
Package ‘microeco’
January 27, 2026

Type Package

Title Microbial Community Ecology Data Analysis

Version 2.0.0

Author Chi Liu [aut, cre],
Felipe R. P. Mansoldo [ctb],
Minjie Yao [ctb],
Xiangzhen Li [ctb]

Maintainer Chi Liu <liuchi0426@126.com>

Description A series of statistical and plotting approaches in microbial community ecol-
ogy based on the R6 class. The classes are designed for data preprocessing, taxa abundance plot-
ting, alpha diversity analysis, beta diversity analysis, differential abundance test, null model anal-
ysis, network analysis, machine learning, environmental data analysis and functional analysis.

URL https://github.com/ChiLiubio/microeco

Depends R (>= 3.5.0)

Imports R6, stats, ape, vegan, rlang, data.table, magrittr, dplyr,
tibble, scales, grid, ggplot2 (>= 3.5.0), RColorBrewer,
reshape2, igraph (>= 2.0.0), lifecycle

Suggests GUniFrac, MASS, ggpubr, randomForest, ggdendro, ggrepel,
agricolae, gridExtra, picante, pheatmap, rgexf, mice, GGally

License GPL-3

LazyData true

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2026-01-27 07:50:02 UTC

RoxygenNote 7.3.2

1

https://github.com/ChiLiubio/microeco

2 clone

Contents

clone . 2
dataset . 3
dropallfactors . 4
env_data_16S . 5
fungi_func_FungalTraits . 5
fungi_func_FUNGuild . 5
microeco . 6
microtable . 6
otu_table_16S . 19
otu_table_ITS . 20
phylo_tree_16S . 20
prok_func_FAPROTAX . 20
prok_func_NJC19_list . 21
sample_info_16S . 21
sample_info_ITS . 21
Tax4Fun2_KEGG . 22
taxonomy_table_16S . 22
taxonomy_table_ITS . 22
tidy_taxonomy . 23
trans_abund . 24
trans_alpha . 35
trans_beta . 41
trans_classifier . 51
trans_diff . 62
trans_env . 73
trans_func . 89
trans_network . 97
trans_norm . 113
trans_nullmodel . 117
trans_venn . 128

Index 134

clone Copy an R6 class object

Description

Copy an R6 class object

Usage

clone(x, deep = TRUE)

dataset 3

Arguments

x R6 class object

deep default TRUE; TRUE means deep copy, i.e. copied object is unlinked with the
original one.

Value

identical but unlinked R6 object

Examples

data("dataset")
clone(dataset)

dataset The dataset structured with microtable class for the demonstration of
examples

Description

The dataset arose from 16S rRNA gene amplicon sequencing of wetland soils in China <doi:10.1016/j.geoderma.2018.09.035>.
In dataset$sample_table, the ’Group’ column means Chinese inland wetlands (IW), coastal wet-
land (CW) and Tibet plateau wetlands (TW). The column ’Type’ denotes the sampling region:
northeastern region (NE), northwest region (NW), North China area (NC), middle-lower reaches of
the Yangtze River (YML), southern coastal area (SC), upper reaches of the Yangtze River (YU) and
Qinghai-Tibet Plateau (QTP). The column ’Saline’ represents the saline soils and non-saline soils.

Usage

data(dataset)

Format

R6 class object

Details

• sample_table: sample information table

• otu_table: species-sample abundance table

• tax_table: taxonomic table

• phylo_tree: phylogenetic tree

• taxa_abund: taxa abundance list with several tables for Phylum...Genus

• alpha_diversity: alpha diversity table

• beta_diversity: list with several beta diversity distance matrix

4 dropallfactors

dropallfactors Remove all factors in a data frame

Description

Remove all factors in a data frame

Usage

dropallfactors(x, unfac2num = FALSE, char2num = FALSE)

Arguments

x data.frame object

unfac2num default FALSE; whether try to convert all character columns to numeric directly;
If TRUE, it will attempt to convert each column, including those of character
and factor types. First, it tries to convert them to the character type, and then
checks if they can be converted to numeric. If the conversion to numeric is
possible, it outputs the numeric type; otherwise, it outputs the character type. If
FALSE, only columns with the factor attribute will be attempted for conversion.
Factors will first be converted to character type, and then an attempt will be
made to convert them to numeric. If successful, the numeric type will be output;
otherwise, the character type will be output. This process can effectively remove
the factor attribute. Note that this can only transform the columns that may be
transformed to numeric without using factor.

char2num default FALSE; whether force all the character to be numeric class by using
factor as an intermediate. Therefore, this parameter can enforce the conversion
of all character and factor types to numeric. This operation is very useful in
some cases that numerical data is required as input.

Value

data frame without factor

Examples

data("taxonomy_table_16S")
taxonomy_table_16S[, 1] <- as.factor(taxonomy_table_16S[, 1])
str(dropallfactors(taxonomy_table_16S))

env_data_16S 5

env_data_16S The environmental factors for the 16S example data

Description

The environmental factors for the 16S example data

Usage

data(env_data_16S)

Format

data.frame

fungi_func_FungalTraits

The FungalTraits database for fungi trait prediction

Description

The FungalTraits database for fungi trait prediction

Usage

data(fungi_func_FungalTraits)

Format

data.frame

fungi_func_FUNGuild The FUNGuild database for fungi trait prediction

Description

The FUNGuild database for fungi trait prediction

Usage

data(fungi_func_FUNGuild)

Format

data.frame

6 microtable

microeco Introduction to microeco package
(Rhrefhttps://github.com/ChiLiubio/microecohttps://github.com/ChiLiubio/microeco)

Description

For the detailed tutorial on microeco package, please follow the links:
Online tutorial website: https://chiliubio.github.io/microeco_tutorial/
Download tutorial: https://github.com/ChiLiubio/microeco_tutorial/releases

For each R6 class, please open the help document by searching the class name. For example, to
search microtable class, please run the command help(microtable) or ?microtable.
Another way to open the help document of R6 class is to click the following links collected:
microtable
trans_abund
trans_venn
trans_alpha
trans_beta
trans_diff
trans_network
trans_nullmodel
trans_classifier
trans_env
trans_func
trans_norm

To report bugs or discuss questions, please use Github Issues (https://github.com/ChiLiubio/microeco/issues).
Before creating a new issue, please read the guideline (https://chiliubio.github.io/microeco_tutorial/notes.html#github-
issues).

To cite microeco package in publications, please run the following command to get the references:
citation("microeco")

Reference:
Chi Liu, Felipe R. P. Mansoldo, Hankang Li, Alane Beatriz Vermelho, Raymond Jianxiong Zeng,
Xiangzhen Li & Minjie Yao. A workflow for statistical analysis and visualization of microbiome
omics data using the R microeco package. Nature Protocols (2025). DOI:10.1038/s41596-025-
01239-4

Chi Liu, Yaoming Cui, Xiangzhen Li & Minjie Yao. microeco: an R package for data mining in mi-
crobial community ecology. FEMS Microbiology Ecology, 2021, 97(2): fiaa255. DOI:10.1093/femsec/fiaa255

microtable Create microtable object to store and manage all the basic data.

https://chiliubio.github.io/microeco_tutorial/
https://github.com/ChiLiubio/microeco_tutorial/releases
https://github.com/ChiLiubio/microeco/issues
https://chiliubio.github.io/microeco_tutorial/notes.html#github-issues
https://chiliubio.github.io/microeco_tutorial/notes.html#github-issues

microtable 7

Description

This class is a wrapper for a series of manipulations on the basic data, including microtable object
creation, data trimming, data filtering, rarefaction based on Paul et al. (2013) <doi:10.1371/journal.pone.0061217>,
taxonomic abundance calculation, alpha and beta diversity calculation based on the An et al. (2019)
<doi:10.1016/j.geoderma.2018.09.035> and Lozupone et al. (2005) <doi:10.1128/AEM.71.12.8228-
8235.2005> and other basic operations.

Online tutorial: https://chiliubio.github.io/microeco_tutorial/
Download tutorial: https://github.com/ChiLiubio/microeco_tutorial/releases

Format

microtable.

Methods

Public methods:

• microtable$new()

• microtable$filter_pollution()

• microtable$filter_taxa()

• microtable$rarefy_samples()

• microtable$tidy_dataset()

• microtable$add_rownames2tax()

• microtable$sample_sums()

• microtable$taxa_sums()

• microtable$sample_names()

• microtable$taxa_names()

• microtable$rename_taxa()

• microtable$merge_samples()

• microtable$merge_taxa()

• microtable$save_table()

• microtable$cal_abund()

• microtable$save_abund()

• microtable$cal_alphadiv()

• microtable$save_alphadiv()

• microtable$cal_betadiv()

• microtable$save_betadiv()

• microtable$print()

• microtable$add_rownames2taxonomy()

• microtable$clone()

Method new():

Usage:

https://chiliubio.github.io/microeco_tutorial/
https://github.com/ChiLiubio/microeco_tutorial/releases

8 microtable

microtable$new(
otu_table,
sample_table = NULL,
tax_table = NULL,
phylo_tree = NULL,
rep_fasta = NULL,
auto_tidy = FALSE

)

Arguments:

otu_table data.frame class; Feature abundance table; row names must be feature (e.g. OTUs/ASVs/species/genes)
names; column names are sample names.

sample_table default NULL; data.frame class; Sample information table (optional); row names
should be sample names; columns are sample metadata; If not provided, the function can
generate a table automatically according to the sample names in the input otu_table.

tax_table default NULL; data.frame class; Taxonomic information table (optional); row names
are feature names; column names are taxonomic ranks. This can also be other hierarchical
information tables, such as traits, genes, or metabolic pathways.

phylo_tree default NULL; phylo class; Phylogenetic tree (optional); It must be read with the
read.tree function of ape package.

rep_fasta default NULL; DNAStringSet, list or DNAbin class; Representative sequences
of OTUs/ASVs (optional). The sequences should be read with the readDNAStringSet
function of Biostrings package (DNAStringSet class), read.fasta function of seqinr
package (list class), or read.FASTA function of ape package (DNAbin class).

auto_tidy default FALSE; Whether tidy the data in the microtable object automatically. If
TRUE, the function can invoke the tidy_dataset function.

Returns: an object of microtable class with the following components:
sample_table Sample information table.
otu_table Feature table.
tax_table Taxonomic table (when provided).
phylo_tree Phylogenetic tree (when provided).
rep_fasta Sequences (when provided).
taxa_abund default NULL; use cal_abund function to calculate.
alpha_diversity default NULL; use cal_alphadiv function to calculate.
beta_diversity default NULL; use cal_betadiv function to calculate.

Examples:

data(otu_table_16S)
data(taxonomy_table_16S)
data(sample_info_16S)
data(phylo_tree_16S)
m1 <- microtable$new(otu_table = otu_table_16S)
m1 <- microtable$new(sample_table = sample_info_16S, otu_table = otu_table_16S,
tax_table = taxonomy_table_16S, phylo_tree = phylo_tree_16S)

trim each data in the object
m1$tidy_dataset()

microtable 9

Method filter_pollution(): Filter the features considered pollution in microtable$tax_table.
This operation will remove any line of microtable$tax_table containing any the word in input
taxa parameter regardless of word case.

Usage:
microtable$filter_pollution(taxa = c("mitochondria", "chloroplast"))

Arguments:
taxa default c("mitochondria", "chloroplast"); filter mitochondria and chloroplast, or

others as needed.

Returns: updated microtable object

Examples:
m1$filter_pollution(taxa = c("mitochondria", "chloroplast"))

Method filter_taxa(): Filter the features with low abundance and/or low occurrence fre-
quency for otu_table or taxa_abund list.

Usage:
microtable$filter_taxa(
rel_abund = 0,
freq = 1,
include_lowest = TRUE,
for_taxa_abund = FALSE

)

Arguments:
rel_abund default 0; the relative abundance threshold, such as 0.0001.
freq default 1; the occurrence frequency threshold. For example, the number 2 represents

filtering the feature that occurs less than 2 times. A number smaller than 1 is also allowable.
For instance, the number 0.1 represents filtering the feature that occurs in less than 10%
samples.

include_lowest default TRUE; whether include the feature with the threshold.
for_taxa_abund default FALSE; whether apply this function to taxa_abund list. FALSE

means using this function for otu_table

Returns: updated microtable object

Examples:
\donttest{
d1 <- clone(m1)
d1$filter_taxa(rel_abund = 0.0001, freq = 0.2)
}

Method rarefy_samples(): Rarefy communities to make all samples have same count number.

Usage:
microtable$rarefy_samples(
method = c("rarefy", "SRS")[1],
sample.size = NULL,
...

)

10 microtable

Arguments:
method default c("rarefy", "SRS")[1]; "rarefy" represents the classical resampling like rrarefy

function of vegan package. "SRS" is scaling with ranked subsampling method based on the
SRS package provided by Lukas Beule and Petr Karlovsky (2020) <DOI:10.7717/peerj.9593>.

sample.size default NULL; libray size. If not provided, use the minimum number across all
samples. For "SRS" method, this parameter is passed to Cmin parameter of SRS function of
SRS package.

... parameters pass to norm function of trans_norm class.

Returns: rarefied microtable object.

Examples:
\donttest{
m1$rarefy_samples(sample.size = min(m1$sample_sums()))
}

Method tidy_dataset(): Trim all the data in the microtable object to make taxa and samples
consistent. The results are intersections across data.

Usage:
microtable$tidy_dataset(main_data = FALSE)

Arguments:
main_data default FALSE; if TRUE, only basic data in microtable object is trimmed. Oth-

erwise, all data, including taxa_abund, alpha_diversity and beta_diversity, are all
trimed.

Returns: None. The data in the object are tidied up. If tax_table is in object, its row names
are completely same with the row names of otu_table.

Examples:
m1$tidy_dataset(main_data = TRUE)

Method add_rownames2tax(): Add the row names of microtable$tax_table as its last col-
umn. This is especially useful when the row names of microtable$tax_table are required as a
taxonomic level for the taxonomic abundance calculation and biomarker identification.

Usage:
microtable$add_rownames2tax(use_name = "OTU")

Arguments:
use_name default "OTU"; The name of the column added in the tax_table.

Returns: tax_table updated in the object.

Examples:
\donttest{
m1$add_rownames2tax()
}

Method sample_sums(): Sum the abundance for each sample.

Usage:
microtable$sample_sums()

microtable 11

Returns: abundance in each sample.

Examples:

\donttest{
m1$sample_sums()
}

Method taxa_sums(): Sum the abundance for each taxon.

Usage:
microtable$taxa_sums()

Returns: abundance in each taxon.

Examples:

\donttest{
m1$taxa_sums()
}

Method sample_names(): Show the sample names.

Usage:
microtable$sample_names()

Returns: sample names.

Examples:

\donttest{
m1$sample_names()
}

Method taxa_names(): Show the taxa names.

Usage:
microtable$taxa_names()

Returns: taxa names.

Examples:

\donttest{
m1$taxa_names()
}

Method rename_taxa(): Rename the features, including the row names of otu_table, row
names of tax_table, tip labels of phylo_tree and names in rep_fasta.

Usage:
microtable$rename_taxa(newname_prefix = "ASV_")

Arguments:

newname_prefix default "ASV_"; the prefix of new names; new names will be newname_prefix
+ numbers according to the order of row names in otu_table.

Returns: renamed object

Examples:

12 microtable

\donttest{
m1$rename_taxa()
}

Method merge_samples(): Merge samples according to specific groups to generate a new
microtable object.

Usage:
microtable$merge_samples(group)

Arguments:

group a column name in sample_table of microtable object.

Returns: a merged microtable object.

Examples:

\donttest{
m1$merge_samples("Group")
}

Method merge_taxa(): Merge taxa according to a specific taxonomic rank to generate a new
microtable object.

Usage:
microtable$merge_taxa(taxa = "Genus")

Arguments:

taxa default "Genus"; the specific rank in tax_table.

Returns: a merged microtable object.

Examples:

\donttest{
m1$merge_taxa(taxa = "Genus")
}

Method save_table(): Save each basic data in microtable object as local file.

Usage:
microtable$save_table(dirpath = "basic_files", sep = ",", ...)

Arguments:

dirpath default "basic_files"; directory to save the tables, phylogenetic tree and sequences in
microtable object. It will be created if not found.

sep default ","; the field separator string, used to save tables. Same with sep parameter in
write.table function. default ',' correspond to the file name suffix ’csv’. The option
'\t' correspond to the file name suffix ’tsv’. For other options, suffix are all ’txt’.

... parameters passed to write.table.

Examples:

\dontrun{
m1$save_table()
}

microtable 13

Method cal_abund(): Calculate the taxonomic abundance at each taxonomic level or selected
levels.

Usage:
microtable$cal_abund(
select_cols = NULL,
rel = TRUE,
merge_by = "|",
split_group = FALSE,
split_by = "&",
split_column = NULL,
split_special_char = "&&"

)

Arguments:

select_cols default NULL; numeric vector (column sequences) or character vector (column
names of microtable$tax_table); applied to select columns to calculate abundances ac-
cording to ordered hierarchical levels. This parameter is very useful when only part of the
columns are needed to calculate abundances.

rel default TRUE; if TRUE, relative abundance is used; if FALSE, absolute abundance (i.e.
raw values) will be summed.

merge_by default "|"; the symbol to merge and concatenate taxonomic names of different levels.
split_group default FALSE; if TRUE, split the rows to multiple rows according to one or

more columns in tax_table when there is multiple mapping information.
split_by default "&"; Separator delimiting collapsed values; only available when split_group

= TRUE.
split_column default NULL; one column name used for the splitting in tax_table for each

abundance calculation; only available when split_group = TRUE. If not provided, the func-
tion will split each column that containing the split_by character.

split_special_char default "&&"; special character that will be used forcibly to split mul-
tiple mapping information in tax_table by default no matter split_group setting. For
example, the hierarchical information of MetaCyc metabolic pathways from the file2meco
package may have multiple ontology entries linked together. In this case, the default param-
eters are automatically changed to split_group = TRUE and split_by = split_special_char,
which is the default "&&". If users have other multi-label data in tax_table, they can ad-
just the split_group, split_by, and split_column parameters accordingly.

Returns: taxa_abund list in object.

Examples:

\donttest{
m1$cal_abund()
}

Method save_abund(): Save taxonomic abundance as local file.

Usage:
microtable$save_abund(
dirpath = "taxa_abund",
merge_all = FALSE,

14 microtable

rm_un = FALSE,
rm_pattern = "__$",
sep = ",",
...

)

Arguments:
dirpath default "taxa_abund"; directory to save the taxonomic abundance files. It will be

created if not found.
merge_all default FALSE; Whether merge all tables into one. The merged file format is gen-

erally called ’mpa’ style.
rm_un default FALSE; Whether remove unclassified taxa in which the name ends with ’__’

generally.
rm_pattern default "__$"; The pattern searched through the merged taxonomic names. See

also pattern parameter in grepl function. Only available when rm_un = TRUE. The default
"__$" means removing the names end with ’__’.

sep default ","; the field separator string. Same with sep parameter in write.table function.
default ',' correspond to the file name suffix ’csv’. The option '\t' correspond to the file
name suffix ’tsv’. For other options, suffix are all ’txt’.

... parameters passed to write.table.

Examples:
\dontrun{
m1$save_abund(dirpath = "taxa_abund")
m1$save_abund(merge_all = TRUE, rm_un = TRUE, sep = "\t")
}

Method cal_alphadiv(): Calculate alpha diversity.

