367800e+01
[41] NA NA NA -1.235300e+01 -8.274000e+00
[46] NA -6.755000e+00

What variables are used from the input data depends on the scaling function. All currently implemented
functions use only the percentages of coded categories, in the form of variables starting with “per” as in the
Manifesto Project Dataset. The following functions are currently available:

• RILE according to Laver & Budge (1992): rile
• logit rile according to Lowe et al. (2011): logit_rile
• Vanilla scaling according to Gabel & Huber (2000): vanilla

20

• Franzmann & Kaiser (2009): franzmann_kaiser
• Issue attention diversity according to Greene (2015): issue_attention_diversity
• Programmatic clarity measure according to Giebeler et al. (2015): mp_clarity
• Nicheness measures according to Bischof (2015) or Meyer and Miller (2013): mp_nicheness
• … (more scaling functions are planned and contributions are welcome, see Contributing to manifestoR).

To apply scaling functions directly to coded documents or corpora you can use the function mp_scale. It
takes a ManifestoCorpus or ManifestoDocument and returns the scaled positions for each document:

corpus <- mp_corpus(countryname == "Romania")

Connecting to Manifesto Project DB API... corpus version: 2025-1
Connecting to Manifesto Project DB API... corpus version: 2025-1

mp_scale(corpus, scalingfun = logit_rile)

party date logit_rile
1 93223 199611 -0.18965737
2 93322 199611 -0.25231044
3 93411 199611 -0.72593700
4 93711 199611 0.74721440
5 93712 199611 1.18958407
6 93951 199611 0.26700718
7 93221 200011 0.35216653
8 93223 200011 0.59703282
9 93430 200011 -1.20640886
10 93712 200011 0.71465339
11 93951 200011 -0.34998596
12 93001 200411 -1.19625076
13 93041 200411 0.26304477
14 93712 200411 0.10821358
15 93951 200411 -0.08659253
16 93002 200811 -0.65787904
17 93430 200811 0.64662716
18 93530 200811 0.25276581
19 93951 200811 -0.25629576
20 93031 201212 0.71766680
21 93061 201212 -0.48130318
22 93951 201212 -0.74497225
23 93981 201212 -0.78458139
24 93223 201612 -0.62659751
25 93420 201612 0.72593700
26 93430 201612 0.07145896
27 93440 201612 -1.21739582
28 93540 201612 -0.03587829
29 93951 201612 -0.53630471

5.2 Writing custom scaling functions

Writing custom scaling functions for texts in manifestoR is easy, since it requires nothing more than writing
a function that takes a data.frame of cases as input and returns a vector of values. mp_scale provides the

21

mechanism that converts a coded text to a data.frame with “per” variables such that your function can
handle it:

custom_scale <- function(data) {
data$per402 - data$per401

}
mp_scale(corpus, scalingfun = custom_scale)

party date custom_scale
1 93223 199611 2.1660650
2 93322 199611 -1.4571949
3 93411 199611 5.4545455
4 93711 199611 10.9243697
5 93712 199611 -1.6666667
6 93951 199611 -2.0100503
7 93221 200011 -1.2835473
8 93223 200011 -0.2988048
9 93430 200011 -2.0512821
10 93712 200011 1.2195122
11 93951 200011 -0.6134969
12 93001 200411 7.6923077
13 93041 200411 -1.6181230
14 93712 200411 10.9090909
15 93951 200411 1.3081395
16 93002 200811 1.9718310
17 93430 200811 1.5463918
18 93530 200811 0.4494382
19 93951 200811 0.0000000
20 93031 201212 1.5584416
21 93061 201212 3.2967033
22 93951 201212 2.3631841
23 93981 201212 2.9629630
24 93223 201612 14.6696529
25 93420 201612 23.3333333
26 93430 201612 7.3529412
27 93440 201612 1.3282732
28 93540 201612 -2.2613065
29 93951 201612 4.1666667

In addition, manifestoR provides several function templates you can use for creating scales, e.g. a weighted
sum of per variables (scale_weighted), the logit ratio of category counts (scale_logit) or ratio scaling
as suggested by Kim and Fording (1998) and by Laver & Garry (2000) (scale_ratio_1). For example, the
ratio equivalent to the simple function above can be implemented as:

custom_scale <- function(data) {
scale_ratio_1(data, pos = c("per402"), neg = c("per401"))