Usage:
microtable$cal_alphadiv(measures = NULL, PD = FALSE)

Arguments:
measures default NULL; one or more indexes in c("Observed", "Coverage", "Chao1", "ACE",

"Shannon", "Simpson", "InvSimpson", "Fisher", "Pielou"); The default NULL rep-
resents that all the measures are calculated. ’Shannon’, ’Simpson’ and ’InvSimpson’ are cal-
culated based on vegan::diversity function; ’Chao1’ and ’ACE’ depend on the function
vegan::estimateR. ’Fisher’ index relies on the function vegan::fisher.alpha. "Ob-
served" means the observed species number in a community, i.e. richness. "Coverage"
represents good’s coverage. It is defined:

Coverage = 1− f1

n

where n is the total abundance of a sample, and f1 is the number of singleton (species with
abundance 1) in the sample. "Pielou" denotes the Pielou evenness index. It is defined:

J =
H ′

ln(S)

where H’ is Shannon index, and S is the species number.

microtable 15

PD default FALSE; whether Faith’s phylogenetic diversity is calculated. The calculation de-
pends on the function picante::pd. Note that the phylogenetic tree (phylo_tree object in
the data) is required for PD.

Returns: alpha_diversity stored in the object. The se.chao1 and se.ACE are the standard erros
of Chao1 and ACE, respectively.

Examples:

\donttest{
m1$cal_alphadiv(measures = NULL, PD = FALSE)
class(m1$alpha_diversity)
}

Method save_alphadiv(): Save alpha diversity table to the computer.

Usage:
microtable$save_alphadiv(dirpath = "alpha_diversity")

Arguments:

dirpath default "alpha_diversity"; directory name to save the alpha_diversity.csv file.

Method cal_betadiv(): Calculate beta diversity dissimilarity matrix, such as Bray-Curtis,
Jaccard, and UniFrac. See An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035> and Lozupone
et al. (2005) <doi:10.1128/AEM.71.12.8228–8235.2005>.

Usage:
microtable$cal_betadiv(
method = NULL,
unifrac = FALSE,
binary = FALSE,
force_jaccard_binary = TRUE,
...

)

Arguments:

method default NULL; a character vector with one or more elements; c("bray", "jaccard")
is used when method = NULL; See the method parameter in vegdist function for more avail-
able options, such as ’aitchison’ and ’robust.aitchison’.

unifrac default FALSE; whether UniFrac indexes (weighted and unweighted) are calculated.
Phylogenetic tree is necessary when unifrac = TRUE.

binary default FALSE; Whether convert abundance to binary data (presence/absence).
force_jaccard_binary default TRUE; Whether forcibly convert abundance to binary data

(presence/absence) when method = "jaccard". The reason for this setting is that the Jac-
card metric is commonly used for binary data. If force_jaccard_binary = FALSE is set,
the conversion will not be enforced, but will instead be based on the setting of the binary
parameter.

... parameters passed to vegdist function of vegan package.

Returns: beta_diversity list stored in the object.

Examples:

16 microtable

\donttest{
m1$cal_betadiv(unifrac = FALSE)
class(m1$beta_diversity)
}

Method save_betadiv(): Save beta diversity matrix to the computer.

Usage:
microtable$save_betadiv(dirpath = "beta_diversity")

Arguments:

dirpath default "beta_diversity"; directory name to save the beta diversity matrix files.

Method print(): Print the microtable object.

Usage:
microtable$print()

Method add_rownames2taxonomy(): This is a deprecated function. Please use add_rownames2tax
function instead.

Usage:
microtable$add_rownames2taxonomy(...)

Arguments:

... paremeters pass to add_rownames2tax.

Method clone(): The objects of this class are cloneable with this method.

Usage:
microtable$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `microtable$new`
--

data(otu_table_16S)
data(taxonomy_table_16S)
data(sample_info_16S)
data(phylo_tree_16S)
m1 <- microtable$new(otu_table = otu_table_16S)
m1 <- microtable$new(sample_table = sample_info_16S, otu_table = otu_table_16S,

tax_table = taxonomy_table_16S, phylo_tree = phylo_tree_16S)
trim each data in the object
m1$tidy_dataset()

--
Method `microtable$filter_pollution`
--

microtable 17

m1$filter_pollution(taxa = c("mitochondria", "chloroplast"))

--
Method `microtable$filter_taxa`
--

d1 <- clone(m1)
d1$filter_taxa(rel_abund = 0.0001, freq = 0.2)

--
Method `microtable$rarefy_samples`
--

m1$rarefy_samples(sample.size = min(m1$sample_sums()))

--
Method `microtable$tidy_dataset`
--

m1$tidy_dataset(main_data = TRUE)

--
Method `microtable$add_rownames2tax`
--

m1$add_rownames2tax()

--
Method `microtable$sample_sums`
--

m1$sample_sums()

--
Method `microtable$taxa_sums`
--

m1$taxa_sums()

--
Method `microtable$sample_names`
--

18 microtable

m1$sample_names()

--
Method `microtable$taxa_names`
--

m1$taxa_names()

--
Method `microtable$rename_taxa`
--

m1$rename_taxa()

--
Method `microtable$merge_samples`
--

m1$merge_samples("Group")

--
Method `microtable$merge_taxa`
--

m1$merge_taxa(taxa = "Genus")

--
Method `microtable$save_table`
--

Not run:
m1$save_table()

End(Not run)

--
Method `microtable$cal_abund`
--

m1$cal_abund()

otu_table_16S 19

--
Method `microtable$save_abund`
--

Not run:
m1$save_abund(dirpath = "taxa_abund")
m1$save_abund(merge_all = TRUE, rm_un = TRUE, sep = "\t")

End(Not run)

--
Method `microtable$cal_alphadiv`
--

m1$cal_alphadiv(measures = NULL, PD = FALSE)
class(m1$alpha_diversity)

--
Method `microtable$cal_betadiv`
--

m1$cal_betadiv(unifrac = FALSE)
class(m1$beta_diversity)

otu_table_16S The OTU table of the 16S example data

Description

The OTU table of the 16S example data

Usage

data(otu_table_16S)

Format

data.frame

20 prok_func_FAPROTAX

otu_table_ITS The OTU table of the ITS example data

Description

The OTU table of the ITS example data

Usage

data(otu_table_ITS)

Format

data.frame

phylo_tree_16S The phylogenetic tree of 16S example data

Description

The phylogenetic tree of 16S example data

Usage

data(phylo_tree_16S)

Format

data.frame

prok_func_FAPROTAX Customized FAPROTAX trait database

Description

Customized FAPROTAX trait database

Usage

data(prok_func_FAPROTAX)

Format

list

prok_func_NJC19_list 21

prok_func_NJC19_list The NJC19 database

Description

The NJC19 database

Usage

data(prok_func_NJC19_list)

Format

list

sample_info_16S The sample information of 16S example data

Description

The sample information of 16S example data

Usage

data(sample_info_16S)

Format

data.frame

sample_info_ITS The sample information of ITS example data

Description

The sample information of ITS example data

Usage

data(sample_info_ITS)

Format

data.frame

22 taxonomy_table_ITS

Tax4Fun2_KEGG The KEGG data files used in the trans_func class

Description

The KEGG data files used in the trans_func class

Usage

data(Tax4Fun2_KEGG)

Format

list

taxonomy_table_16S The taxonomic information of 16S example data

Description

The taxonomic information of 16S example data

Usage

data(taxonomy_table_16S)

Format

data.frame

taxonomy_table_ITS The taxonomic information of ITS example data

Description

The taxonomic information of ITS example data

Usage

data(taxonomy_table_ITS)

Format

data.frame

tidy_taxonomy 23

tidy_taxonomy Clean up the taxonomic table to make taxonomic assignments consis-
tent.

Description

Clean up the taxonomic table to make taxonomic assignments consistent.

Usage

tidy_taxonomy(
taxonomy_table,
column = "all",
pattern = c(".*unassigned.*", ".*uncultur.*", ".*unknown.*", ".*unidentif.*",
".*unclassified.*", ".*No blast hit.*", ".*Incertae.sedis.*"),

replacement = "",
ignore.case = TRUE,
na_fill = ""

)

Arguments

taxonomy_table a data.frame with taxonomic information (rows are features; columns are taxo-
nomic levels); or a microtable object with tax_table in it.

column default "all"; "all" or a number; ’all’ represents cleaning up all the columns; a
number represents cleaning up this specific column.

pattern default c(".*unassigned.*", ".*uncultur.*", ".*unknown.*", ".*unidentif.*", ".*un-
classified.*", ".*No blast hit.*", ".*Incertae.sedis.*"); the characters (regular ex-
pressions) to be removed or replaced; removed when parameter replacement =
"", replaced when parameter replacement has something; Note that the capital
and small letters are not distinguished when ignore.case = TRUE.

replacement default ""; the characters used to replace the character in pattern parameter.

ignore.case default TRUE; if FALSE, the pattern matching is case sensitive and if TRUE,
case is ignored during matching.

na_fill default ""; used to replace NA.

Format

data.frame object.

Value

data.frame

24 trans_abund

Examples

data("taxonomy_table_16S")
tidy_taxonomy(taxonomy_table_16S)

trans_abund Create trans_abund object for taxonomic abundance visualization.

Description

This class is a wrapper for the taxonomic abundance transformations and visualization (e.g., bar
plot, boxplot, heatmap, pie chart and line chart). The converted data style is the long-format for
ggplot2 plot.

Methods

Public methods:
• trans_abund$new()

• trans_abund$plot_bar()

• trans_abund$plot_heatmap()

• trans_abund$plot_box()

• trans_abund$plot_line()

• trans_abund$plot_pie()

• trans_abund$plot_donut()

• trans_abund$plot_radar()

• trans_abund$plot_tern()

• trans_abund$print()

• trans_abund$clone()

Method new():
Usage:
trans_abund$new(
dataset = NULL,
taxrank = "Phylum",
show = 0,
ntaxa = 10,
groupmean = NULL,
group_morestats = FALSE,
delete_taxonomy_lineage = TRUE,
delete_taxonomy_prefix = TRUE,
prefix = NULL,
use_percentage = TRUE,
input_taxaname = NULL,
high_level = NULL,
high_level_fix_nsub = NULL

)

trans_abund 25

Arguments:
dataset default NULL; the object of microtable class.
taxrank default "Phylum"; taxonomic level, i.e. a column name in tax_table of the input

object. The function extracts the abundance from the taxa_abund list according to the
names in the list. If the taxa_abund list is NULL, the function can automatically calculate
the relative abundance to generate taxa_abund list.

show default 0; the mean relative abundance threshold for filtering the taxa with low abundance.
ntaxa default 10; how many taxa are selected to use. Taxa are ordered by abundance from high

to low. This parameter does not conflict with the parameter show. Both can be used. ntaxa
= NULL means the parameter will be invalid.

groupmean default NULL; calculate mean abundance for each group. Select a column name in
microtable$sample_table.

group_morestats default FALSE; only available when groupmean parameter is provided; Whether
output more statistics for each group, including min, max, median and quantile; Thereinto,
quantile25 and quantile75 denote 25% and 75% quantiles, respectively.

delete_taxonomy_lineage default TRUE; whether delete the taxonomy lineage in front of
the target level.

delete_taxonomy_prefix default TRUE; whether delete the prefix of taxonomy, such as "g__".
prefix default NULL; character string; available when delete_taxonomy_prefix = T; default

NULL represents using the "letter+__", e.g. "k__" for Phylum level; Please provide the
customized prefix when it is not standard, otherwise the program can not correctly recognize
it.

use_percentage default TRUE; whether show the abundance percentage. If TRUE, the abun-
dance data will be multiplied by 100.

input_taxaname default NULL; character vector; input taxa names to select some taxa.
high_level default NULL; a taxonomic rank, such as "Phylum", used to add the taxonomic

information of higher level. It is required for the legend with nested taxonomic levels in the
bar plot or the higher taxonomic level in facets of y axis in the heatmap.

high_level_fix_nsub default NULL; an integer, used to fix the number of selected abun-
dant taxa in each taxon from higher taxonomic level. If the total number under one taxon
of higher level is less than the high_level_fix_nsub, the total number will be used. When
high_level_fix_nsub is provided, the taxa number of higher level is calculated as: ceiling(ntaxa/high_level_fix_nsub).
Note that ntaxa means either the parameter ntaxa or the taxonomic number obtained by
filtering according to the show parameter.

Returns: data_abund stored in the object. The column ’all_mean_abund’ represents mean
relative abundance across all the samples. So the values in one taxon are all same across all the
samples. If the sum of column ’Abundance’ in one sample is larger than 1, the ’Abundance’,
’SD’ and ’SE’ has been multiplied by 100.

Examples:
\donttest{
data(dataset)
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 10)
}

Method plot_bar(): Bar plot.

Usage:

26 trans_abund

trans_abund$plot_bar(
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
bar_full = TRUE,
others_color = "grey90",
facet = NULL,
order_x = NULL,
x_axis_name = NULL,
barwidth = 0.9,
use_alluvium = FALSE,
clustering = FALSE,
clustering_plot = FALSE,
cluster_plot_width = 0.2,
facet_color = "grey95",
strip_text = 11,
legend_text_italic = FALSE,
xtext_angle = 0,
xtext_size = 10,
xtext_keep = TRUE,
xtitle_keep = TRUE,
ytitle_size = 17,
coord_flip = FALSE,
ggnested = FALSE,
high_level_add_other = FALSE,
sample_plot = NULL,
sample_plot_color = NULL,
sample_plot_height = NULL,
sample_plot_mainnames = FALSE,
bar_type = deprecated()

)

Arguments:

color_values default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for the bars.
bar_full default TRUE; Whether the bar shows all the features (including ’Others’). Default

TRUE means total abundance are summed to 1 or 100 (percentage). FALSE means ’Others’
will not be shown.

others_color default "grey90"; the color for "Others" taxa.
facet default NULL; a character vector for the facet; group column name of sample_table,

such as, "Group"; If multiple facets are needed, please provide ordered names, such as
c("Group", "Type"). The latter should have a finer scale than the former one; Please
adjust the facet orders in the plot by assigning factors in sample_table before creating
trans_abund object or assigning factors in the data_abund table of trans_abund ob-
ject. When multiple facets are used, please first install package ggh4x using the command
install.packages("ggh4x").

order_x default NULL; vector; used to order the sample names in x axis; must be the samples
vector, such as c("S1", "S3", "S2").

x_axis_name NULL; a character string; a column name of sample_table in dataset; used to
show the sample names in x axis.

barwidth default 0.9; bar width, see width in geom_bar of ggplot2 package.

trans_abund 27

use_alluvium default FALSE; whether add alluvium plot. If TRUE, please first install ggalluvial
package.

clustering default FALSE; whether order samples by the clustering.
clustering_plot default FALSE; whether add clustering plot. If clustering_plot = TRUE,

clustering will be also TRUE in any case for the clustering.
cluster_plot_width default 0.2, the dendrogram plot width; available when clustering_plot

= TRUE.
facet_color default "grey95"; facet background color.
strip_text default 11; facet text size.
legend_text_italic default FALSE; whether use italic in legend.
xtext_angle default 0; number ranging from 0 to 90; used to adjust x axis text angle to reduce

text overlap;
xtext_size default 10; x axis text size.
xtext_keep default TRUE; whether to keep the text on the x-axis.
xtitle_keep default TRUE; whether to keep the title of the x-axis.
ytitle_size default 17; y axis title size.
coord_flip default FALSE; whether flip cartesian coordinates so that horizontal becomes ver-

tical, and vertical becomes horizontal.
ggnested default FALSE; whether use nested legend. Need ggnested package to be installed

(https://github.com/gmteunisse/ggnested). To make it available, please assign high_level
parameter when creating the object.

high_level_add_other default FALSE; whether add ’Others’ (all the unknown taxa) in each
taxon of higher taxonomic level. Only available when ggnested = TRUE.

sample_plot default NULL; Use the heatmap colors to represent sample information. The
input should be column names from sample_table, e.g., c("Group", "pH").

sample_plot_color default NULL; Color settings. The input must be a list that corresponds to
sample_plot, e.g. list(Group = RColorBrewer::brewer.pal(6, "Set2"), pH = c("white",
"red")). When the input factor is a numerical variable, it will be displayed with a color
gradient; therefore, two colors should be provided for the input (as shown for "pH" above).

sample_plot_height default NULL; Height of the sample heatmap; defaults to 1/10 of the
main bar plot. The input must be a vector whose length equals that of sample_plot, e.g.,
c(0.1, 0.1).

sample_plot_mainnames default FALSE; whether show the sample names in the main bar
plot.

bar_type deprecated. Please use bar_full argument instead.

Returns: ggplot2 object.

Examples:

\donttest{
t1$plot_bar(facet = "Group", xtext_keep = FALSE)
}

Method plot_heatmap(): Plot the heatmap.

Usage:

28 trans_abund

trans_abund$plot_heatmap(
color_values = rev(RColorBrewer::brewer.pal(n = 11, name = "RdYlBu")),
facet = NULL,
facet_switch = "y",
x_axis_name = NULL,
order_x = NULL,
withmargin = TRUE,
plot_numbers = FALSE,
plot_text_size = 4,
plot_breaks = NULL,
margincolor = "white",
plot_colorscale = "log10",
min_abundance = 0.01,
max_abundance = NULL,
strip_text = 11,
xtext_keep = TRUE,
xtext_angle = 0,
xtext_size = 10,
ytext_size = 11,
xtitle_keep = TRUE,
grid_clean = TRUE,
legend_title = "% Relative\nAbundance",
pheatmap = FALSE,
...

)

Arguments:

color_values default rev(RColorBrewer::brewer.pal(n = 11, name = "RdYlBu")); colors palette
for the plotting.

facet default NULL; a character vector for the facet; a group column name of sample_table,
such as, "Group"; If multiple facets are needed, please provide ordered names, such as
c("Group", "Type"). The latter should have a finer scale than the former one; Please
adjust the facet orders in the plot by assigning factors in sample_table before creating
trans_abund object or assigning factors in the data_abund table of trans_abund ob-
ject. When multiple facets are used, please first install package ggh4x using the command
install.packages("ggh4x").

facet_switch default "y"; By default, the labels in facets are displayed on the top and right
of the plot. If "x", the top labels will be displayed to the bottom. If "y", the right-hand
side labels will be displayed to the left. Can also be set to "both". When the high_level
is found in the object, the function will generate facets for the higher taxonomy in y axis.
So the default "y" of the parameter is to make the visualization better when high_level is
found. This parameter will be passed to the switch parameter in ggplot2::facet_grid
or ggh4x::facet_nested function.

x_axis_name NULL; a character string; a column name of sample_table used to show the
sample names in x axis.

order_x default NULL; vector; used to order the sample names in x axis; must be the samples
vector, such as, c("S1", "S3", "S2").

withmargin default TRUE; whether retain the tile margin.

trans_abund 29

plot_numbers default FALSE; whether plot the number in heatmap.
plot_text_size default 4; If plot_numbers TRUE, text size in plot.
plot_breaks default NULL; The legend breaks.
margincolor default "white"; If withmargin TRUE, use this as the margin color.
plot_colorscale default "log10"; color scale.
min_abundance default .01; the minimum abundance percentage in plot.
max_abundance default NULL; the maximum abundance percentage in plot, NULL reprensent

the max percentage.
strip_text default 11; facet text size.
xtext_keep default TRUE; whether to keep the text on the x-axis.
xtext_angle default 0; number ranging from 0 to 90; used to adjust x axis text angle to reduce

text overlap;
xtext_size default 10; x axis text size.
ytext_size default 11; y axis text size.
xtitle_keep default TRUE; whether to keep the title of the x-axis.
grid_clean default TRUE; whether remove grid lines.
legend_title default "% Relative\nAbundance"; legend title text.
pheatmap default FALSE; whether use pheatmap package to plot the heatmap.
... paremeters pass to pheatmap when pheatmap = TRUE.