}
mp_scale(corpus, scalingfun = custom_scale)

party date custom_scale
1 93223 199611 0.50000000
2 93322 199611 -0.28571429
3 93411 199611 1.00000000

22

4 93711 199611 0.86666667
5 93712 199611 -1.00000000
6 93951 199611 -0.72727273
7 93221 200011 -0.23404255
8 93223 200011 -0.05084746
9 93430 200011 -0.40000000
10 93712 200011 0.33333333
11 93951 200011 -0.42857143
12 93001 200411 1.00000000
13 93041 200411 -0.20000000
14 93712 200411 1.00000000
15 93951 200411 0.60000000
16 93002 200811 0.63636364
17 93430 200811 0.17647059
18 93530 200811 0.10000000
19 93951 200811 NaN
20 93031 201212 0.30000000
21 93061 201212 0.60000000
22 93951 201212 0.70370370
23 93981 201212 0.40000000
24 93223 201612 0.95620438
25 93420 201612 1.00000000
26 93430 201612 0.51724138
27 93440 201612 0.77777778
28 93540 201612 -0.52941176
29 93951 201612 1.00000000

For details on these template functions, their parameters and how to use them, see the R documentation
?scale.

5.3 Bootstrapping scaling function distributions and standard errors

In order to better evaluate the significance of analysis results based on scaled coded texts, Benoit, Mikhaylov,
and Laver (2009) proposed to approximate the standard errors of the scale variable by bootstrapping its
distribution. This procedure is available via the function mp_bootstrap:

data <- subset(mpds, countryname == "Sweden")
mp_bootstrap(data, fun = rile)

rile sd
1 9.600 2.333463e+00
2 -37.800 5.549409e+00
3 9.500 1.017390e+01
4 28.000 9.442132e+00
5 23.810 1.131290e+01
6 -44.000 7.897982e+00
7 -33.400 5.277663e+00
8 22.900 6.855791e+00
9 56.300 1.241083e+01
10 -4.900 5.707488e+00
11 -40.700 7.502680e+00
12 -28.300 5.220075e+00
13 16.100 7.566515e+00

23

14 40.900 3.311436e+00
15 1.200 8.415230e+00
16 -46.200 5.366286e+00
17 -44.200 4.787537e+00
18 -17.300 5.989322e+00
19 53.700 5.843382e+00
20 1.800 5.617011e+00
21 -41.700 2.854908e+00
22 -24.700 1.949209e+00
23 21.600 1.118226e+01
24 56.100 4.298800e+00
25 11.900 6.056399e+00
26 -40.500 4.913176e+00
27 -61.400 1.678971e+00
28 8.600 1.071042e+01
29 34.800 1.468364e+00
30 6.000 6.593278e+00
31 -50.000 1.182583e+00
32 -33.600 9.564496e-01
33 -48.900 2.461664e+00
34 60.400 4.868486e-15
35 -14.042 4.943363e+00
36 -46.900 2.754646e+00
37 -42.900 6.578831e+00
38 -59.900 4.428534e+00
39 25.800 2.447700e+00
40 -11.600 2.640362e+00
41 -40.900 4.884337e+00
42 -41.200 3.778025e+00
43 -33.500 5.381605e+00
44 10.800 1.162795e+01
45 -14.600 7.529737e+00
46 -43.000 4.977603e+00
47 -7.700 8.867109e+00
48 -11.500 5.193140e+00
49 19.700 8.851355e+00
50 -24.000 5.065965e+00
51 -38.300 3.820143e+00
52 -11.500 7.092798e+00
53 -2.100 4.813070e+00
54 2.200 7.693527e+00
55 -18.200 3.936077e+00
56 -47.300 3.406016e+00
57 -15.300 5.384471e+00
58 -15.200 2.590679e+00
59 23.100 5.914471e+00
60 -8.100 3.813946e+00
61 -39.700 3.345139e+00
62 -18.500 4.896548e+00
63 4.800 6.704786e+00
64 25.100 6.234874e+00
65 -14.000 3.602897e+00
66 -36.700 3.400392e+00
67 -21.100 6.986032e+00