Returns: ggplot2 object or grid object based on pheatmap.

Examples:
\donttest{
t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 40)
t1$plot_heatmap(facet = "Group", xtext_keep = FALSE, withmargin = FALSE)
}

Method plot_box(): Box plot.

Usage:
trans_abund$plot_box(
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
group = NULL,
show_point = FALSE,
point_color = "black",
point_size = 3,
point_alpha = 0.3,
plot_flip = FALSE,
boxfill = TRUE,
middlecolor = "grey95",
middlesize = 1,
xtext_angle = 0,
xtext_size = 10,
ytitle_size = 17,
...

)

Arguments:

30 trans_abund

color_values default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for the box.
group default NULL; a column name of sample table to show abundance across groups.
show_point default FALSE; whether show points in plot.
point_color default "black"; If show_point TRUE; use the color
point_size default 3; If show_point TRUE; use the size
point_alpha default .3; If show_point TRUE; use the transparency.
plot_flip default FALSE; Whether rotate plot.
boxfill default TRUE; Whether fill the box with colors.
middlecolor default "grey95"; The middle line color.
middlesize default 1; The middle line size.
xtext_angle default 0; number ranging from 0 to 90; used to adjust x axis text angle to reduce

text overlap;
xtext_size default 10; x axis text size.
ytitle_size default 17; y axis title size.
... parameters pass to geom_boxplot function.

Returns: ggplot2 object.

Examples:

\donttest{
t1$plot_box(group = "Group")
}

Method plot_line(): Plot the line chart.

Usage:
trans_abund$plot_line(
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
plot_SE = TRUE,
position = position_dodge(0.1),
errorbar_size = 1,
errorbar_width = 0.1,
point_size = 3,
point_alpha = 0.8,
line_size = 0.8,
line_alpha = 0.8,
line_type = 1,
xtext_angle = 0,
xtext_size = 10,
ytitle_size = 17

)

Arguments:

color_values default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for the points
and lines.

plot_SE default TRUE; TRUE: the errorbar is meanse; FALSE: the errorbar is meansd.
position default position_dodge(0.1); Position adjustment, either as a string (such as "iden-

tity"), or the result of a call to a position adjustment function.

trans_abund 31

errorbar_size default 1; errorbar line size.
errorbar_width default 0.1; errorbar width.
point_size default 3; point size for taxa.
point_alpha default 0.8; point transparency.
line_size default 0.8; line size.
line_alpha default 0.8; line transparency.
line_type default 1; an integer; line type.
xtext_angle default 0; number ranging from 0 to 90; used to adjust x axis text angle to reduce

text overlap;
xtext_size default 10; x axis text size.
ytitle_size default 17; y axis title size.

Returns: ggplot2 object.

Examples:
\donttest{
t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 5)
t1$plot_line(point_size = 3)
t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 5, groupmean = "Group")
t1$plot_line(point_size = 5, errorbar_size = 1, xtext_angle = 30)
}

Method plot_pie(): Pie chart.

Usage:
trans_abund$plot_pie(
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
facet_nrow = 1,
strip_text = 11,
add_label = FALSE,
legend_text_italic = FALSE

)

Arguments:
color_values default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for each sec-

tion.
facet_nrow default 1; how many rows in the plot.
strip_text default 11; sample title size.
add_label default FALSE; Whether add the percentage label in each section of pie chart.
legend_text_italic default FALSE; whether use italic in legend.

Returns: ggplot2 object.

Examples:
\donttest{
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_pie(facet_nrow = 1)
}

Method plot_donut(): Donut chart based on the ggpubr::ggdonutchart function.

32 trans_abund

Usage:
trans_abund$plot_donut(
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
label = TRUE,
facet_nrow = 1,
legend_text_italic = FALSE,
...

)

Arguments:
color_values default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for the donut.
label default TRUE; whether show the percentage label.
facet_nrow default 1; how many rows in the plot.
legend_text_italic default FALSE; whether use italic in legend.
... parameters passed to ggpubr::ggdonutchart.

Returns: combined ggplot2 objects list, generated by ggpubr::ggarrange function.

Examples:
\dontrun{
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_donut(label = TRUE)
}

Method plot_radar(): Radar chart based on the ggradar package (https://github.com/ricardo-
bion/ggradar).

Usage:
trans_abund$plot_radar(
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
...

)

Arguments:
color_values default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for samples.
... parameters passed to ggradar::ggradar function except group.colours parameter.

Returns: ggplot2 object.

Examples:
\dontrun{
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_radar()
}

Method plot_tern(): Ternary diagrams based on the ggtern package.

Usage:
trans_abund$plot_tern(
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
color_legend_guide_size = 4

)

trans_abund 33

Arguments:

color_values default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for the sam-
ples.

color_legend_guide_size default 4; The size of legend guide for color.

Returns: ggplot2 object.

Examples:

\dontrun{
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_tern()
}

Method print(): Print the trans_abund object.

Usage:
trans_abund$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
trans_abund$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `trans_abund$new`
--

data(dataset)
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 10)

--
Method `trans_abund$plot_bar`
--

t1$plot_bar(facet = "Group", xtext_keep = FALSE)

--
Method `trans_abund$plot_heatmap`
--

t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 40)
t1$plot_heatmap(facet = "Group", xtext_keep = FALSE, withmargin = FALSE)

34 trans_abund

--
Method `trans_abund$plot_box`
--

t1$plot_box(group = "Group")

--
Method `trans_abund$plot_line`
--

t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 5)
t1$plot_line(point_size = 3)
t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 5, groupmean = "Group")
t1$plot_line(point_size = 5, errorbar_size = 1, xtext_angle = 30)

--
Method `trans_abund$plot_pie`
--

t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_pie(facet_nrow = 1)

--
Method `trans_abund$plot_donut`
--

Not run:
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_donut(label = TRUE)

End(Not run)

--
Method `trans_abund$plot_radar`
--

Not run:
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_radar()

End(Not run)

--
Method `trans_abund$plot_tern`
--

trans_alpha 35

Not run:
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_tern()

End(Not run)

trans_alpha Create trans_alpha object for alpha diversity statistics and visual-
ization.

Description

This class is a wrapper for a series of alpha diversity analysis, including the statistics and visualiza-
tion.

Methods

Public methods:
• trans_alpha$new()

• trans_alpha$cal_diff()

• trans_alpha$plot_alpha()

• trans_alpha$print()

• trans_alpha$clone()

Method new():
Usage:
trans_alpha$new(
dataset = NULL,
group = NULL,
by_group = NULL,
by_ID = NULL,
order_x = NULL

)

Arguments:
dataset microtable object.
group default NULL; a column name of sample_table in the input microtable object used for

the statistics across groups.
by_group default NULL; a column name of sample_table used to perform the differential

test among groups (from group parameter) for each group (from by_group parameter) sep-
arately.

by_ID default NULL; a column name of sample_table used to perform paired T test or paired
Wilcoxon test for the paired data, such as continuous sampling of individual animals or
plant compartments for different plant species (ID). So by_ID in sample_table should be the
smallest unit of sample collection without any repetition in it. When the by_ID parameter
is provided, the function can automatically perform paired test, and no more parameters is
required.

36 trans_alpha

order_x default NULL; a column name of sample_table or a vector with sample names. If
provided, sort samples using factor.

Returns: data_alpha and data_stat stored in the object.

Examples:

\donttest{
data(dataset)
t1 <- trans_alpha$new(dataset = dataset, group = "Group")
}

Method cal_diff(): Differential test on alpha diversity.

Usage:
trans_alpha$cal_diff(
measure = NULL,
method = c("KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare", "lm",

"lme", "betareg", "glmm", "glmm_beta")[1],
formula = NULL,
p_adjust_method = "fdr",
KW_dunn_letter = TRUE,
alpha = 0.05,
anova_post_test = "duncan.test",
anova_varequal_test = FALSE,
return_model = FALSE,
...

)

Arguments:

measure default NULL; character vector; If NULL, all indexes will be used; see names of
microtable$alpha_diversity, e.g. c("Observed", "Chao1", "Shannon").

method default "KW"; see the following available options:
’KW’ Kruskal-Wallis Rank Sum Test for all groups (>= 2)
’KW_dunn’ Dunn’s Kruskal-Wallis Multiple Comparisons <10.1080/00401706.1964.10490181>

based on dunnTest function in FSA package
’wilcox’ Wilcoxon Rank Sum Test for all paired groups When by_ID parameter is provided

in creating the object of the class, paired Wilcoxon test will be performed.
’t.test’ Student’s t-Test for all paired groups. When by_ID parameter is provided in creating

the object of the class, paired t-test will be performed.
’anova’ Variance analysis. For one-way anova, the default post hoc test is Duncan’s new

multiple range test. Please use anova_post_test parameter to change the post hoc
method. For multi-way anova, Please use formula parameter to specify the model and
see aov for more details

’scheirerRayHare’ Scheirer-Ray-Hare test (nonparametric test) for a two-way factorial
experiment; see scheirerRayHare function of rcompanion package

’lm’ Linear Model based on the lm function
’lme’ Linear Mixed Effect Model based on the lmerTest package
’betareg’ Beta Regression for Rates and Proportions based on the betareg package

trans_alpha 37

’glmm’ Generalized linear mixed model (GLMM) based on the glmmTMB package. A fam-
ily function can be provided using parameter passing, such as: family = glmmTMB::lognormal(link
= "log")

’glmm_beta’ Generalized linear mixed model (GLMM) with a family function of beta
distribution. This is an extension of the GLMM model in 'glmm' option. The only
difference is in glmm_beta the family function is fixed with the beta distribution function,
facilitating the fitting for proportional data (ranging from 0 to 1). The link function is
fixed with "logit".

formula default NULL; applied to two-way or multi-factor analysis when method is "anova",
"scheirerRayHare", "lm", "lme", "betareg" or "glmm"; specified set for independent
variables, i.e. the latter part of a general formula, such as 'block + N*P*K'.

p_adjust_method default "fdr" (for "KW", "wilcox", "t.test" methods) or "holm" (for "KW_dunn");
P value adjustment method; For method = 'KW', 'wilcox' or 't.test', please see method
parameter of p.adjust function for available options; For method = 'KW_dunn', please see
dunn.test::p.adjustment.methods for available options.

KW_dunn_letter default TRUE; For method = 'KW_dunn', TRUE denotes significances are pre-
sented by letters; FALSE means significances are shown by asterisk for paired comparison.

alpha default 0.05; Significant level; used for generating significance letters when method is
’anova’ or ’KW_dunn’.

anova_post_test default "duncan.test". The post hoc test method for one-way anova. The
default option represents the Duncan’s new multiple range test. Other available options
include "LSD.test" (LSD post hoc test) and "HSD.test" (HSD post hoc test). All those are
the function names from agricolae package.

anova_varequal_test default FALSE; whether conduct Levene’s Test for equality of vari-
ances. Only available for one-way anova. Significant P value means the variance among
groups is not equal.

return_model default FALSE; whether return the original "lm", "lmer" or "glmm" model list
in the object.

... parameters passed to kruskal.test (when method = "KW") or wilcox.test function (when
method = "wilcox") or dunnTest function of FSA package (when method = "KW_dunn") or
agricolae::duncan.test/agricolae::LSD.test/agricolae::HSD.test (when method
= "anova", one-way anova) or rcompanion::scheirerRayHare (when method = "scheirerRayHare")
or stats::lm (when method = "lm") or lmerTest::lmer (when method = "lme") or betareg::betareg
(when method = "betareg") or glmmTMB::glmmTMB (when method = "glmm").

Returns: res_diff, stored in object with the format data.frame.
When method is "betareg", "lm", "lme" or "glmm", "Estimate" and "Std.Error" columns repre-
sent the fitted coefficient and its standard error, respectively.

Examples:
\donttest{
t1$cal_diff(method = "KW")
t1$cal_diff(method = "anova")
t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group")
t1$cal_diff(method = "anova")
}

Method plot_alpha(): Plot the alpha diversity. Box plot (and others for visualizing data in
groups of single factor) is used for the visualization of alpha diversity when the group is found in

38 trans_alpha

the object. When the formula is found in the res_diff table in the object, heatmap is employed
automatically to show the significances of differential test for multiple indexes, and errorbar (co-
efficient and standard errors) can be used for single index.

Usage:
trans_alpha$plot_alpha(
plot_type = "ggboxplot",
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
measure = "Shannon",
group = NULL,
add = NULL,
add_sig = TRUE,
add_sig_label = "Significance",
add_sig_text_size = 3.88,
add_sig_label_num_dec = 4,
order_x_mean = FALSE,
y_start = 0.1,
y_increase = 0.05,
xtext_angle = 30,
xtext_size = 13,
ytitle_size = 17,
bar_width = 0.9,
bar_alpha = 0.8,
dodge_width = 0.9,
plot_SE = TRUE,
errorbar_size = 1,
errorbar_width = 0.2,
errorbar_addpoint = TRUE,
errorbar_color_black = FALSE,
point_size = 3,
point_alpha = 0.8,
add_line = FALSE,
line_size = 0.8,
line_type = 2,
line_color = "grey50",
line_alpha = 0.5,
heatmap_cell = "P.unadj",
heatmap_sig = "Significance",
heatmap_x = "Factors",
heatmap_y = "Measure",
heatmap_lab_fill = "P value",
coefplot_sig_pos = 2,
...

)

Arguments:
plot_type default "ggboxplot"; plot type; available options include "ggboxplot", "ggdotplot",

"ggviolin", "ggstripchart", "ggerrorplot", "errorbar" and "barerrorbar". The options start-
ing with "gg" are function names coming from ggpubr package. All those methods with
ggpubr package use the data_alpha table in the object. "errorbar" represents Mean±SD or

trans_alpha 39

Mean±SE plot based on ggplot2 package by invoking the data_stat table in the object.
"barerrorbar" denotes "bar plot + error bar". It is similar with "errorbar" and has a bar plot.

color_values default RColorBrewer::brewer.pal(8, "Dark2"); color pallete for groups.
measure default "Shannon"; one alpha diversity index in the object.
group default NULL; group name used for the plot.
add default NULL; add another plot element; passed to the add parameter of the function (e.g.,

ggboxplot) from ggpubr package when plot_type starts with "gg" (functions coming
from ggpubr package).

add_sig default TRUE; whether add significance label using the result of cal_diff function,
i.e. object$res_diff; This is manily designed to add post hoc test of anova or other
significances to make the label mapping easy.

add_sig_label default "Significance"; select a colname of object$res_diff for the label text
when ’Letter’ is not in the table, such as ’P.adj’ or ’Significance’.

add_sig_text_size default 3.88; the size of text in added label.
add_sig_label_num_dec default 4; reserved decimal places when the parameter add_sig_label

use numeric column, like ’P.adj’.
order_x_mean default FALSE; whether order x axis by the means of groups from large to

small.
y_start default 0.1; the y axis value from which to add the significance asterisk label; the

default 0.1 means max(values) + 0.1 * (max(values) - min(values)).
y_increase default 0.05; the increasing y axia space to add the label (asterisk or letter); the

default 0.05 means 0.05 * (max(values) - min(values)); this parameter is also used to
label the letters of anova result with the fixed space.

xtext_angle default 30; number (e.g. 30). Angle of text in x axis.
xtext_size default 13; x axis text size. NULL means the default size in ggplot2.
ytitle_size default 17; y axis title size.
bar_width default 0.9; the bar width when plot_type = "barerrorbar".
bar_alpha default 0.8; the alpha of bar color when plot_type = "barerrorbar".
dodge_width default 0.9; the dodge width used in position_dodge function of ggplot2 pack-

age when plot_type is "errorbar" or "barerrorbar".
plot_SE default TRUE; TRUE: the errorbar is meanse; FALSE: the errorbar is meansd.

Available when plot_type is "errorbar" or "barerrorbar".
errorbar_size default 1; errorbar size. Available when plot_type is "errorbar" or "barerror-

bar".
errorbar_width default 0.2; errorbar width. Available when plot_type is "errorbar" or "bar-

errorbar" and by_group is NULL.
errorbar_addpoint default TRUE; whether add point for mean. Available when plot_type

is "errorbar" or "barerrorbar" and by_group is NULL.
errorbar_color_black default FALSE; whether use black for the color of errorbar when

plot_type is "errorbar" or "barerrorbar".
point_size default 3; point size for taxa. Available when plot_type is "errorbar" or "bar-

errorbar".
point_alpha default 0.8; point transparency. Available when plot_type is "errorbar" or "bar-

errorbar".

40 trans_alpha

add_line default FALSE; whether add line. Available when plot_type is "errorbar" or "bar-
errorbar".

line_size default 0.8; line size when add_line = TRUE. Available when plot_type is "error-
bar" or "barerrorbar".

line_type default 2; an integer; line type when add_line = TRUE. The available case is same
with line_size.

line_color default "grey50"; line color when add_line = TRUE. Available when by_group is
NULL. Other available case is same with line_size.

line_alpha default 0.5; line transparency when add_line = TRUE. The available case is same
with line_size.

heatmap_cell default "P.unadj"; the column of res_diff table for the cell of heatmap when
formula with multiple factors is found in the method.

heatmap_sig default "Significance"; the column of res_diff for the significance label of
heatmap.

heatmap_x default "Factors"; the column of res_diff for the x axis of heatmap.
heatmap_y default "Taxa"; the column of res_diff for the y axis of heatmap.
heatmap_lab_fill default "P value"; legend title of heatmap.
coefplot_sig_pos default 2; Significance label position in the coefficient point and errorbar

plot. The formula is Estimate + coefplot_sig_pos * Std.Error. This plot is used when
there is only one measure found in the table, and ’Estimate’ and ’Std.Error’ are both in
the column names (such as for lm and lme methods). The x axis is ’Estimate’, and y axis
denotes ’Factors’. When coefplot_sig_pos is a negative value, the label is in the left of the
errorbar. Errorbar size and width in the coefficient point plot can be adjusted with the pa-
rameters errorbar_size and errorbar_width. Point size and alpha can be adjusted with
parameters point_size and point_alpha. The significance label size can be adjusted with
parameter add_sig_text_size. Furthermore, the vertical line around 0 can be adjusted
with parameters line_size, line_type, line_color and line_alpha.

... parameters passing to ggpubr::ggboxplot function (or other functions shown by plot_type
parameter when it starts with "gg") or plot_cor function in trans_env class for the heatmap
of multiple factors when formula is found in the res_diff of the object.

Returns: ggplot.

Examples:
\donttest{
t1 <- trans_alpha$new(dataset = dataset, group = "Group")
t1$cal_diff(method = "wilcox")
t1$plot_alpha(measure = "Shannon", add_sig = TRUE)
t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group")
t1$cal_diff(method = "wilcox")
t1$plot_alpha(measure = "Shannon", add_sig = TRUE)
}

Method print(): Print the trans_alpha object.

Usage:
trans_alpha$print()

Method clone(): The objects of this class are cloneable with this method.

trans_beta 41

Usage:
trans_alpha$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

--
Method `trans_alpha$new`
--

data(dataset)
t1 <- trans_alpha$new(dataset = dataset, group = "Group")

--
Method `trans_alpha$cal_diff`
--

t1$cal_diff(method = "KW")
t1$cal_diff(method = "anova")
t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group")
t1$cal_diff(method = "anova")

--
Method `trans_alpha$plot_alpha`
--

t1 <- trans_alpha$new(dataset = dataset, group = "Group")
t1$cal_diff(method = "wilcox")
t1$plot_alpha(measure = "Shannon", add_sig = TRUE)
t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group")
t1$cal_diff(method = "wilcox")
t1$plot_alpha(measure = "Shannon", add_sig = TRUE)

trans_beta Create trans_beta object for beta-diversity analysis

Description

This class is a wrapper for a series of beta-diversity related analysis, including ordination analy-
sis based on An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035>, group distance comparision,
clustering, perMANOVA based on Anderson al. (2008) <doi:10.1111/j.1442-9993.2001.01070.pp.x>,
ANOSIM and PERMDISP. Note that the beta diversity analysis methods related with environmental
variables are encapsulated within the trans_env class.

42 trans_beta

Methods

Public methods:

• trans_beta$new()

• trans_beta$cal_ordination()

• trans_beta$plot_ordination()

• trans_beta$cal_manova()

• trans_beta$cal_anosim()

• trans_beta$cal_betadisper()

• trans_beta$cal_group_distance()

• trans_beta$cal_group_distance_diff()

• trans_beta$plot_group_distance()

• trans_beta$plot_clustering()

• trans_beta$clone()

Method new():

Usage:
trans_beta$new(dataset = NULL, measure = NULL, group = NULL)

Arguments:

dataset an object of microtable class.
measure default NULL; a matrix name stored in microtable$beta_diversity list, such as

"bray" or "jaccard", or a customized matrix; used for ordination, manova, group distance
comparision, etc.; Please see cal_betadiv function of microtable class for more details.

group default NULL; a column name of sample_table in the input dataset; group information
will be used for manova, betadisper or distance comparision.

Returns: measure, group and dataset stored in the object.

Examples:

data(dataset)
t1 <- trans_beta$new(dataset = dataset, measure = "bray", group = "Group")

Method cal_ordination(): Unconstrained ordination.

Usage:
trans_beta$cal_ordination(
method = "PCoA",
ncomp = 2,
taxa_level = NULL,
NMDS_matrix = TRUE,
trans = FALSE,
scale_species = FALSE,
scale_species_ratio = 0.8,
orthoI = NA,
ordination = deprecated(),
...

)

trans_beta 43

Arguments:
method default "PCoA"; "PCoA", "NMDS", "PCA", "DCA", "PLS-DA" or "OPLS-DA". PCoA:

principal coordinates analysis; NMDS: non-metric multidimensional scaling, PCA: princi-
pal component analysis; DCA: detrended correspondence analysis; PLS-DA: partial least
squares discriminant analysis; OPLS-DA: orthogonal partial least squares discriminant anal-
ysis. For the methods details, please refer to the papers <doi:10.1111/j.1574-6941.2007.00375.x>
(for PCoA, NMDS, PCA and DCA) and <doi:10.1186/s12859-019-3310-7> (for PLS-DA
or OPLS-DA).

ncomp default 2; dimensions in the result. For the method option "PCA", "PCoA" or "DCA",
the corresponding dimension information will be selected from the original model based
on this parameter.. For all the dimension information, please refer to model in the results.
For the method option "NMDS", this argument will be passed to the k parameter in the
vegan::metaMDS function.

taxa_level default NULL; available for PCA, DCA or NMDS (NMDS_matrix = TRUE). De-
fault NULL means using the otu_table in the microtable object. For other options, please
provide the taxonomic rank names in tax_table, such as "Phylum" or "Genus". In such
cases, the data will be merged according to the provided taxonomic levels to generated a
new abundance table.

NMDS_matrix default TRUE; For the NMDS method, whether use a distance matrix as input
like PCoA. If it is FALSE, the input will be the abundance table like PCA.

trans default FALSE; whether species abundance will be square root transformed; only avail-
able when method is "PCA" or "DCA". For method "NMDS" and NMDS_matrix = FALSE,
please set the autotransform parameter, which will be passed to vegan::metaMDS func-
tion directly.

scale_species default FALSE; whether species loading in PCA, DCA or NMDS (NMDS_matrix
= FALSE) is scaled.

scale_species_ratio default 0.8; the ratio to scale up the loading; multiply by the maximum
distance between samples and origin. Only available when scale_species = TURE.

orthoI default NA; number of orthogonal components (for OPLS-DA only). Default NA
means the number of orthogonal components is automatically computed. Please also see
orthoI parameter in opls function of ropls package.

ordination deprecated. Please use method argument instead.
... parameters passed to vegan::rda function when method = "PCA", or vegan::decorana

function when method = "DCA", or ape::pcoa function when method = "PCoA", or vegan::metaMDS
function when method = "NMDS", or ropls::opls function when method = "PLS-DA" or
method = "OPLS-DA" .

Returns: res_ordination list stored in the object. In the list, model is the original analysis
results; scores is the sample scores table; loading is the feature loading table.

Examples:
t1$cal_ordination(method = "PCoA")

Method plot_ordination(): Plot the ordination result.

Usage:
trans_beta$plot_ordination(
plot_type = "point",
choices = c(1, 2),

44 trans_beta

color_values = RColorBrewer::brewer.pal(8, "Dark2"),
shape_values = c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14),
plot_color = NULL,
plot_shape = NULL,
plot_group_order = NULL,
add_sample_label = NULL,
point_size = 3,
point_alpha = 0.8,
point_second = FALSE,
point_second_size = NULL,
point_second_alpha = NULL,
point_second_color = NULL,
centroid_segment_alpha = 0.6,
centroid_segment_size = 1,
centroid_segment_linetype = 3,
ellipse_chull_fill = TRUE,
ellipse_chull_alpha = 0.1,
ellipse_level = 0.9,
ellipse_type = "t",
NMDS_stress_pos = c(1, 1),
NMDS_stress_text_prefix = "",
loading_arrow = FALSE,
loading_taxa_num = 10,
loading_text_taxlevel = NULL,
loading_text_color = "black",
loading_arrow_color = "grey30",
loading_text_size = 3,
loading_text_prefix = FALSE,
loading_text_italic = FALSE

)

Arguments:
plot_type default "point"; one or more elements of "point", "ellipse", "chull" and "centroid".

’point’ add sample points
’ellipse’ add confidence ellipse for points of each group
’chull’ add convex hull for points of each group
’centroid’ add centroid line for points in each group

choices default c(1, 2); selected axis for the visualization; must be numeric vector. The maxi-
mum value must not exceed the parameter ncomp in the cal_ordination function.

color_values default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for different
groups.

shape_values default c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14); a vector for
point shape types of groups, see ggplot2 tutorial.

plot_color default NULL; a colname of sample_table to assign colors to different groups in
plot.

plot_shape default NULL; a colname of sample_table to assign shapes to different groups
in plot.

plot_group_order default NULL; a vector used to order the groups in the legend of plot.

trans_beta 45

add_sample_label default NULL; a column name in sample_table; If provided, show the
point name in plot.

point_size default 3; point size when "point" is in plot_type parameter. point_size can
also be a variable name in sample_table, such as "pH".

point_alpha default .8; point transparency in plot when "point" is in plot_type parameter.
point_second default FALSE; whether plot the second group of points. Only available when

input point_size is numeric value.
point_second_size default NULL; size value of the second type of point. Default means

point_size * 0.6

point_second_alpha default NULL; point transparency of the second type of point.
point_second_color default NULL; a color value of the second type of point. If NULL, same

with previous setting.
centroid_segment_alpha default 0.6; segment transparency in plot when "centroid" is in

plot_type parameter.
centroid_segment_size default 1; segment size in plot when "centroid" is in plot_type pa-

rameter.
centroid_segment_linetype default 3; the line type related with centroid in plot when "cen-

troid" is in plot_type parameter.
ellipse_chull_fill default TRUE; whether fill colors to the area of ellipse or chull.
ellipse_chull_alpha default 0.1; color transparency in the ellipse or convex hull depending

on whether "ellipse" or "centroid" is in plot_type parameter.
ellipse_level default .9; confidence level of ellipse when "ellipse" is in plot_type parame-

ter.
ellipse_type default "t"; ellipse type when "ellipse" is in plot_type parameter; see type in

stat_ellipse.
NMDS_stress_pos default c(1, 1); a numerical vector with two values used to represent the

insertion position of the stress text. The first one denotes the x-axis, while the second
one corresponds to the y-axis. The assigned position is determined by multiplying the
respective value with the maximum point on the corresponding coordinate axis. Thus, the
x-axis position is equal to max(points of x axis) * NMDS_stress_pos[1], and the y-axis
position is equal to max(points of y axis) * NMDS_stress_pos[2]. Negative values can
also be utilized for the negative part of the axis. NMDS_stress_pos = NULL denotes no stress
text to show.

NMDS_stress_text_prefix default ""; If NMDS_stress_pos is not NULL, this parameter can
be used to add text in front of the stress value.

loading_arrow default FALSE; whether show the loading using arrow.
loading_taxa_num default 10; the number of taxa used for the loading. Only available when

loading_arrow = TRUE.
loading_text_taxlevel default NULL; which level of taxonomic table will be used. Default

NULL means using the taxa_level parameter in the previous cal_ordination function.
loading_text_color default "black"; the color of taxa text. Only available when loading_arrow

= TRUE.
loading_arrow_color default "grey30"; the color of taxa arrow. Only available when loading_arrow

= TRUE.
loading_text_size default 3; the size of taxa text. Only available when loading_arrow =

TRUE.

46 trans_beta

loading_text_prefix default FALSE; whether show the prefix (e.g., g__) in the taxa text.
Only available when loading_arrow = TRUE.

loading_text_italic default FALSE; whether using italic for the taxa text. Only available
when loading_arrow = TRUE.

Returns: ggplot.

Examples:
t1$plot_ordination(plot_type = "point")
t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = "point")
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "ellipse"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"),
centroid_segment_linetype = 1)

Method cal_manova(): Calculate perMANOVA (Permutational Multivariate Analysis of Vari-
ance) based on the adonis2 function of vegan package <doi:10.1111/j.1442-9993.2001.01070.pp.x>.

Usage:
trans_beta$cal_manova(
manova_all = TRUE,
manova_set = NULL,
group = NULL,
by_group = NULL,
p_adjust_method = "fdr",
by = "terms",
by_auto_set = TRUE,
permutations = 999,
...

)

Arguments:
manova_all default TRUE; TRUE represents test for all the groups, i.e. the overall test; FALSE

represents test for all the paired groups.
manova_set default NULL; other specified group set for manova, such as "Group + Type" and

"Group*Type". Please also see the formula parameter (only right-hand side) in adonis2
function of vegan package. The parameter manova_set has higher priority than manova_all
parameter. If manova_set is provided; manova_all is disabled.

group default NULL; a column name of sample_table used for manova. If NULL, search
group variable stored in the object. Available when manova_set is not provided.

by_group default NULL; one column name in sample_table; used to perform paired compar-
isions within each group. Only available when manova_all = FALSE and manova_set is not
provided.

p_adjust_method default "fdr"; p.adjust method; available when manova_all = FALSE; see
method parameter of p.adjust function for available options.

by default "terms"; same with the by parameter in adonis2 function of vegan package.
by_auto_set default TRUE; Whether automatically set the options for by parameter ("marginal"

or "terms") when manova_set is provided. The primary reason for setting this parameter is
that using marginal effects (also known as "Type III" effects) is more robust for unbalanced
experimental designs. Since the option by = "margin" in the adonis2 function ignores
main effects when interaction effects are present, we automatically set by = "margin" when

trans_beta 47

there are no interaction effects, and set by = "terms" when interaction effects exist. If the
user wants to use parameter by, please set by_auto_set = FALSE. Note that this parameter
is only available when manova_set is provided.

permutations default 999; same with the permutations parameter in adonis2 function of
vegan package.

... parameters passed to adonis2 function of vegan package.

Returns: res_manova stored in object with data.frame class.

Examples:

t1$cal_manova(manova_all = TRUE)

Method cal_anosim(): Analysis of similarities (ANOSIM) based on the anosim function of
vegan package.

Usage:
trans_beta$cal_anosim(
paired = FALSE,
group = NULL,
by_group = NULL,
p_adjust_method = "fdr",
permutations = 999,
...

)

Arguments:

paired default FALSE; whether perform paired test between any two combined groups from
all the input groups.

group default NULL; a column name of sample_table. If NULL, search group variable stored
in the object.

by_group default NULL; one column name in sample_table; used to perform paired compar-
isions within each group. Only available when paired = TRUE.

p_adjust_method default "fdr"; p.adjust method; available when paired = TRUE; see method
parameter of p.adjust function for available options.

permutations default 999; same with the permutations parameter in anosim function of
vegan package.

... parameters passed to anosim function of vegan package.

Returns: res_anosim stored in object with data.frame class.

Examples:

t1$cal_anosim()

Method cal_betadisper(): Multivariate homogeneity test of groups dispersions (PERMDISP)
based on betadisper function in vegan package.

Usage:
trans_beta$cal_betadisper(...)

Arguments:

... parameters passed to betadisper function.

48 trans_beta

Returns: res_betadisper stored in object.

Examples:
t1$cal_betadisper()

Method cal_group_distance(): Convert symmetric distance matrix to distance table of paired
samples that are within groups or between groups.

Usage:
trans_beta$cal_group_distance(
within_group = TRUE,
by_group = NULL,
ordered_group = NULL,
sep = " vs "

)

Arguments:
within_group default TRUE; whether obtain distance table of paired samples within groups;

if FALSE, obtain distances of paired samples between any two groups.
by_group default NULL; one colname name of sample_table in microtable object. If pro-

vided, transform distances by the provided by_group parameter. This is especially use-
ful for ordering and filtering values further. When within_group = TRUE, the result of
by_group parameter is the format of paired groups. When within_group = FALSE, the re-
sult of by_group parameter is the format same with the group information in sample_table.

ordered_group default NULL; a vector representing the ordered elements of group parameter;
only useful when within_group = FALSE.

sep default TRUE; a character string to separate the group names after merging them into a
new name.

Returns: res_group_distance stored in object.

Examples:
\donttest{
t1$cal_group_distance(within_group = TRUE)
}

Method cal_group_distance_diff(): Differential test of converted distances across groups.
Usage:
trans_beta$cal_group_distance_diff(
group = NULL,
by_group = NULL,
by_ID = NULL,
...

)

Arguments:
group default NULL; a column name of object$res_group_distance used for the statistics;

If NULL, use the group inside the object.
by_group default NULL; a column of object$res_group_distance used to perform the dif-

ferential test among elements in group parameter for each element in by_group parameter.
So by_group has a larger scale than group parameter. This by_group is very different from
the by_group parameter in the cal_group_distance function.

trans_beta 49

by_ID default NULL; a column of object$res_group_distance used to perform paired t test
or paired wilcox test for the paired data, such as the data of plant compartments for different
plant species (ID). So by_ID should be the smallest unit of sample collection without any
repetition in it.

... parameters passed to cal_diff function of trans_alpha class.

Returns: res_group_distance_diff stored in object.

Examples:
\donttest{
t1$cal_group_distance_diff()
}

Method plot_group_distance(): Plot the distances of paired groups within or between groups.
Usage:
trans_beta$plot_group_distance(plot_group_order = NULL, ...)

Arguments:
plot_group_order default NULL; a vector used to order the groups in the plot.
... parameters (except measure) passed to plot_alpha function of trans_alpha class.

Returns: ggplot.

Examples:
\donttest{
t1$plot_group_distance()
}

Method plot_clustering(): Plot clustering result based on the ggdendro package.
Usage:
trans_beta$plot_clustering(
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
measure = NULL,
group = NULL,
replace_name = NULL

)

Arguments:
color_values default RColorBrewer::brewer.pal(8, "Dark2"); color palette for the text.
measure default NULL; beta diversity index; If NULL, using the measure when creating object
group default NULL; if provided, use this group to assign color.
replace_name default NULL; if provided, use this as label.

Returns: ggplot.

Examples:
t1$plot_clustering(group = "Group", replace_name = c("Saline", "Type"))

Method clone(): The objects of this class are cloneable with this method.
Usage:
trans_beta$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

50 trans_beta

Examples

--
Method `trans_beta$new`
--

data(dataset)
t1 <- trans_beta$new(dataset = dataset, measure = "bray", group = "Group")

--
Method `trans_beta$cal_ordination`
--

t1$cal_ordination(method = "PCoA")

--
Method `trans_beta$plot_ordination`
--

t1$plot_ordination(plot_type = "point")
t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = "point")
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "ellipse"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"),

centroid_segment_linetype = 1)

--
Method `trans_beta$cal_manova`
--

t1$cal_manova(manova_all = TRUE)

--
Method `trans_beta$cal_anosim`
--

t1$cal_anosim()

--
Method `trans_beta$cal_betadisper`
--

t1$cal_betadisper()

--
Method `trans_beta$cal_group_distance`
--

t1$cal_group_distance(within_group = TRUE)

--
Method `trans_beta$cal_group_distance_diff`

trans_classifier 51

--

t1$cal_group_distance_diff()

--
Method `trans_beta$plot_group_distance`
--

t1$plot_group_distance()

--
Method `trans_beta$plot_clustering`
--

t1$plot_clustering(group = "Group", replace_name = c("Saline", "Type"))

trans_classifier Create trans_classifier object for machine-learning-based model
prediction.

Description

This class is a wrapper for methods of machine-learning-based classification or regression models,
including data pre-processing, feature selection, data split, model training, prediction, confusion-
Matrix and ROC (Receiver Operator Characteristic) or PR (Precision-Recall) curve.

Author(s): Felipe Mansoldo and Chi Liu

Methods

Public methods:
• trans_classifier$new()

• trans_classifier$cal_split()

• trans_classifier$cal_preProcess()

• trans_classifier$cal_feature_sel()

• trans_classifier$set_trainControl()

• trans_classifier$cal_train()

• trans_classifier$cal_feature_imp()

• trans_classifier$plot_feature_imp()

• trans_classifier$cal_predict()

• trans_classifier$plot_confusionMatrix()

• trans_classifier$cal_ROC()

• trans_classifier$plot_ROC()

52 trans_classifier

• trans_classifier$cal_caretList()

• trans_classifier$cal_caretList_resamples()

• trans_classifier$plot_caretList_resamples()

• trans_classifier$clone()

Method new(): Create a trans_classifier object.

Usage:
trans_classifier$new(
dataset,
x.predictors = "Genus",
y.response = NULL,
n.cores = 1

)

Arguments:
dataset an object of microtable class.
x.predictors default "Genus"; character string or data.frame; a character string represents

selecting the corresponding data from microtable$taxa_abund; data.frame denotes other
customized input. See the following available options:
’Genus’ use Genus level table in microtable$taxa_abund, or other specific taxonomic

rank, e.g., ’Phylum’. If an input level (e.g., ASV) is not found in the names of taxa_abund
list, the function will use otu_table to calculate relative abundance of features.