24

68 12.900 5.662892e+00
69 -4.545 1.117142e+01
70 59.800 6.867035e+00
71 -1.100 5.443045e+00
72 -18.400 5.400279e+00
73 -37.400 3.619708e+00
74 -23.900 7.206301e+00
75 -7.700 4.343040e+00
76 36.700 4.547983e+00
77 -5.300 6.274064e+00
78 -12.643 5.867903e+00
79 -42.753 4.248212e+00
80 -6.154 5.224940e+00
81 3.927 3.948939e+00
82 -4.545 1.145652e+01
83 43.750 5.098251e+00
84 5.427 5.320700e+00
85 42.804 4.188379e+00
86 -6.250 6.360150e+00
87 -27.272 3.987757e+00
88 23.787 4.585959e+00
89 19.271 4.754104e+00
90 13.954 7.121780e+00
91 40.201 4.737907e+00
92 21.817 4.783353e+00
93 -36.110 6.380632e+00
94 -35.953 2.840775e+00
95 -3.516 4.648741e+00
96 14.286 7.625688e+00
97 4.790 6.442047e+00
98 37.424 3.434718e+00
99 11.570 4.460457e+00
100 -26.087 4.378209e+00
101 -33.661 2.466936e+00
102 -18.314 4.476815e+00
103 0.932 3.402574e+00
104 6.326 4.452084e+00
105 38.061 3.333434e+00
106 10.645 4.300089e+00
107 -11.616 4.707454e+00
108 -35.991 3.217236e+00
109 -24.172 3.642444e+00
110 14.546 3.333650e+00
111 0.805 7.290129e+00
112 3.962 2.748432e+00
113 -4.458 4.110333e+00
114 -9.160 4.157730e+00
115 -12.205 4.959874e+00
116 -32.273 4.496509e+00
117 -4.803 2.559381e+00
118 8.143 3.617196e+00
119 2.478 1.625018e+00
120 15.688 5.752220e+00
121 -2.240 2.249467e+00

25

122 -26.157 3.100827e+00
123 -33.888 3.565367e+00
124 -52.496 3.030085e+00
125 -2.521 3.698949e+00
126 4.884 4.228999e+00
127 -16.769 1.953062e+00
128 -6.983 4.627311e+00
129 7.894 3.436531e+00
130 -15.966 2.423898e+00
131 -40.700 2.419012e+00
132 -20.001 4.834154e+00
133 -1.143 3.368356e+00
134 -12.712 8.100014e+00
135 7.564 2.566562e+00
136 -9.090 4.025258e+00
137 9.781 3.403502e+00
138 -5.375 3.943520e+00
139 -36.672 3.228115e+00
140 -5.114 4.139668e+00
141 10.626 4.170772e+00
142 -5.556 8.561712e+00
143 18.192 3.020181e+00
144 4.297 2.152297e+00
145 4.706 3.289545e+00

Note that the argument fun can be any scaling function and the returned data.frame contains the scaled
position as well as the bootstrapped standard deviations. Also, with the additional parameters statistics,
you can compute arbitrary statistics from the bootstrapped distribution, such as variance or quantiles:

custom_scale <- function(data) {
data$per402 - data$per401

}
mp_bootstrap(data,

fun = custom_scale,
statistics = list(var, 0.025, 0.975))

custom_scale var q0.025 q0.975
1 0.000 0.00000000 0.00000000 0.0000000
2 0.000 0.00000000 0.00000000 0.0000000
3 -3.200 14.23141071 -10.63333333 3.0380952
4 -17.500 24.56395081 -27.28947368 -8.0263158
5 -9.524 37.09087048 -23.80976190 0.0000000
6 0.000 0.00000000 0.00000000 0.0000000
7 -3.300 2.50764524 -6.80250000 -0.7558333
8 -6.900 12.50278154 -13.67241379 0.0000000
9 -25.000 56.24440184 -41.17647059 -11.7647059
10 -5.700 5.63965285 -10.73142857 -1.3414286
11 0.000 0.00000000 0.00000000 0.0000000
12 0.000 0.00000000 0.00000000 0.0000000
13 -5.700 6.77954751 -10.92735849 -0.8405660
14 -4.900 6.99817891 -9.54672131 0.5024590
15 1.400 10.35715416 -4.35937500 7.2656250
16 5.900 4.02496735 2.23865546 9.7008403
17 2.300 1.25765441 0.55950920 4.4900613