’all’ use all the levels stored in microtable$taxa_abund.
other input must be a data.frame object. It should have the same format with the tables in

microtable$taxa_abund, i.e. rows are features; columns are samples with same names in
sample_table.

y.response default NULL; the response variable in sample_table of input microtable ob-
ject.

n.cores default 1; the CPU thread used.

Returns: data_feature and data_response stored in the object.

Examples:
\donttest{
data(dataset)
t1 <- trans_classifier$new(
dataset = dataset,
x.predictors = "Genus",
y.response = "Group")
}

Method cal_split(): Split data for training and testing.

Usage:
trans_classifier$cal_split(prop.train = 3/4)

Arguments:
prop.train default 3/4; the ratio of the data used for the training.

Returns: data_train and data_test in the object.

trans_classifier 53

Examples:

\dontrun{
t1$cal_split(prop.train = 3/4)
}

Method cal_preProcess(): Pre-process (centering, scaling etc.) of features based on the
caret::preProcess function. See https://topepo.github.io/caret/pre-processing.html for more de-
tails.

Usage:
trans_classifier$cal_preProcess(...)

Arguments:

... parameters pass to preProcess function of caret package.

Returns: data_preProcess, data_train and data_test in the object. data_preProcess
is the return data generated by the preProcess function of caret package based on the train-
ing data. data_train and data_test are preprocessed training and testing data based on the
data_preProcess.

Examples:

\dontrun{
"nzv" removes near zero variance predictors
t1$cal_preProcess(method = c("center", "scale", "nzv"))
}

Method cal_feature_sel(): Perform feature selection. See https://topepo.github.io/caret/feature-
selection-overview.html for more details.

Usage:
trans_classifier$cal_feature_sel(
boruta.maxRuns = 300,
boruta.pValue = 0.01,
boruta.repetitions = 4,
...

)

Arguments:

boruta.maxRuns default 300; maximal number of importance source runs; passed to the maxRuns
parameter in Boruta function of Boruta package.

boruta.pValue default 0.01; p value passed to the pValue parameter in Boruta function of
Boruta package.

boruta.repetitions default 4; repetition runs for the feature selection.
... parameters pass to Boruta function of Boruta package.

Returns: optimized data_train and data_test in the object.

Examples:

\dontrun{
t1$cal_feature_sel(boruta.maxRuns = 300, boruta.pValue = 0.01)
}

https://topepo.github.io/caret/pre-processing.html
https://topepo.github.io/caret/feature-selection-overview.html
https://topepo.github.io/caret/feature-selection-overview.html

54 trans_classifier

Method set_trainControl(): Control parameters for the following training. Please see
trainControl function of caret package for details.

Usage:
trans_classifier$set_trainControl(
method = "repeatedcv",
classProbs = TRUE,
savePredictions = TRUE,
...

)

Arguments:
method default ’repeatedcv’; ’repeatedcv’: Repeated k-Fold cross validation; see method pa-

rameter in trainControl function of caret package for available options.
classProbs default TRUE; should class probabilities be computed for classification models?;

see classProbs parameter in caret::trainControl function.
savePredictions default TRUE; see savePredictions parameter in caret::trainControl

function.
... parameters pass to trainControl function of caret package.
Returns: trainControl in the object.
Examples:
\dontrun{
t1$set_trainControl(method = 'repeatedcv')
}

Method cal_train(): Run the model training. Please see https://topepo.github.io/caret/available-
models.html for available models.

Usage:
trans_classifier$cal_train(method = "rf", max.mtry = 2, ntree = 500, ...)

Arguments:
method default "rf"; "rf": random forest; see method in train function of caret package for

other options. For method = "rf", the tuneGrid is set: expand.grid(mtry = seq(from =
1, to = max.mtry))

max.mtry default 2; for method = "rf"; maximum mtry used in the tuneGrid to do hyperpa-
rameter tuning to optimize the model.

ntree default 500; for method = "rf"; Number of trees to grow. The default 500 is same with
the ntree parameter in randomForest function in randomForest package. When it is a
vector with more than one element, the function will try to optimize the model to select a
best one, such as c(100, 500, 1000).

... parameters pass to caret::train function.
Returns: res_train in the object.
Examples:
\dontrun{
random forest
t1$cal_train(method = "rf")
Support Vector Machines with Radial Basis Function Kernel
t1$cal_train(method = "svmRadial", tuneLength = 15)
}

https://topepo.github.io/caret/available-models.html
https://topepo.github.io/caret/available-models.html

trans_classifier 55

Method cal_feature_imp(): Get feature importance from the training model.

Usage:
trans_classifier$cal_feature_imp(rf_feature_sig = FALSE, ...)

Arguments:

rf_feature_sig default FALSE; whether calculate feature significance in ’rf’ model using
rfPermute package; only available for method = "rf" in cal_train function.

... parameters pass to varImp function of caret package. If rf_feature_sig is TURE and
train_method is "rf", the parameters will be passed to rfPermute function of rfPermute
package.

Returns: res_feature_imp in the object. One row for each predictor variable. The column(s)
are different importance measures. For the method ’rf’, it is MeanDecreaseGini (classification)
or IncNodePurity (regression) when rf_feature_sig = FALSE.

Examples:

\dontrun{
t1$cal_feature_imp()
}

Method plot_feature_imp(): Bar plot for feature importance.

Usage:
trans_classifier$plot_feature_imp(
rf_sig_show = NULL,
show_sig_group = FALSE,
...

)

Arguments:

rf_sig_show default NULL; "MeanDecreaseAccuracy" (Default) or "MeanDecreaseGini" for
random forest classification; "%IncMSE" (Default) or "IncNodePurity" for random forest
regression; Only available when rf_feature_sig = TRUE in function cal_feature_imp,
which generate "MeanDecreaseGini" (and "MeanDecreaseAccuracy") or "%IncMSE" (and
"IncNodePurity") in the column names of res_feature_imp; Function can also generate
"Significance" according to the p value.

show_sig_group default FALSE; whether show the features with different significant groups;
Only available when "Significance" is found in the data.

... parameters pass to plot_diff_bar function of trans_diff package.

Returns: ggplot2 object.

Examples:

\dontrun{
t1$plot_feature_imp(use_number = 1:20, coord_flip = FALSE)
}

Method cal_predict(): Run the prediction.

Usage:
trans_classifier$cal_predict(positive_class = NULL)

56 trans_classifier

Arguments:

positive_class default NULL; see positive parameter in confusionMatrix function of caret
package; If positive_class is NULL, use the first group in data as the positive class automat-
ically.

Returns: res_predict, res_confusion_fit and res_confusion_stats stored in the ob-
ject. The res_predict is the predicted result for data_test. Several evaluation metrics in
res_confusion_fit are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity = Recall = TPR =
TP

TP + FN

Specificity = TNR = 1− FPR =
TN

TN + FP

Precision =
TP

TP + FP

Prevalence =
TP + FN

TP + TN + FP + FN

F1− Score =
2 ∗ Precision ∗Recall

Precision+Recall

Kappa =
Accuracy − Pe

1− Pe

where TP is true positive; TN is ture negative; FP is false positive; and FN is false negative;
FPR is False Positive Rate; TPR is True Positive Rate; TNR is True Negative Rate; Pe is the
hypothetical probability of chance agreement on the classes for reference and prediction in the
confusion matrix. Accuracy represents the ratio of correct predictions. Precision identifies how
the model accurately predicted the positive classes. Recall (sensitivity) measures the ratio of
actual positives that are correctly identified by the model. F1-score is the weighted average
score of recall and precision. The value at 1 is the best performance and at 0 is the worst.
Prevalence represents how often positive events occurred. Kappa identifies how well the model
is predicting.

Examples:

\dontrun{
t1$cal_predict()
}

Method plot_confusionMatrix(): Plot the cross-tabulation of observed and predicted classes
with associated statistics based on the results of function cal_predict.

Usage:
trans_classifier$plot_confusionMatrix(
plot_confusion = TRUE,
plot_statistics = TRUE

)

Arguments:

trans_classifier 57

plot_confusion default TRUE; whether plot the confusion matrix.
plot_statistics default TRUE; whether plot the statistics.

Returns: ggplot object.

Examples:
\dontrun{
t1$plot_confusionMatrix()
}

Method cal_ROC(): Get ROC (Receiver Operator Characteristic) curve data and the perfor-
mance data.

Usage:
trans_classifier$cal_ROC(input = "pred")

Arguments:
input default "pred"; ’pred’ or ’train’; ’pred’ represents using prediction results; ’train’ repre-

sents using training results.

Returns: a list res_ROC stored in the object. It has two tables: res_roc and res_pr. AUC:
Area Under the ROC Curve. For the definition of metrics, please refer to the return part of
function cal_predict.

Examples:
\dontrun{
t1$cal_ROC()
}

Method plot_ROC(): Plot ROC curve.

Usage:
trans_classifier$plot_ROC(
plot_type = c("ROC", "PR")[1],
plot_group = "all",
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
add_AUC = TRUE,
plot_method = FALSE,
...

)

Arguments:
plot_type default c("ROC", "PR")[1]; ’ROC’ represents ROC (Receiver Operator Character-

istic) curve; ’PR’ represents PR (Precision-Recall) curve.
plot_group default "all"; ’all’ represents all the classes in the model; ’add’ represents all

adding micro-average and macro-average results, see https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html;
other options should be one or more class names, same with the names in Group column of
res_ROC$res_roc from cal_ROC function.

color_values default RColorBrewer::brewer.pal(8, "Dark2"); colors used in the plot.
add_AUC default TRUE; whether add AUC in the legend.
plot_method default FALSE; If TRUE, show the method in the legend though only one method

is found.

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

58 trans_classifier

... parameters pass to geom_path function of ggplot2 package.

Returns: ggplot2 object.

Examples:

\dontrun{
t1$plot_ROC(size = 1, alpha = 0.7)
}

Method cal_caretList(): Use caretList function of caretEnsemble package to run multiple
models. For the available models, please run names(getModelInfo()).

Usage:
trans_classifier$cal_caretList(...)

Arguments:

... parameters pass to caretList function of caretEnsemble package.

Returns: res_caretList_models in the object.

Examples:

\dontrun{
t1$cal_caretList(methodList = c('rf', 'svmRadial'))
}

Method cal_caretList_resamples(): Use resamples function of caret package to collect the
metric values based on the res_caretList_models data.

Usage:
trans_classifier$cal_caretList_resamples(...)

Arguments:

... parameters pass to resamples function of caret package.

Returns: res_caretList_resamples list and res_caretList_resamples_reshaped table in
the object.

Examples:

\dontrun{
t1$cal_caretList_resamples()
}

Method plot_caretList_resamples(): Visualize the metric values based on the res_caretList_resamples_reshaped
data.

Usage:
trans_classifier$plot_caretList_resamples(
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
...

)

Arguments:

color_values default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for the box.
... parameters pass to geom_boxplot function of ggplot2 package.

trans_classifier 59

Returns: ggplot object.

Examples:

\dontrun{
t1$plot_caretList_resamples()
}

Method clone(): The objects of this class are cloneable with this method.

Usage:
trans_classifier$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `trans_classifier$new`
--

data(dataset)
t1 <- trans_classifier$new(
dataset = dataset,
x.predictors = "Genus",
y.response = "Group")

--
Method `trans_classifier$cal_split`
--

Not run:
t1$cal_split(prop.train = 3/4)

End(Not run)

--
Method `trans_classifier$cal_preProcess`
--

Not run:
"nzv" removes near zero variance predictors
t1$cal_preProcess(method = c("center", "scale", "nzv"))

End(Not run)

--
Method `trans_classifier$cal_feature_sel`
--

Not run:

60 trans_classifier

t1$cal_feature_sel(boruta.maxRuns = 300, boruta.pValue = 0.01)

End(Not run)

--
Method `trans_classifier$set_trainControl`
--

Not run:
t1$set_trainControl(method = 'repeatedcv')

End(Not run)

--
Method `trans_classifier$cal_train`
--

Not run:
random forest
t1$cal_train(method = "rf")
Support Vector Machines with Radial Basis Function Kernel
t1$cal_train(method = "svmRadial", tuneLength = 15)

End(Not run)

--
Method `trans_classifier$cal_feature_imp`
--

Not run:
t1$cal_feature_imp()

End(Not run)

--
Method `trans_classifier$plot_feature_imp`
--

Not run:
t1$plot_feature_imp(use_number = 1:20, coord_flip = FALSE)

End(Not run)

--
Method `trans_classifier$cal_predict`
--

Not run:
t1$cal_predict()

End(Not run)

--

trans_classifier 61

Method `trans_classifier$plot_confusionMatrix`
--

Not run:
t1$plot_confusionMatrix()

End(Not run)

--
Method `trans_classifier$cal_ROC`
--

Not run:
t1$cal_ROC()

End(Not run)

--
Method `trans_classifier$plot_ROC`
--

Not run:
t1$plot_ROC(size = 1, alpha = 0.7)

End(Not run)

--
Method `trans_classifier$cal_caretList`
--

Not run:
t1$cal_caretList(methodList = c('rf', 'svmRadial'))

End(Not run)

--
Method `trans_classifier$cal_caretList_resamples`
--

Not run:
t1$cal_caretList_resamples()

End(Not run)

--
Method `trans_classifier$plot_caretList_resamples`
--

Not run:
t1$plot_caretList_resamples()

End(Not run)

62 trans_diff

trans_diff Create trans_diff object for the differential analysis on the taxo-
nomic abundance

Description

This class is a wrapper for a series of differential abundance test and indicator analysis methods,
including LEfSe based on the Segata et al. (2011) <doi:10.1186/gb-2011-12-6-r60>, random forest
<doi:10.1016/j.geoderma.2018.09.035>, metastat based on White et al. (2009) <doi:10.1371/journal.pcbi.1000352>,
non-parametric Kruskal-Wallis Rank Sum Test, Dunn’s Kruskal-Wallis Multiple Comparisons based
on the FSA package, Wilcoxon Rank Sum and Signed Rank Tests, t-test, anova, Scheirer Ray
Hare test, R package metagenomeSeq Paulson et al. (2013) <doi:10.1038/nmeth.2658>, R package
ANCOMBC <doi:10.1038/s41467-020-17041-7>, R package ALDEx2 <doi:10.1371/journal.pone.0067019;
10.1186/2049-2618-2-15>, R package MicrobiomeStat <doi:10.1186/s13059-022-02655-5>, beta
regression <doi:10.18637/jss.v034.i02>, R package maaslin2, linear mixed-effects model and gen-
eralized linear mixed model.

Methods

Public methods:
• trans_diff$new()

• trans_diff$plot_diff_abund()

• trans_diff$plot_diff_bar()

• trans_diff$plot_diff_cladogram()

• trans_diff$plot_volcano()

• trans_diff$clone()

Method new():
Usage:
trans_diff$new(
dataset = NULL,
method = c("lefse", "rf", "metastat", "metagenomeSeq", "KW", "KW_dunn", "wilcox",
"t.test", "anova", "scheirerRayHare", "lm", "ancombc2", "ALDEx2_t", "ALDEx2_kw",
"DESeq2", "edgeR", "linda", "maaslin2", "betareg", "lme", "glmm", "glmm_beta")[1],
group = NULL,
taxa_level = "all",
filter_thres = 0,
alpha = 0.05,
p_adjust_method = "fdr",
transformation = NULL,
remove_unknown = TRUE,
lefse_subgroup = NULL,
lefse_min_subsam = 10,
lefse_sub_strict = FALSE,
lefse_sub_alpha = NULL,
lefse_norm = 1e+06,

trans_diff 63

nresam = 0.6667,
boots = 30,
rf_imp_type = 2,
group_choose_paired = NULL,
metagenomeSeq_count = 1,
ALDEx2_sig = c("wi.eBH", "kw.eBH"),
by_group = NULL,
by_ID = NULL,
beta_pseudo = .Machine$double.eps,
...

)

Arguments:
dataset default NULL; microtable object.
method default "lefse". Some methods (e.g., "lefse", "KW", "wilcox", "anova", "lm", "betareg",

"glmm" and "glmm_beta") invoke the taxa_abund list (generally relative abundance data)
of input microtable object for the analysis. Some (e.g., "metastat", "metagenomeSeq",
"ALDEx2_t", "DESeq2", "edgeR", "ancombc2" and "linda") use the otu_table of input
microtable object for the analysis. Available options include:
’lefse’ LEfSe method based on Segata et al. (2011) <doi:10.1186/gb-2011-12-6-r60>
’rf’ random forest and non-parametric test method based on An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035>
’metastat’ Metastat method for all paired groups based on White et al. (2009) <doi:10.1371/journal.pcbi.1000352>
’metagenomeSeq’ zero-inflated log-normal model-based differential test method from metagenomeSeq

package <doi:10.1038/nmeth.2658>
’KW’ KW: Kruskal-Wallis Rank Sum Test for all groups (>= 2)
’KW_dunn’ Dunn’s Kruskal-Wallis Multiple Comparisons when group number > 2; see

dunnTest function in FSA package
’wilcox’ Wilcoxon Rank Sum and Signed Rank Tests for all paired groups
’t.test’ Student’s t-Test for all paired groups
’anova’ ANOVA for one-way or multi-factor analysis; see cal_diff function of trans_alpha

class
’scheirerRayHare’ Scheirer Ray Hare test for nonparametric test used for a two-way fac-

torial experiment; see scheirerRayHare function of rcompanion package
’lm’ Linear Model based on the lm function
’ALDEx2_t’ runs Welch’s t and Wilcoxon tests with ALDEx2 package; see also the test pa-

rameter in ALDEx2::aldex function; ALDEx2 uses the centred log-ratio (clr) transforma-
tion and estimates per-feature technical variation within each sample using Monte-Carlo
instances drawn from the Dirichlet distribution; Reference: <doi:10.1371/journal.pone.0067019>
and <doi:10.1186/2049-2618-2-15>; require ALDEx2 package to be installed (https://bioconductor.org/packages/release/bioc/html/ALDEx2.html)

’ALDEx2_kw’ runs Kruskal-Wallis and generalized linear model (glm) test with ALDEx2
package; see also the test parameter in ALDEx2::aldex function.

’DESeq2’ Differential expression analysis based on the Negative Binomial (a.k.a. Gamma-
Poisson) distribution based on the DESeq2 package.

’edgeR’ The exactTest method of edgeR package is implemented.
’ancombc2’ Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-

BC) based on the ancombc2 function from ANCOMBC package <doi:10.1038/s41467-020-
17041-7><10.1038/s41592-023-02092-7>. If the fix_formula parameter is not pro-
vided, the function can automatically assign it by using group parameter. For this method,

https://bioconductor.org/packages/release/bioc/html/ALDEx2.html

64 trans_diff

the group parameter is directly passed to the group parameter of ancombc2 function. Re-
quire ANCOMBC package to be installed (https://bioconductor.org/packages/release/bioc/html/ANCOMBC.html)

’linda’ Linear Model for Differential Abundance Analysis of High-dimensional Composi-
tional Data based on the linda function of MicrobiomeStat package <doi:10.1186/s13059-
022-02655-5>. For linda method, please provide either the group parameter or the for-
mula parameter. When the formula parameter is provided, it should start with ’~’ as it is
directly used by the linda function. If the group parameter is used, the prefix ’~’ is not
necessary as the function can automatically add it. The parameter feature.dat.type =
'count' has been fixed. Other parameters can be passed to the linda function.

’maaslin2’ finding associations between metadata and potentially high-dimensional micro-
bial multi-omics data based on the Maaslin2 package <doi:10.1371/journal.pcbi.1009442>.
Using this option can invoke the trans_env$cal_cor function with method = "maaslin2".

’betareg’ Beta Regression based on the betareg package <doi:10.18637/jss.v034.i02>.
Please see the beta_pseudo parameter for the use of pseudo value when there is 0 or 1
in the data

’lme’ Linear Mixed Effect Model based on the lmerTest package. In the return table, the
significance of fixed factors are tested by function anova. The significance of ’Estimate’
in each term of fixed factors comes from the model.

’glmm’ Generalized linear mixed model (GLMM) based on the glmmTMB package <doi:10.32614/RJ-
2017-066>. The formula and family parameters are needed. Please refer to glmmTMB
package to select the family function, e.g. family = glmmTMB::lognormal(link = "log").
The usage of formula is similar with that in ’lme’ method. For more available parameters,
please see glmmTMB::glmmTMB function and use parameter passing. In the result, Con-
ditional R2 and Marginal R2 represent the variance explained by both fixed and random
effects and the variance explained by fixed effects, respectively. For more details on R2
calculation, please refer to the article <doi: 10.1098/rsif.2017.0213>. The significance of
fixed factors are tested by Chi-square test from function car::Anova. The significance
of ’Estimate’ in each term of fixed factors comes from the model.

’glmm_beta’ Generalized linear mixed model with a family function of beta distribu-
tion, developed for the relative abundance (ranging from 0 to 1) of taxa specifically.
This is an extension of the GLMM model in 'glmm' option. The only difference is in
glmm_beta the family function is fixed with the beta distribution function, i.e. family =
glmmTMB::beta_family(link = "logit"). Please see the beta_pseudo parameter for
the use of pseudo value when there is 0 or 1 in the data

group default NULL; sample group used for the comparision; a colname of input microtable$sample_table;
It is necessary when method is not "anova" or method is "anova" but formula is not provided.
Once group is provided, the return res_abund will have mean and sd values for group.

taxa_level default "all"; ’all’ represents using abundance data of all taxonomic ranks; For
testing at a specific rank, provide taxonomic rank name, such as "Genus". If the provided
taxonomic name is neither ’all’ nor a colname in tax_table of input dataset (e.g., "ASV"), the
function will use the features in input microtable$otu_table automatically. Note that a
specific level (e.g., "ASV") should be provided for method: "metastat", "metagenomeSeq",
"ALDEx2_t", "DESeq2", "edgeR", "ancombc2", "linda", "maaslin2".

filter_thres default 0; the abundance threshold, such as 0.0005 when the input is relative
abundance; only available when method != "metastat". The features with abundances lower
than filter_thres will be filtered.

alpha default 0.05; significance threshold to select taxa when method is "lefse" or "rf"; or

https://bioconductor.org/packages/release/bioc/html/ANCOMBC.html

trans_diff 65

used to generate significance letters when method is ’anova’ or ’KW_dunn’ like the alpha
parameter in cal_diff of trans_alpha class.

p_adjust_method default "fdr"; p.adjust method; see method parameter of p.adjust function
for other available options; "none" means disable p value adjustment; So when p_adjust_method
= "none", P.adj is same with P.unadj.

transformation default NULL; feature abundance transformation method in the class trans_norm,
such as ’AST’ for the arc sine square root transformation. Only available when method is
one of "KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare", "betareg" and
"lme".

remove_unknown default TRUE; whether remove unknown features that donot have clear clas-
sification information.

lefse_subgroup default NULL; sample sub group used for sub-comparision in lefse; Segata
et al. (2011) <doi:10.1186/gb-2011-12-6-r60>.

lefse_min_subsam default 10; sample numbers required in the subgroup test.
lefse_sub_strict default FALSE; whether remove the features strictly in the sub-checking.

FALSE means only removing the features that have different orders of medians across sub-
groups with those across groups and the statistics are also significant. TRUE means remov-
ing the features that are not significant in one (or more) sub-test or have different orders of
medians across sub-groups with those across groups.

lefse_sub_alpha default NULL; The significance threshold in the test for lefse sub-groups.
NULL means it is same with alpha.

lefse_norm default 1000000; normalization value used in lefse to scale abundances for each
level. A lefse_norm value < 0 (e.g., -1) means no normalization same with the LEfSe
python version.

nresam default 0.6667; sample number ratio used in each bootstrap for method = "lefse" or
"rf".

boots default 30; bootstrap test number for method = "lefse" or "rf".
rf_imp_type default 2; the type of feature importance in random forest when method = "rf".

Same with type parameter in importance function of randomForest package. 1=mean
decrease in accuracy (MeanDecreaseAccuracy), 2=mean decrease in node impurity (Mean-
DecreaseGini).

group_choose_paired default NULL; a vector used for selecting the required groups for paired
testing instead of all paired combinations across groups; Available when method is "metas-
tat", "metagenomeSeq", "ALDEx2_t" or "edgeR".

metagenomeSeq_count default 1; Filter features to have at least ’counts’ counts.; see the count
parameter in MRcoefs function of metagenomeSeq package.

ALDEx2_sig default c("wi.eBH", "kw.eBH"); which column of the final result is used as the
significance asterisk assignment; applied to method = "ALDEx2_t" or "ALDEx2_kw"; the
first element is provided to "ALDEx2_t"; the second is provided to "ALDEx2_kw"; for
"ALDEx2_t", the available choice is "wi.eBH" (Expected Benjamini-Hochberg corrected
P value of Wilcoxon test) and "we.eBH" (Expected BH corrected P value of Welch’s t
test); for "ALDEx2_kw"; for "ALDEx2_t", the available choice is "kw.eBH" (Expected BH
corrected P value of Kruskal-Wallace test) and "glm.eBH" (Expected BH corrected P value
of glm test).

by_group default NULL; a column of sample_table used to perform the differential test among
groups (group parameter) for each group (by_group parameter). So by_group has a higher

66 trans_diff

level than group parameter. Same with the by_group parameter in trans_alpha class.
Only available when method is one of c("KW", "KW_dunn", "wilcox", "t.test", "anova",
"scheirerRayHare").

by_ID default NULL; a column of sample_table used to perform paired t test or paired wilcox
test for the paired data, such as the data of plant compartments for different plant species
(ID). So by_ID in sample_table should be the smallest unit of sample collection without any
repetition in it. Same with the by_ID parameter in trans_alpha class.

beta_pseudo default .Machine$double.eps; the pseudo value used when the parameter method
is 'betareg' or 'glmm_beta'. As the beta distribution function limits 0 < response value
< 1, a pseudo value will be added for the data that equal to 0. The data that equal to 1 will
be replaced by 1/(1 + beta_pseudo).

... parameters passed to cal_diff function of trans_alpha class when method is one of
"KW", "KW_dunn", "wilcox", "t.test", "anova", "betareg", "lme", "glmm" or "glmm_beta";
passed to randomForest::randomForest function when method = "rf"; passed to ANCOMBC::ancombc2
function when method is "ancombc2" (except tax_level, global and fix_formula parame-
ters); passed to ALDEx2::aldex function when method = "ALDEx2_t" or "ALDEx2_kw";
passed to DESeq2::DESeq function when method = "DESeq2"; passed to MicrobiomeStat::linda
function when method = "linda"; passed to trans_env$cal_cor function when method =
"maaslin2".

Returns: res_diff and res_abund.
res_abund includes mean abundance of each taxa (Mean), standard deviation (SD), standard
error (SE) and sample number (N) in the group (Group).
res_diff is the detailed differential test result depending on the method choice, may containing:
"Comparison": The groups for the comparision, maybe all groups or paired groups. If this
column is not found, all groups are used;
"Group": Which group has the maximum median or mean value across the test groups; For
non-parametric methods, median value; For t.test, mean value;
"Taxa": which taxa is used in this comparision;
"Method": Test method used in the analysis depending on the method input;
"LDA" or others: LDA: linear discriminant score in LEfSe; MeanDecreaseAccuracy and Me-
anDecreaseGini: mean decreasing in accuracy or in node impurity (gini index) in random forest;
"P.unadj": original p value;
"P.adj": adjusted p value;
"Estimate" and "Std.Error": When method is "betareg", "lm", "lme" or "glmm", "Estimate"
and "Std.Error" represent fitted coefficient and its standard error, respectively;
Others: qvalue: qvalue in metastat analysis.

Examples:

\donttest{
data(dataset)
t1 <- trans_diff$new(dataset = dataset, method = "lefse", group = "Group")
t1 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group")
t1 <- trans_diff$new(dataset = dataset, method = "metastat", group = "Group", taxa_level = "Genus")
t1 <- trans_diff$new(dataset = dataset, method = "wilcox", group = "Group")
}

Method plot_diff_abund(): Plot the abundance of taxa.
The significance can be optionally added in the plot. The taxa displayed are based on the taxa in

trans_diff 67

the ’res_diff’ table, selected using parameters. If the user filters out the non-significant taxa from
the ’res_diff’ table, these taxa will also be filtered from the plot.

Usage:
trans_diff$plot_diff_abund(
use_number = 1:10,
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
select_taxa = NULL,
simplify_names = TRUE,
keep_prefix = TRUE,
group_order = NULL,
order_x_mean = FALSE,
coord_flip = TRUE,
add_sig = TRUE,
xtext_angle = 45,
xtext_size = 13,
ytitle_size = 17,
...

)

Arguments:
use_number default 1:10; numeric vector; the sequences of taxa (1:n) selected in the plot; If n

is larger than the number of total significant taxa, automatically use the total number as n.
color_values default RColorBrewer::brewer.pal(8, "Dark2"); color pallete for groups.
select_taxa default NULL; character vector to provide taxa names. The taxa names should be

same with the names shown in the plot, not the ’Taxa’ column names in objectres_diffTaxa.
simplify_names default TRUE; whether use the simplified taxonomic name.
keep_prefix default TRUE; whether retain the taxonomic prefix.
group_order default NULL; a vector to order groups, i.e. reorder the legend and colors in plot;

If NULL, the function can first check whether the group column of sample_table is factor.
If yes, use the levels in it. If provided, overlook the levels in the group of sample_table.

order_x_mean default FALSE; whether order the taxa in x axis by the means of abundances
from large to small. If TRUE, all other factors in the data will become invalid.

coord_flip default TRUE; whether flip cartesian coordinates so that horizontal becomes ver-
tical, and vertical becomes horizontal.

add_sig default TRUE; whether add the significance label to the plot.
xtext_angle default 45; number (e.g. 45). Angle of text in x axis.
xtext_size default 13; x axis text size. NULL means the default size in ggplot2. If coord_flip

= TRUE, it represents the text size of the y axis.
ytitle_size default 17; y axis title size. If coord_flip = TRUE, it represents the title size of

the x axis (i.e. "Relative abundance").
... parameters passed to plot_alpha function of trans_alpha class.

Returns: ggplot.

Examples:
\donttest{
t1 <- trans_diff$new(dataset = dataset, method = "anova", group = "Group", taxa_level = "Genus")
t1$plot_diff_abund(use_number = 1:10)

68 trans_diff

t1$plot_diff_abund(use_number = 1:10, add_sig = TRUE)
t1 <- trans_diff$new(dataset = dataset, method = "wilcox", group = "Group")
t1$plot_diff_abund(use_number = 1:20)
t1$plot_diff_abund(use_number = 1:20, add_sig = TRUE)
t1 <- trans_diff$new(dataset = dataset, method = "lefse", group = "Group")
t1$plot_diff_abund(use_number = 1:20)
t1$plot_diff_abund(use_number = 1:20, add_sig = TRUE)
}

Method plot_diff_bar(): Bar plot for indicator index, such as LDA score and P value.

Usage:
trans_diff$plot_diff_bar(
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
color_group_map = FALSE,
use_number = 1:10,
threshold = NULL,
select_group = NULL,
keep_full_name = FALSE,
keep_prefix = TRUE,
group_order = NULL,
group_aggre = TRUE,
group_two_sep = TRUE,
coord_flip = TRUE,
add_sig = FALSE,
add_sig_increase = 0.1,
add_sig_text_size = 5,
xtext_angle = 45,
xtext_size = 10,
ytext_size = NULL,
axis_text_y = deprecated(),
heatmap_cell = "P.unadj",
heatmap_sig = "Significance",
heatmap_x = "Factors",
heatmap_y = "Taxa",
heatmap_lab_fill = "P value",
...

)

Arguments:

color_values default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for different
groups.

color_group_map default FALSE; whether match the colors to groups in order to fix the color
in each group when part of groups are not shown in the plot. When color_group_map =
TRUE, the group_order inside the object will be used as full groups set to guide the color
extraction.

use_number default 1:10; numeric vector; the taxa numbers used in the plot, i.e. 1:n.
threshold default NULL; threshold value of indicators for selecting taxa, such as 3 for LDA

score of LEfSe.

trans_diff 69

select_group default NULL; this is used to select the paired group when multiple compari-
sions are generated; The input select_group must be one of objectres_diffComparison.

keep_full_name default FALSE; whether keep the taxonomic full lineage names.
keep_prefix default TRUE; whether retain the taxonomic prefix, such as "g__".
group_order default NULL; a vector to order the legend and colors in plot; If NULL, the

function can first determine whether the group column of microtable$sample_table is
factor. If yes, use the levels in it. If provided, this parameter can overwrite the levels in the
group of microtable$sample_table.

group_aggre default TRUE; whether aggregate the features for each group.
group_two_sep default TRUE; whether display the features of two groups on opposite sides of

the coordinate axes when there are only two groups in total.
coord_flip default TRUE; whether flip cartesian coordinates so that horizontal becomes ver-

tical, and vertical becomes horizontal.
add_sig default FALSE; whether add significance label (asterisk) above the bar.
add_sig_increase default 0.1; the axis position (Value + add_sig_increase * max(Value))

from which to add the significance label; only available when add_sig = TRUE.
add_sig_text_size default 5; the size of added significance label; only available when add_sig

= TRUE.
xtext_angle default 45; number ranging from 0 to 90; used to make x axis text generate angle

to reduce text overlap; only available when coord_flip = FALSE.
xtext_size default 10; text size of x axis.
ytext_size default NULL; text size of y axis. NULL means default ggplot2 value.
axis_text_y deprecated. Please use ytext_size argument instead.
heatmap_cell default "P.unadj"; the column of data for the cell of heatmap when formula with

multiple factors is found in the method.
heatmap_sig default "Significance"; the column of data for the significance label of heatmap.
heatmap_x default "Factors"; the column of data for the x axis of heatmap.
heatmap_y default "Taxa"; the column of data for the y axis of heatmap.
heatmap_lab_fill default "P value"; legend title of heatmap.
... parameters passing to geom_bar for the bar plot or plot_cor function in trans_env class

for the heatmap of multiple factors when formula is found in the method.

Returns: ggplot.

Examples:

\donttest{
t1$plot_diff_bar(use_number = 1:20)
}

Method plot_diff_cladogram(): Plot the cladogram using taxa with significant difference.

Usage:
trans_diff$plot_diff_cladogram(
color = RColorBrewer::brewer.pal(8, "Dark2"),
group_order = NULL,
use_taxa_num = 200,
filter_taxa = NULL,

70 trans_diff

use_feature_num = NULL,
clade_label_level = 4,
select_show_labels = NULL,
only_select_show = FALSE,
sep = "|",
branch_size = 0.2,
alpha = 0.2,
clade_label_size = 2,
clade_label_size_add = 5,
clade_label_size_log = exp(1),
node_size_scale = 1,
node_size_offset = 1,
annotation_shape = 22,
annotation_shape_size = 5

)

Arguments:
color default RColorBrewer::brewer.pal(8, "Dark2"); color palette used in the plot.
group_order default NULL; a vector to order the legend in plot; If NULL, the function can

first check whether the group column of sample_table is factor. If yes, use the levels in
it. If provided, this parameter can overwrite the levels in the group of sample_table. If the
number of provided group_order is less than the number of groups in res_diff$Group, the
function will select the groups of group_order automatically.

use_taxa_num default 200; integer; The taxa number used in the background tree plot; select
the taxa according to the mean abundance .

filter_taxa default NULL; The mean relative abundance used to filter the taxa with low
abundance.

use_feature_num default NULL; integer; The feature number used in the plot; select the fea-
tures according to the metric (method = "lefse" or "rf") from high to low.

clade_label_level default 4; the taxonomic level for marking the label with letters, root is
the largest.

select_show_labels default NULL; character vector; The features to show in the plot with
full label names, not the letters.

only_select_show default FALSE; whether only use the the selected features in the parameter
select_show_labels.

sep default "|"; the seperate character in the taxonomic information.
branch_size default 0.2; numberic, size of branch.
alpha default 0.2; shading of the color.
clade_label_size default 2; basic size for the clade label; please also see clade_label_size_add

and clade_label_size_log.
clade_label_size_add default 5; added basic size for the clade label; see the formula in

clade_label_size_log parameter.
clade_label_size_log default exp(1); the base of log function for added size of the clade la-

bel; the size formula: clade_label_size + log(clade_label_level + clade_label_size_add,
base = clade_label_size_log); so use clade_label_size_log, clade_label_size_add
and clade_label_size can totally control the label size for different taxonomic levels.

node_size_scale default 1; scale for the node size.

trans_diff 71

node_size_offset default 1; offset for the node size.
annotation_shape default 22; shape used in the annotation legend.
annotation_shape_size default 5; size used in the annotation legend.

Returns: ggplot.

Examples:

\dontrun{
t1$plot_diff_cladogram(use_taxa_num = 100, use_feature_num = 30, select_show_labels = NULL)
}

Method plot_volcano(): Volcano plot.

Usage:
trans_diff$plot_volcano(
select_group = NULL,
log2fc_cutoff = 1,
pvalue_cutoff = 0.05,
color_values = c("#e74c3c", "#3498db", "gray80"),
label_top_n = 10,
label_fullname = FALSE

)

Arguments:

select_group default NULL; which group is select if multiple paired groups are found in
’Comparison’ column of res_diff table. It should be either a number or one element of
’Comparison’ column.

log2fc_cutoff default 1; cutoff value of log2FoldChange.
pvalue_cutoff default 0.05; cutoff value of adjusted P value.
color_values default c("#e74c3c", "#3498db", "gray80"); color palette for different types of

points (i.e. "up", "down" and "none").
label_top_n default 10; number of features shown in the plot. 0 means no label.
label_fullname default FALSE; whether show the full taxonomic lineage of each label. If the

user considers that the full name is too long in the figure when label_fullname = TRUE, the
"Taxa" column in the res_diff table of the object should be modified to retain the required
taxonomic information.

Returns: ggplot.

Examples:

\dontrun{
t1$plot_volcano()
}

Method clone(): The objects of this class are cloneable with this method.