26

18 4.800 6.61695966 -0.01589041 9.5342466
19 5.100 15.07306817 -2.95593220 12.5627119
20 4.400 8.74449122 -0.84636364 10.1563636
21 0.200 0.04583213 0.00000000 0.6426573
22 3.200 0.84590725 1.46250000 4.9500000
23 11.800 43.21579334 0.00000000 25.3921569
24 1.500 1.78733049 -0.59153846 4.1407692
25 4.800 14.47380119 -2.93015873 12.4531746
26 0.000 0.00000000 0.00000000 0.0000000
27 0.500 0.10339623 0.00000000 1.1892031
28 0.000 23.43055518 -9.48913043 9.4891304
29 1.200 1.32302845 -1.06186441 3.4889831
30 0.000 7.54001177 -4.95894040 5.5788079
31 0.000 0.00000000 0.00000000 0.0000000
32 0.800 0.03999095 0.44621514 1.2047809
33 -0.500 0.35578437 -1.68541667 0.4875670
34 -41.500 16.54160117 -49.03226415 -33.0490566
35 1.702 6.01409216 -2.97878298 6.8086468
36 0.000 0.00000000 0.00000000 0.0000000
37 0.000 0.00000000 0.00000000 0.0000000
38 2.100 3.52845597 -1.67628866 5.8670103
39 5.400 3.08445662 1.94754098 8.8721311
40 4.200 1.38708884 2.06852713 6.6488372
41 1.300 1.26038270 0.00000000 4.0051282
42 1.000 0.53364454 0.00000000 2.8294416
43 0.800 1.61466661 -1.43739837 3.5934959
44 0.000 18.38757773 -7.97446809 7.9744681
45 8.400 13.97336965 2.01614583 16.3333333
46 0.000 1.16666057 -2.10000000 2.1000000
47 0.000 0.00000000 0.00000000 0.0000000
48 -2.700 2.79841211 -5.92617450 0.5926174
49 -3.900 26.57535738 -14.03947368 6.3815789
50 4.000 2.13172289 1.17964072 7.0778443
51 1.600 0.72353199 0.00000000 3.6800000
52 5.700 6.29265418 1.18571429 10.6714286
53 0.000 2.63714125 -3.30419580 3.3041958
54 -3.800 12.45453242 -10.76504854 2.6912621
55 3.700 1.78838899 1.31351351 6.5675676
56 0.000 0.00000000 0.00000000 0.0000000
57 0.700 0.39912854 0.00000000 2.2675497
58 0.200 0.55972024 -1.15714286 1.7357143
59 -1.600 13.37911719 -8.72996063 5.8078740
60 4.300 2.16249158 1.75178571 7.3575000
61 0.000 0.00000000 0.00000000 0.0000000
62 0.000 0.00000000 0.00000000 0.0000000
63 -4.100 6.65718556 -9.70243902 0.7463415
64 -5.700 10.85185935 -12.45857143 0.6557143
65 3.000 2.05316598 0.28318584 5.9469027
66 0.000 0.00000000 0.00000000 0.0000000
67 -1.200 1.43121329 -3.70000000 0.0000000
68 -6.400 9.27134861 -12.45024876 -0.4980100
69 0.000 0.00000000 0.00000000 0.0000000
70 -5.800 36.30005676 -18.28750000 5.7750000
71 -0.600 3.36627893 -4.17916667 2.9851190