Usage:
trans_diff$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

72 trans_diff

Examples

--
Method `trans_diff$new`
--

data(dataset)
t1 <- trans_diff$new(dataset = dataset, method = "lefse", group = "Group")
t1 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group")
t1 <- trans_diff$new(dataset = dataset, method = "metastat", group = "Group", taxa_level = "Genus")
t1 <- trans_diff$new(dataset = dataset, method = "wilcox", group = "Group")

--
Method `trans_diff$plot_diff_abund`
--

t1 <- trans_diff$new(dataset = dataset, method = "anova", group = "Group", taxa_level = "Genus")
t1$plot_diff_abund(use_number = 1:10)
t1$plot_diff_abund(use_number = 1:10, add_sig = TRUE)
t1 <- trans_diff$new(dataset = dataset, method = "wilcox", group = "Group")
t1$plot_diff_abund(use_number = 1:20)
t1$plot_diff_abund(use_number = 1:20, add_sig = TRUE)
t1 <- trans_diff$new(dataset = dataset, method = "lefse", group = "Group")
t1$plot_diff_abund(use_number = 1:20)
t1$plot_diff_abund(use_number = 1:20, add_sig = TRUE)

--
Method `trans_diff$plot_diff_bar`
--

t1$plot_diff_bar(use_number = 1:20)

--
Method `trans_diff$plot_diff_cladogram`
--

Not run:
t1$plot_diff_cladogram(use_taxa_num = 100, use_feature_num = 30, select_show_labels = NULL)

End(Not run)

--
Method `trans_diff$plot_volcano`
--

Not run:
t1$plot_volcano()

trans_env 73

End(Not run)

trans_env Create trans_env object to analyze the association between environ-
mental factor and microbial community.

Description

This class is a wrapper for a series of operations associated with environmental measurements,
including redundancy analysis, mantel test, correlation analysis and linear fitting.

Methods

Public methods:
• trans_env$new()

• trans_env$cal_diff()

• trans_env$plot_diff()

• trans_env$cal_autocor()

• trans_env$cal_ordination()

• trans_env$cal_ordination_anova()

• trans_env$cal_ordination_envfit()

• trans_env$trans_ordination()

• trans_env$plot_ordination()

• trans_env$cal_mantel()

• trans_env$cal_cor()

• trans_env$plot_cor()

• trans_env$plot_scatterfit()

• trans_env$print()

• trans_env$clone()

Method new():
Usage:
trans_env$new(
dataset = NULL,
env_cols = NULL,
add_data = NULL,
character2numeric = FALSE,
standardize = FALSE,
complete_na = FALSE

)

Arguments:

dataset the object of microtable Class.

74 trans_env

env_cols default NULL; either numeric vector or character vector to select columns in microtable$sample_table,
i.e. dataset$sample_table. This parameter should be used in the case that all the required
environmental data is in sample_table of your microtable object. Otherwise, please use
add_data parameter.

add_data default NULL; data.frame format; provide the environmental data in the format
data.frame; rownames should be sample names. This parameter should be used when the
microtable$sample_table object does not have environmental data. Under this circum-
stance, the env_cols parameter can not be used because no data can be selected.

character2numeric default FALSE; whether convert all the character or factor columns to
numeric type using the dropallfactors function. If TRUE, character columns will first be
attempted to convert to numeric. If that fails, they will be converted to the factor type and
then to numeric.

standardize default FALSE; whether scale environmental variables to zero mean and unit
variance.

complete_na default FALSE; Whether fill the NA (missing value) in the environmental data;
If TRUE, the function can run the interpolation with the mice package.

Returns: data_env stored in the object.

Examples:
data(dataset)
data(env_data_16S)
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])

Method cal_diff(): Differential test of environmental variables across groups.

Usage:
trans_env$cal_diff(
group = NULL,
by_group = NULL,
method = c("KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare", "lm",

"lme", "glmm")[1],
...

)

Arguments:
group default NULL; a colname of sample_table used to compare values across groups.
by_group default NULL; perform differential test among groups (group parameter) within

each group (by_group parameter).
method default "KW"; see the following available options:

’KW’ KW: Kruskal-Wallis Rank Sum Test for all groups (>= 2)
’KW_dunn’ Dunn’s Kruskal-Wallis Multiple Comparisons, see dunnTest function in FSA

package
’wilcox’ Wilcoxon Rank Sum and Signed Rank Tests for all paired groups
’t.test’ Student’s t-Test for all paired groups
’anova’ Duncan’s new multiple range test for one-way anova; see duncan.test function

of agricolae package. For multi-factor anova, see aov

’scheirerRayHare’ Scheirer Ray Hare test for nonparametric test used for a two-way fac-
torial experiment; see scheirerRayHare function of rcompanion package

trans_env 75

’lm’ Linear model based on the lm function
’lme’ lme: Linear Mixed Effect Model based on the lmerTest package. The formula

parameter should be provided.
’glmm’ Generalized linear mixed model (GLMM) based on the glmmTMB package. The
formula and family parameters are needed. Please refer to glmmTMB package to select
the family function, e.g. family = glmmTMB::lognormal(link = "log"). The usage of
formula is similar with that in ’lme’ method. For the details of return table, please refer
to the help document of trans_diff class.

... parameters passed to cal_diff function of trans_alpha class.

Returns: res_diff stored in the object. In the data frame, ’Group’ column means that the group
has the maximum median or mean value across the test groups; For non-parametric methods,
median value; For t.test, mean value.

Examples:
\donttest{
t1$cal_diff(group = "Group", method = "KW")
t1$cal_diff(group = "Group", method = "anova")
}

Method plot_diff(): Plot environmental variables across groups and add the significance
label.

Usage:
trans_env$plot_diff(...)

Arguments:
... parameters passed to plot_alpha in trans_alpha class. Please see plot_alpha function

of trans_alpha for all the available parameters.

Method cal_autocor(): Calculate the autocorrelations among environmental variables.

Usage:
trans_env$cal_autocor(
group = NULL,
ggpairs = TRUE,
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
alpha = 0.8,
...

)

Arguments:
group default NULL; a colname of sample_table; used to perform calculations for different

groups.
ggpairs default TRUE; whether use GGally::ggpairs function to plot the correlation results.

If ggpairs = FALSE, the function will output a table with all the values instead of a graph.
In this case, the function will call cal_cor to calculate autocorrelation instead of using the
ggpairs function in GGally, so please use parameter passing to control more options.

color_values default RColorBrewer::brewer.pal(8, "Dark2"); colors palette.
alpha default 0.8; the alpha value to add transparency in colors; useful when group is not

NULL.

76 trans_env

... parameters passed to GGally::ggpairs when ggpairs = TRUE or passed to cal_cor of
trans_env class when ggpairs = FALSE.

Returns: ggmatrix when ggpairs = TRUE or data.frame object when ggpairs = FALSE.

Examples:

\dontrun{
Spearman correlation
t1$cal_autocor(upper = list(continuous = GGally::wrap("cor", method= "spearman")))
}

Method cal_ordination(): Constrained ordination analysis.

Usage:
trans_env$cal_ordination(
method = c("RDA", "dbRDA", "CCA")[1],
feature_sel = FALSE,
taxa_level = NULL,
taxa_filter_thres = NULL,
use_measure = NULL,
add_matrix = NULL,
...

)

Arguments:

method default c("RDA", "dbRDA", "CCA")[1]; the ordination method; "RDA": redundancy
analysis, "dbRDA": distance-based RDA, "CCA": correspondence analysis.

feature_sel default FALSE; whether perform the feature selection based on forward selection
method.

taxa_level default NULL; the taxonomic level used in RDA or CCA. Default NULL means
using the merged data at "Genus" level. "ASV" or "OTU" can also be provided for the use
of otu_table in microtable object.

taxa_filter_thres default NULL; relative abundance threshold used to filter taxa when method
is "RDA" or "CCA".

use_measure default NULL; a name of beta diversity matrix; only available when parameter
method = "dbRDA"; If not provided, use the first beta diversity matrix in the microtable$beta_diversity
automatically.

add_matrix default NULL; additional distance matrix provided, when the user does not want
to use the beta diversity matrix within the dataset; only available when method = "dbRDA".

... paremeters passed to rda, dbrda or cca function of vegan package according to the method
parameter.

Returns: res_ordination and res_ordination_R2 stored in the object.

Examples:

\donttest{
t1$cal_ordination(method = "dbRDA", use_measure = "bray")
t1$cal_ordination(method = "RDA", taxa_level = "Genus")
t1$cal_ordination(method = "CCA", taxa_level = "Genus")
}

trans_env 77

Method cal_ordination_anova(): Use anova to test the significance of the terms and axis in
ordination.

Usage:
trans_env$cal_ordination_anova(...)

Arguments:

... parameters passed to anova function.

Returns: res_ordination_terms and res_ordination_axis stored in the object.

Examples:

\donttest{
t1$cal_ordination_anova()
}

Method cal_ordination_envfit(): Fit each environmental vector onto the ordination to ob-
tain the contribution of each variable.

Usage:
trans_env$cal_ordination_envfit(...)

Arguments:

... the parameters passed to vegan::envfit function.

Returns: res_ordination_envfit stored in the object.

Examples:

\donttest{
t1$cal_ordination_envfit()
}

Method trans_ordination(): Transform ordination results for the following plot.

Usage:
trans_env$trans_ordination(
show_taxa = 10,
adjust_arrow_length = FALSE,
min_perc_env = 0.1,
max_perc_env = 0.8,
min_perc_tax = 0.1,
max_perc_tax = 0.8

)

Arguments:

show_taxa default 10; taxa number shown in the plot.
adjust_arrow_length default FALSE; whether adjust the arrow length to be clearer.
min_perc_env default 0.1; used for scaling up the minimum of env arrow; multiply by the

maximum distance between samples and origin.
max_perc_env default 0.8; used for scaling up the maximum of env arrow; multiply by the

maximum distance between samples and origin.
min_perc_tax default 0.1; used for scaling up the minimum of tax arrow; multiply by the

maximum distance between samples and origin.

78 trans_env

max_perc_tax default 0.8; used for scaling up the maximum of tax arrow; multiply by the
maximum distance between samples and origin.

Returns: res_ordination_trans stored in the object.

Examples:
\donttest{
t1$trans_ordination(adjust_arrow_length = TRUE, min_perc_env = 0.1, max_perc_env = 1)
}

Method plot_ordination(): plot ordination result.

Usage:
trans_env$plot_ordination(
plot_color = NULL,
plot_shape = NULL,
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
shape_values = c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14),
env_text_color = "black",
env_arrow_color = "grey30",
taxa_text_color = "firebrick1",
taxa_arrow_color = "firebrick1",
env_text_size = 3.7,
taxa_text_size = 3,
taxa_text_prefix = FALSE,
taxa_text_italic = TRUE,
plot_type = "point",
point_size = 3,
point_alpha = 0.8,
point_second = FALSE,
point_second_size = NULL,
point_second_alpha = NULL,
point_second_color = NULL,
centroid_segment_alpha = 0.6,
centroid_segment_size = 1,
centroid_segment_linetype = 3,
ellipse_chull_fill = TRUE,
ellipse_chull_alpha = 0.1,
ellipse_level = 0.9,
ellipse_type = "t",
add_sample_label = NULL,
env_nudge_x = NULL,
env_nudge_y = NULL,
taxa_nudge_x = NULL,
taxa_nudge_y = NULL,
...

)

Arguments:
plot_color default NULL; a colname of sample_table to assign colors to different groups.
plot_shape default NULL; a colname of sample_table to assign shapes to different groups.

trans_env 79

color_values default RColorBrewer::brewer.pal(8, "Dark2"); color pallete for different
groups.

shape_values default c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14); a vector for
point shape types of groups, see ggplot2 tutorial.

env_text_color default "black"; environmental variable text color.
env_arrow_color default "grey30"; environmental variable arrow color.
taxa_text_color default "firebrick1"; taxa text color.
taxa_arrow_color default "firebrick1"; taxa arrow color.
env_text_size default 3.7; environmental variable text size.
taxa_text_size default 3; taxa text size.
taxa_text_prefix default FALSE; whether show the prefix (e.g., g__) of taxonomic informa-

tion in the text.
taxa_text_italic default TRUE; "italic"; whether use "italic" style for the taxa text.
plot_type default "point"; plotting type of samples; one or more elements of "point", "ellipse",

"chull", "centroid" and "none"; "none" denotes nothing.
’point’ add point
’ellipse’ add confidence ellipse for points of each group
’chull’ add convex hull for points of each group
’centroid’ add centroid line of each group

point_size default 3; point size in plot when "point" is in plot_type. point_size can also
be a variable name in sample_table, such as "pH".

point_alpha default .8; point transparency in plot when "point" is in plot_type.
point_second default FALSE; whether plot the second group of points. Only available when

input point_size is numeric value.
point_second_size default NULL; size value of the second type of point. Default means

point_size * 0.6

point_second_alpha default NULL; point transparency of the second type of point.
point_second_color default NULL; a color value of the second type of point. If NULL, same

with previous setting.
centroid_segment_alpha default 0.6; segment transparency in plot when "centroid" is in

plot_type.
centroid_segment_size default 1; segment size in plot when "centroid" is in plot_type.
centroid_segment_linetype default 3; an integer; the line type related with centroid in plot

when "centroid" is in plot_type.
ellipse_chull_fill default TRUE; whether fill colors to the area of ellipse or chull.
ellipse_chull_alpha default 0.1; color transparency in the ellipse or convex hull depending

on whether "ellipse" or "centroid" is in plot_type.
ellipse_level default .9; confidence level of ellipse when "ellipse" is in plot_type.
ellipse_type default "t"; ellipse type when "ellipse" is in plot_type; see type parameter in

stat_ellipse function of ggplot2 package.
add_sample_label default NULL; the column name in sample table, if provided, show the

point name in plot.
env_nudge_x default NULL; numeric vector to adjust the env text x axis position; passed to

nudge_x parameter of ggrepel::geom_text_repel function; default NULL represents au-
tomatic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows.

80 trans_env

For example, if there are 5 env variables, env_nudge_x should be something like c(0.1,
0, -0.2, 0, 0). Note that this parameter and env_nudge_y is generally used when the
automatic text adjustment is not very well.

env_nudge_y default NULL; numeric vector to adjust the env text y axis position; passed to
nudge_y parameter of ggrepel::geom_text_repel function; default NULL represents auto-
matic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows.
For example, if there are 5 env variables, env_nudge_y should be something like c(0.1, 0,
-0.2, 0, 0).

taxa_nudge_x default NULL; numeric vector to adjust the taxa text x axis position; passed to
nudge_x parameter of ggrepel::geom_text_repel function; default NULL represents auto-
matic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows_spe.
For example, if 3 taxa are shown, taxa_nudge_x should be something like c(0.3, -0.2,
0).

taxa_nudge_y default NULL; numeric vector to adjust the taxa text y axis position; passed to
nudge_y parameter of ggrepel::geom_text_repel function; default NULL represents auto-
matic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows_spe.
For example, if 3 taxa are shown, taxa_nudge_y should be something like c(-0.2, 0, 0.4).

... paremeters passed to geom_point for controlling sample points.

Returns: ggplot object.

Examples:

\donttest{
t1$cal_ordination(method = "RDA")
t1$trans_ordination(adjust_arrow_length = TRUE, max_perc_env = 1.5)
t1$plot_ordination(plot_color = "Group")
t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = c("point", "ellipse"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "chull"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"),
centroid_segment_linetype = 1)

t1$plot_ordination(plot_color = "Group", env_nudge_x = c(0.4, 0, 0, 0, 0, -0.2, 0, 0),
env_nudge_y = c(0.6, 0, 0.2, 0.5, 0, 0.1, 0, 0.2))

}

Method cal_mantel(): Mantel test between beta diversity matrix and environmental data.

Usage:
trans_env$cal_mantel(
partial_mantel = FALSE,
add_matrix = NULL,
use_measure = NULL,
method = "pearson",
p_adjust_method = "fdr",
by_group = NULL,
...

)

Arguments:

partial_mantel default FALSE; whether use partial mantel test; If TRUE, use other all mea-
surements as the zdis in each calculation.

trans_env 81

add_matrix default NULL; additional distance matrix provided when the beta diversity matrix
in the dataset is not used.

use_measure default NULL; a name of beta diversity matrix. If necessary and not provided,
use the first beta diversity matrix.

method default "pearson"; one of "pearson", "spearman" and "kendall"; correlation method; see
method parameter in vegan::mantel function.

p_adjust_method default "fdr"; p.adjust method; see method parameter of p.adjust function
for available options.

by_group default NULL; one column name or number in sample_table; used to perform mantel
test for different groups separately.

... paremeters passed to mantel of vegan package.

Returns: res_mantel in object.

Examples:

\donttest{
t1$cal_mantel(use_measure = "bray")
t1$cal_mantel(partial_mantel = TRUE, use_measure = "bray")
}

Method cal_cor(): Calculate the correlations between taxonomic abundance and environmen-
tal variables. Actually, it can also be applied to other correlation between any two variables from
two tables.

Usage:
trans_env$cal_cor(
use_data = c("Genus", "all", "other")[1],
method = c("pearson", "spearman", "kendall", "maaslin2")[1],
partial = FALSE,
partial_fix = NULL,
add_abund_table = NULL,
filter_thres = 0,
filter_unknown = TRUE,
use_taxa_num = NULL,
other_taxa = NULL,
p_adjust_method = "fdr",
p_adjust_type = c("All", "Taxa", "Env")[1],
by_group = NULL,
group_use = NULL,
group_select = NULL,
taxa_name_full = TRUE,
tmp_input_maaslin2 = "tmp_input",
tmp_output_maaslin2 = "tmp_output",
cor_method = deprecated(),
...

)

Arguments:

use_data default "Genus"; "Genus", "all" or "other"; "Genus" or other taxonomic names (e.g.,
"Phylum", "ASV"): invoke taxonomic abundance table in taxa_abund list of the microtable

82 trans_env

object; "all": merge all the taxonomic abundance tables in taxa_abund list into one; "other":
provide additional taxa names by assigning other_taxa parameter.

method default "pearson"; "pearson", "spearman", "kendall" or "maaslin2"; correlation method.
"pearson", "spearman" or "kendall" all refer to the correlation analysis based on the cor.test
function in R. "maaslin2" is the method in Maaslin2 package for finding associations be-
tween metadata and potentially high-dimensional microbial multi-omics data.

partial default FALSE; whether perform partial correlation based on the ppcor package.
Available when method is "pearson", "spearman" or "kendall".

partial_fix default NULL; selected environmental variable names used as third group of
variables in all the partial correlations. If NULL; all the variables (except the one for corre-
lation) in the environmental data will be used as the third group of variables. Otherwise, the
function will control for the provided variables (one or more) in all the partial correlations,
and the variables in partial_fix will not be employed anymore in the correlation analysis.

add_abund_table default NULL; additional data table to be used. Row names must be sample
names.

filter_thres default 0; the abundance threshold, such as 0.0005 when the input is relative
abundance. The features with abundances lower than filter_thres will be filtered. This
parameter cannot be applied when add_abund_table parameter is provided.

filter_unknown default TRUE; Whether filter out the unknown taxa ending with "__".
use_taxa_num default NULL; integer; a number used to select high abundant taxa; only useful

when use_data parameter is a taxonomic level, e.g., "Genus".
other_taxa default NULL; character vector containing a series of feature names; available

when use_data = "other"; provided names should be standard full names used to select
taxa from all the tables in taxa_abund list of the microtable object; please refer to the
example.

p_adjust_method default "fdr"; p.adjust method; see method parameter of p.adjust function
for available options. p_adjust_method = "none" can disable the p value adjustment.

p_adjust_type default "All"; "All", "Taxa" or "Env"; P value adjustment type. "Env": ad-
justment for each environmental variable separately; "Taxa": adjustment for each taxon
separately; "All": adjustment for all the data together no matter whether by_group is pro-
vided.

by_group default NULL; one column name or number in sample_table; calculate correlations
for different groups separately.

group_use default NULL; numeric or character vector to select one column in sample_table
for selecting samples; together with group_select.

group_select default NULL; the group name used; remain samples within the group.
taxa_name_full default TRUE; Whether use the complete taxonomic name of taxa.
tmp_input_maaslin2 default "tmp_input"; the temporary folder used to save the input files for

Maaslin2.
tmp_output_maaslin2 default "tmp_output"; the temporary folder used to save the output files

of Maaslin2.
cor_method deprecated. Please use method argument instead.
... parameters passed to Maaslin2 function of Maaslin2 package.