27

72 2.800 3.73250855 0.00000000 7.0422535
73 0.000 0.00000000 0.00000000 0.0000000
74 0.000 0.00000000 0.00000000 0.0000000
75 -1.300 5.45452652 -5.69130435 3.3478261
76 2.200 7.94213123 -3.26885246 7.6273224
77 0.000 6.23385153 -5.19791667 5.1979167
78 0.000 0.00000000 0.00000000 0.0000000
79 0.000 0.00000000 0.00000000 0.0000000
80 1.538 1.21775911 0.00000000 3.8461154
81 -2.143 3.01792813 -5.35714286 1.4285714
82 0.000 0.00000000 0.00000000 0.0000000
83 1.562 8.51332507 -4.16670833 7.2917396
84 5.427 5.18751819 1.55040310 10.0776202
85 2.159 2.88023263 -1.07912590 5.7553381
86 0.000 0.00000000 0.00000000 0.0000000
87 0.000 0.00000000 0.00000000 0.0000000
88 -0.486 1.56812530 -2.91259223 1.9417282
89 2.084 7.30002028 -2.60424479 7.8127344
90 -1.163 11.44867738 -8.13969767 5.8140698
91 -7.537 8.03864873 -13.06597990 -2.0101508
92 6.061 7.46247117 1.21208485 12.1208485
93 0.000 0.00000000 0.00000000 0.0000000
94 0.604 0.16878938 0.00000000 1.5105740
95 3.515 1.59942234 1.17191016 6.2501875
96 2.381 11.62426691 -3.57121429 9.5232381
97 0.000 2.76743846 -2.99401198 2.9940120
98 -3.892 6.27306235 -8.98185629 0.8981856
99 7.025 7.90039161 1.23963223 12.8095331
100 4.348 2.67424459 1.24222360 8.0744534
101 0.491 0.12554481 0.00000000 1.2285135
102 -0.366 1.52473773 -2.93046154 2.1978462
103 -1.631 2.02690051 -4.19584615 1.3986154
104 -0.302 1.38243325 -2.40961446 1.8147409
105 -4.964 3.80190832 -8.51629297 -1.1819976
106 6.464 4.68946384 2.28134601 10.6462814
107 3.535 1.83536037 1.01008081 6.0604848
108 0.514 0.12737954 0.00000000 1.2853342
109 0.509 0.35302214 -0.50888550 1.7810992
110 1.157 1.32542574 -0.99172562 3.6363273
111 0.807 10.77467678 -5.66509597 7.2577742
112 2.680 0.72001909 1.04606868 4.4290373
113 1.592 2.97677043 -1.59235669 4.7850318
114 5.725 2.00448453 3.05343511 8.7786260
115 0.000 0.00000000 0.00000000 0.0000000
116 3.546 1.17744160 1.41845390 5.6738156
117 2.729 0.40642342 1.52565502 4.0393013
118 1.670 1.16607994 -0.41753653 3.7578288
119 2.426 0.28231515 1.37129430 3.3768122
120 5.392 3.22135288 1.96076471 9.3136324
121 0.264 1.32256148 -1.84790000 2.6351515
122 0.804 0.40103349 -0.40240241 2.0120121
123 1.389 0.36463950 0.27778611 2.7778611
124 2.218 0.49196478 0.92423290 3.5120850
125 1.606 0.67932659 0.00000000 3.2109771

28

126 5.656 1.71743938 3.34190231 8.2262211
127 -2.387 0.28945803 -3.42720685 -1.4060728
128 1.588 0.98039798 -0.31746032 3.4920635
129 2.369 3.47882310 -1.05262105 6.0525711
130 1.177 0.25661783 0.33612773 2.1848303
131 0.000 0.00000000 0.00000000 0.0000000
132 1.935 0.62685753 0.64517419 3.5484581
133 -0.163 0.78540425 -1.96076471 1.4705735
134 0.000 0.00000000 0.00000000 0.0000000
135 0.199 0.45766480 -1.19411343 1.4926418
136 0.000 0.20746602 -0.93237296 0.9323730
137 -2.391 1.43763649 -4.78241739 -0.2173826
138 -0.358 0.13191793 -1.08421855 0.0000000
139 0.000 0.00000000 0.00000000 0.0000000
140 0.284 0.22098620 -0.56817614 1.1363523
141 -9.007 1.86352048 -11.77852656 -6.4666420
142 1.852 1.64763597 0.00000000 4.6297222
143 -1.483 0.42398910 -2.69881405 -0.2695445
144 -2.487 0.37669639 -3.69257649 -1.2810980
145 -3.484 1.37301305 -5.74907143 -1.2151446

6 Additional Information

For a more detailed reference and complete list of the functions provided by manifestoR, see the R package
reference manual on CRAN: https://CRAN.R-project.org/package=manifestoR/manifestoR.pdf

6.1 Contacting the Manifesto Project team

You can get in touch with the Manifesto Project team by e-mailing to manifesto-communication@wzb.eu.
We are happy to receive your feedback and answer questions about the Manifesto Corpus, including errors or
obscurities in the corpus documents. In this case please make sure to include the party id, election date and
the corpus version you were working with (accessible via mp_which_corpus_version). For general questions
about the Project and dataset, please check the Frequently Asked Questions section on our website first.

6.2 Contributing to manifestoR

We welcome bug reports, feature requests or (planned) source code contributions for the manifestoR package.
For all of these, best refer to our repository on github: https://github.com/ManifestoProject/manifestoR.
For more information, please refer to the Section “Developing” in the README file of the github repository.

29

https://CRAN.R-project.org/package=manifestoR/manifestoR.pdf
mailto:manifesto-communication@wzb.eu
https://manifesto-project.wzb.eu/questions
https://github.com/ManifestoProject/manifestoR

7 References

Benoit, K., Laver, M., & Mikhaylov, S. (2009). Treating Words as Data with Error: Uncertainty in Text
Statements of Policy Positions. American Journal of Political Science, 53(2), 495-513. https://doi.org/10.
1111/j.1540-5907.2009.00383.x

Bischof, D. (2015). Towards a Renewal of the Niche Party Concept Parties, Market Shares and Condensed
Offers. Party Politics.

Feinerer, I., & Hornik, K. (2015). Tm: Text Mining Package. https://CRAN.R-project.org/package=tm/
index.html

Franzmann, S., & Kaiser, A. (2006): Locating Political Parties in Policy Space. A Reanalysis of Party
Manifesto Data, Party Politics, 12:2, 163-188

Gabel, M. J., & Huber, J. D. (2000). Putting Parties in Their Place: Inferring Party Left-Right Ideological
Positions from Party Manifestos Data. American Journal of Political Science, 44(1), 94-103.

Giebler, H., Lacewell, O.P., Regel, S., and Werner, A. (2015). Niedergang oder Wandel? Parteitypen und
die Krise der repraesentativen Demokratie. In Steckt die Demokratie in der Krise?, ed. Wolfgang Merkel,
181-219. Wiesbaden: Springer VS

Greene, Z. (2015). Competing on the Issues How Experience in Government and Economic Conditions
Influence the Scope of Parties’ Policy Messages. Party Politics.

Grimmer, J., & Stewart, B.. 2013. Text as Data: The Promise and Pitfalls of Automatic Content Analysis
Methods for Political Texts. Political Analysis 21(3): 267–97.

Kim, H., & Fording, R. C. (1998). Voter ideology in western democracies, 1946-1989. European Journal of
Political Research, 33(1), 73-97.

Laver, M. & Budge, I., eds. (1992). Party Policy and Government Coalitions, Houndmills, Basingstoke,
Hampshire: The MacMillan Press 1992

Laver, M., & Garry, J. (2000). Estimating Policy Positions from Political Texts. American Journal of
Political Science, 44(3), 619-634.

Lehmann, P., Franzmann, S., Al-Gaddooa, D., Burst, T., Ivanusch, C., Lewandowski, J., Regel, S., Rieth-
müller, F., Zehnter, L. (2025): Manifesto Corpus. Version: 2025-1. Berlin: WZB Berlin Social Science
Center/Göttingen: Institute for Democracy Research (IfDem).

Lowe, W., Benoit, K., Mikhaylov, S., & Laver, M. (2011). Scaling Policy Preferences from Coded Political
Texts. Legislative Studies Quarterly, 36(1), 123-155.

Meyer, T.M., & Miller, B. (2013). The Niche Party Concept and Its Measurement. Party Politics 21(2):
259-271.

Lehmann, P., Franzmann, S., Al-Gaddooa, D., Burst, T., Ivanusch, C., Regel, S., Riethmüller, F., Volkens,
A., Weßels, B., Zehnter, L. (2025): The Manifesto Data Collection. Manifesto Project (MRG/CMP/MAR-
POR). Version 2025a. Berlin: Wissenschaftszentrum Berlin für Sozialforschung (WZB) / Göttingen: Institut
für Demokratieforschung (IfDem). https://doi.org/10.25522/manifesto.mpds.2025a

30

https://doi.org/10.1111/j.1540-5907.2009.00383.x
https://doi.org/10.1111/j.1540-5907.2009.00383.x
https://CRAN.R-project.org/package=tm/index.html
https://CRAN.R-project.org/package=tm/index.html
https://doi.org/10.25522/manifesto.mpds.2025a

	Downloading documents from the Manifesto Corpus
	Loading the package
	Connecting to the Manifesto Project Database API
	Downloading the Manifesto Project Dataset
	Downloading documents
	Viewing original documents
	Accessing the category scheme and category descriptions

	Processing and analysing the corpus documents
	Working with the CMP codings
	Working with additional layers of codings
	Text mining tools
	Selecting relevant parts of text
	Using the document metadata

	Efficiency and reproducibility: caching and versioning
	Exporting documents
	Scaling texts
	Using manifestoR's scaling functions
	Writing custom scaling functions
	Bootstrapping scaling function distributions and standard errors

	Additional Information
	Contacting the Manifesto Project team
	Contributing to manifestoR

	References