Returns: res_cor stored in the object.

Examples:

trans_env 83

\donttest{
t2 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group", rf_taxa_level = "Genus")
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
t1$cal_cor(use_data = "other", p_adjust_method = "fdr", other_taxa = t2res_diffTaxa[1:40])
}

Method plot_cor(): Plot correlation heatmap.

Usage:
trans_env$plot_cor(
color_vector = c("#053061", "white", "#A50026"),
color_palette = NULL,
filter_feature = NULL,
filter_env = NULL,
keep_full_name = FALSE,
keep_prefix = TRUE,
text_y_order = NULL,
text_x_order = NULL,
xtext_angle = 30,
xtext_size = 10,
xtext_color = "black",
ytext_italic = FALSE,
ytext_size = NULL,
ytext_color = "black",
ytext_position = "right",
sig_label_size = 4,
font_family = NULL,
legend_title = NULL,
cluster_ggplot = "none",
cluster_height_rows = 0.2,
cluster_height_cols = 0.2,
na.value = "grey50",
trans = "identity",
ylab_type_italic = deprecated(),
text_y_position = deprecated(),
...

)

Arguments:

color_vector default c("#053061", "white", "#A50026"); colors with only three values
representing low, middle and high values.

color_palette default NULL; a customized palette with more color values to be used instead
of the parameter color_vector.

filter_feature default NULL; character vector; used to filter features that only have labels
in the filter_feature vector. For example, filter_feature = "" can be used to remove
features that only have "", no any "*".

filter_env default NULL; character vector; used to filter environmental variables that only
have labels in the filter_env vector. For example, filter_env = "" can be used to remove
features that only have "", no any "*".

84 trans_env

keep_full_name default FALSE; whether use the complete taxonomic name.
keep_prefix default TRUE; whether retain the taxonomic prefix.
text_y_order default NULL; character vector; customized text for y axis; shown in the plot

from the top down. The input should be consistent with the feature names in the res_cor
table.

text_x_order default NULL; character vector; customized text for x axis.
xtext_angle default 30; number ranging from 0 to 90; used to adjust x axis text angle.
xtext_size default 10; x axis text size.
xtext_color default "black"; x axis text color.
ytext_italic default FALSE; whether use italic for y axis text.
ytext_size default NULL; y axis text size. NULL means default ggplot2 value.
ytext_color default "black"; y axis text color.
ytext_position default "right"; "left" or "right"; the y axis text position.
sig_label_size default 4; the size of significance label shown in the cell.
font_family default NULL; font family used.
legend_title default NULL; legend title; default NULL means ’Pearson’ for pearson method

and ’Spearman’ for spearman method.
cluster_ggplot default "none"; add clustering dendrogram for ggplot2 based heatmap. Avail-

able options: "none", "row", "col" or "both". "none": no any clustering used; "row": add
clustering for rows; "col": add clustering for columns; "both": add clustering for both rows
and columns.

cluster_height_rows default 0.2, the dendrogram plot height for rows; available when cluster_ggplot
is not "none".

cluster_height_cols default 0.2, the dendrogram plot height for columns; available when
cluster_ggplot is not "none".

na.value default "grey50"; the color for the missing values.
trans default "identity"; the transformation for continuous scales in the legend; see the trans

item in ggplot2::scale_colour_gradientn.
ylab_type_italic deprecated. Please use ytext_italic argument instead.
text_y_position deprecated. Please use ytext_position argument instead.
... paremeters passed to ggplot2::geom_tile.

Returns: ggplot2 object.

Examples:

\donttest{
t1$plot_cor()
}

Method plot_scatterfit(): Scatter plot with fitted line based on the correlation or regression.
The most important thing is to make sure that the input x and y have correponding sample orders.
If one of x and y is a matrix, the other will be also transformed to matrix with Euclidean distance.
Then, both of them are transformed to be vectors. If x or y is a vector with a single value, x or y
will be assigned according to the column selection of the data_env in the object.

Usage:

trans_env 85

trans_env$plot_scatterfit(
x = NULL,
y = NULL,
group = NULL,
group_order = NULL,
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
shape_values = NULL,
type = c("cor", "lm")[1],
cor_method = "pearson",
label_sep = ";",
label.x.npc = "left",
label.y.npc = "top",
label.x = NULL,
label.y = NULL,
x_axis_title = "",
y_axis_title = "",
point_size = 5,
point_alpha = 0.6,
line_size = 0.8,
line_color = "black",
line_se = TRUE,
line_se_color = "grey70",
line_alpha = 0.5,
pvalue_trim = 4,
cor_coef_trim = 3,
lm_equation = TRUE,
lm_fir_trim = 2,
lm_sec_trim = 2,
lm_squ_trim = 2,
...

)

Arguments:

x default NULL; a single numeric or character value, a vector, or a distance matrix used for the
x axis. If x is a single value, it will be used to select the column of data_env in the object.
If x is a distance matrix, it will be transformed to be a vector.

y default NULL; a single numeric or character value, a vector, or a distance matrix used for the
y axis. If y is a single value, it will be used to select the column of data_env in the object.
If y is a distance matrix, it will be transformed to be a vector.

group default NULL; a character vector; if length is 1, must be a colname of sample_table
in the input dataset; Otherwise, group should be a vector having same length with x/y (for
vector) or column number of x/y (for matrix).

group_order default NULL; a vector used to order groups, i.e. reorder the legend and colors in
plot when group is not NULL; If group_order is NULL and group is provided, the function
can first check whether the group column of sample_table is factor. If group_order is
provided, disable the group orders or factor levels in the group column of sample_table.

color_values default RColorBrewer::brewer.pal(8, "Dark2"); color pallete for different
groups.

86 trans_env

shape_values default NULL; a numeric vector for point shape types of groups when group is
not NULL, see ggplot2 tutorial.

type default c("cor", "lm")[1]; "cor": correlation; "lm" for regression.
cor_method default "pearson"; one of "pearson", "kendall" and "spearman"; correlation method.
label_sep default ";"; the separator string between different label parts.
label.x.npc default "left"; can be numeric or character vector of the same length as the num-

ber of groups and/or panels. If too short, they will be recycled.
numeric value should be between 0 and 1. Coordinates to be used for positioning the label,

expressed in "normalized parent coordinates"
character allowed values include: i) one of c(’right’, ’left’, ’center’, ’centre’, ’middle’) for

x-axis; ii) and one of c(’bottom’, ’top’, ’center’, ’centre’, ’middle’) for y-axis.
label.y.npc default "top"; same usage with label.x.npc; also see label.y.npc parameter of

ggpubr::stat_cor function.
label.x default NULL; x axis absolute position for adding the statistic label.
label.y default NULL; x axis absolute position for adding the statistic label.
x_axis_title default ""; the title of x axis.
y_axis_title default ""; the title of y axis.
point_size default 5; point size value.
point_alpha default 0.6; alpha value for the point color transparency.
line_size default 0.8; line size value.
line_color default "black"; fitted line color; only available when group = NULL.
line_se default TRUE; Whether show the confidence interval for the fitting.
line_se_color default "grey70"; the color to fill the confidence interval when line_se =

TRUE.
line_alpha default 0.5; alpha value for the color transparency of line confidence interval.
pvalue_trim default 4; trim the decimal places of p value.
cor_coef_trim default 3; trim the decimal places of correlation coefficient.
lm_equation default TRUE; whether include the equation in the label when type = "lm".
lm_fir_trim default 2; trim the decimal places of first coefficient in regression.
lm_sec_trim default 2; trim the decimal places of second coefficient in regression.
lm_squ_trim default 2; trim the decimal places of R square in regression.
... other arguments passed to geom_text or geom_label.

Returns: ggplot.

Examples:
\donttest{
t1$plot_scatterfit(x = 1, y = 2, type = "cor")
t1$plot_scatterfit(x = 1, y = 2, type = "lm", point_alpha = .3)
t1$plot_scatterfit(x = "pH", y = "TOC", type = "lm", group = "Group", line_se = FALSE)
t1$plot_scatterfit(x =
dataset$beta_diversity$bray[rownames(t1$data_env), rownames(t1$data_env)], y = "pH")
}

Method print(): Print the trans_env object.

Usage:

trans_env 87

trans_env$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
trans_env$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `trans_env$new`
--

data(dataset)
data(env_data_16S)
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])

--
Method `trans_env$cal_diff`
--

t1$cal_diff(group = "Group", method = "KW")
t1$cal_diff(group = "Group", method = "anova")

--
Method `trans_env$cal_autocor`
--

Not run:
Spearman correlation
t1$cal_autocor(upper = list(continuous = GGally::wrap("cor", method= "spearman")))

End(Not run)

--
Method `trans_env$cal_ordination`
--

t1$cal_ordination(method = "dbRDA", use_measure = "bray")
t1$cal_ordination(method = "RDA", taxa_level = "Genus")
t1$cal_ordination(method = "CCA", taxa_level = "Genus")

--
Method `trans_env$cal_ordination_anova`
--

88 trans_env

t1$cal_ordination_anova()

--
Method `trans_env$cal_ordination_envfit`
--

t1$cal_ordination_envfit()

--
Method `trans_env$trans_ordination`
--

t1$trans_ordination(adjust_arrow_length = TRUE, min_perc_env = 0.1, max_perc_env = 1)

--
Method `trans_env$plot_ordination`
--

t1$cal_ordination(method = "RDA")
t1$trans_ordination(adjust_arrow_length = TRUE, max_perc_env = 1.5)
t1$plot_ordination(plot_color = "Group")
t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = c("point", "ellipse"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "chull"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"),

centroid_segment_linetype = 1)
t1$plot_ordination(plot_color = "Group", env_nudge_x = c(0.4, 0, 0, 0, 0, -0.2, 0, 0),

env_nudge_y = c(0.6, 0, 0.2, 0.5, 0, 0.1, 0, 0.2))

--
Method `trans_env$cal_mantel`
--

t1$cal_mantel(use_measure = "bray")
t1$cal_mantel(partial_mantel = TRUE, use_measure = "bray")

--
Method `trans_env$cal_cor`
--

t2 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group", rf_taxa_level = "Genus")
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
t1$cal_cor(use_data = "other", p_adjust_method = "fdr", other_taxa = t2res_diffTaxa[1:40])

trans_func 89

--
Method `trans_env$plot_cor`
--

t1$plot_cor()

--
Method `trans_env$plot_scatterfit`
--

t1$plot_scatterfit(x = 1, y = 2, type = "cor")
t1$plot_scatterfit(x = 1, y = 2, type = "lm", point_alpha = .3)
t1$plot_scatterfit(x = "pH", y = "TOC", type = "lm", group = "Group", line_se = FALSE)
t1$plot_scatterfit(x =
dataset$beta_diversity$bray[rownames(t1$data_env), rownames(t1$data_env)], y = "pH")

trans_func Create trans_func object for functional prediction.

Description

This class is a wrapper for a series of functional prediction analysis on ASVs/OTUs/species and
communities, including the prokaryotic function/trait prediction based on Louca et al. (2016)
<doi:10.1126/science.aaf4507> and Lim et al. (2020) <10.1038/s41597-020-0516-5>, or fungal
function/trait prediction based on Nguyen et al. (2016) <10.1016/j.funeco.2015.06.006> and Polme
et al. (2020) <doi:10.1007/s13225-020-00466-2>; functional redundancy calculation and metabolic
pathway abundance prediction Abhauer et al. (2015) <10.1093/bioinformatics/btv287>.

Active bindings

func_group_list store and show the function group list

Methods

Public methods:
• trans_func$new()

• trans_func$cal_func()

• trans_func$cal_func_FR()

• trans_func$trans_func_FR()

• trans_func$plot_func_FR()

• trans_func$cal_func_FR_comm()

• trans_func$show_prok_func()

90 trans_func

• trans_func$cal_tax4fun2()

• trans_func$cal_tax4fun2_FRI()

• trans_func$cal_spe_func()

• trans_func$cal_spe_func_perc()

• trans_func$trans_spe_func_perc()

• trans_func$plot_spe_func_perc()

• trans_func$clone()

Method new(): Create the trans_func object. This function can identify the data type for
Prokaryotes or Fungi automatically.

Usage:
trans_func$new(dataset = NULL)

Arguments:
dataset the object of microtable Class.

Returns: for_what: "prok" or "fungi" or NA, "prok" represent prokaryotes. "fungi" represent
fungi. NA stand for unknown according to the Kingdom information. In this case, if the user
still want to use the function to identify species traits, please provide "prok" or "fungi" manually,
e.g. t1$for_what <- "prok".

Examples:
data(dataset)
t1 <- trans_func$new(dataset = dataset)

Method cal_func(): Predict the functions or traits for each ASV/OTU/species by matching
taxonomic assignments to functional database.

Usage:
trans_func$cal_func(
prok_database = c("FAPROTAX", "NJC19")[1],
fungi_database = c("FUNGuild", "FungalTraits")[1],
FUNGuild_confidence = c("Highly Probable", "Probable", "Possible")

)

Arguments:
prok_database default "FAPROTAX"; "FAPROTAX" or "NJC19"; select a prokaryotic database:

’FAPROTAX’ FAPROTAX; Reference: Louca et al. (2016). Decoupling function and tax-
onomy in the global ocean microbiome. Science, 353(6305), 1272. <doi:10.1126/science.aaf4507>

’NJC19’ NJC19: Lim et al. (2020). Large-scale metabolic interaction network of the
mouse and human gut microbiota. Scientific Data, 7(1). <10.1038/s41597-020-0516-5>.
Note that the matching in this database is performed at the species level, hence utilizing
it demands a higher level of precision in regards to the assignments of species in the
taxonomic information table.

fungi_database default "FUNGuild"; "FUNGuild" or "FungalTraits"; select a fungal database:
’FUNGuild’ Nguyen et al. (2016) FUNGuild: An open annotation tool for parsing fungal

community datasets by ecological guild. Fungal Ecology, 20(1), 241-248, <doi:10.1016/j.funeco.2015.06.006>
’FungalTraits’ version: FungalTraits_1.2_ver_16Dec_2020V.1.2; Polme et al. Fungal-

Traits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal
Diversity 105, 1-16 (2020). <doi:10.1007/s13225-020-00466-2>

trans_func 91

FUNGuild_confidence default c("Highly Probable", "Probable", "Possible"). Selected ’confi-
denceRanking’ when fungi_database = "FUNGuild".

Returns: res_func stored in the object.

Examples:
\donttest{
t1$cal_func(prok_database = "FAPROTAX")
}

Method cal_func_FR(): Calculating the functional redundancy (FR) of communities for each
function/trait. For each sample and each function/trait, there will be a FR value in the result table.
The FR is defined:

FRunweighted
kj =

Nj

Nk
·AF

FRweighted
kj =

∑Nj

i=1 Ai∑Nk

i=1 Ai

·AF

where FRkj denotes the FR for sample k and function j. Nk is the species number in sample
k. Nj is the number of species with function j in sample k. Ai is the abundance (counts) of
species i in sample k. AF is adjustment factor based on taxonomic information, representing
the taxonomic dispersion of ASVs/OTUs/Species. It is 1 when adj_tax = FALSE. Please see the
parameter adj_tax for detailed explanation.

Usage:
trans_func$cal_func_FR(
abundance_weighted = FALSE,
adj_tax = FALSE,
adj_tax_by = "Genus",
perc = FALSE,
dec = 6,
remove_zero = TRUE

)

Arguments:
abundance_weighted default FALSE; whether use abundance of ASVs/OTUs/species. FALSE

corresponds to FRunweighted
kj in the formula. TRUE corresponds to FRweighted

kj in the for-
mula.

adj_tax default FALSE; Whether the adjustment factor (AF) is used. The default FALSE rep-
resents the AF is 1, meaning no adjustment is made based on the taxonomic distribution.
The principle behind the calculation of the adjustment factor is that species with a certain
function that are more dispersed taxonomically usually correspond to higher redundancy. It
is defined:

AF =
NUjk

NUk

where NUjk denotes the number of unique taxon (at adj_tax_by level) for those ASVs/OTUs/species
with function j in sample k. NUk denotes the number of total unique taxon (at adj_tax_by
level) in sample k. Please use the parameter adj_tax_by to select other taxonomic rank
(default Genus level). Here is an example: Suppose a sample k contains a total of 10
genera (including unclassified ones in different lineages), and 3 ASVs with function j are
distributed among 2 genera. In this case, the AF would be 2

10 , which is 0.2.

92 trans_func

adj_tax_by default "Genus"; When adj_tax = TRUE, at which taxonomic level is the adjust-
ment factor (AF) calculated?

perc default FALSE; whether to use percentages in the result. The default value of FALSE
means that the result is in the range of 0 to 1. If it is TRUE, the result will be multiplied by
100, meaning the range will be from 0 to 100.

dec default 6; remained decimal places in the result table.
remove_zero default TRUE; whether to remove the columns in which the sum equals 0.

Returns: res_func_FR stored in the object.

Examples:
\donttest{
t1$cal_func_FR(abundance_weighted = TRUE)
}

Method trans_func_FR(): Transform the res_func_FR table to the long table format for the
following visualization. Also add the group information if the database has hierarchical groups.

Usage:
trans_func$trans_func_FR()

Returns: res_func_FR_trans stored in the object.

Examples:
\donttest{
t1$trans_func_FR()
}

Method plot_func_FR(): Plot the functional redundancy (FR) results generated by cal_func_FR
and trans_func_FR.

Usage:
trans_func$plot_func_FR(
add_facet = TRUE,
order_x = NULL,
color_gradient_low = "#00008B",
color_gradient_high = "#9E0142"

)

Arguments:
add_facet default TRUE; whether use group names as the facets in the plot, see trans_func$func_group_list

object.
order_x default NULL; character vector; to sort the x axis text; can be also used to select

partial samples to show.
color_gradient_low default "#00008B"; the color used as the low end in the color gradient.
color_gradient_high default "#9E0142"; the color used as the high end in the color gradient.

Returns: ggplot2.

Examples:
\donttest{
t1$plot_func_FR()
}

trans_func 93

Method cal_func_FR_comm(): Calculate the functional redundancy (FR) of communities based
on the the result of cal_func_FR function. It is the geometric mean of FR for each function/trait
in a community. It is defined:

FRk = n
√
FRk1 × FRk2 × · · · × FRkn

where FRk denotes the FR at community level for sample k. FRkn represents the FR of function
n for sample k.

Usage:
trans_func$cal_func_FR_comm()

Returns: vector.

Examples:

\donttest{
t1$cal_func_FR_comm()
}

Method show_prok_func(): Show the annotation information for a function of prokaryotes
from FAPROTAX database.

Usage:
trans_func$show_prok_func(use_func = NULL)

Arguments:

use_func default NULL; the function name in FAPROTAX database.

Returns: none.

Examples:

\donttest{
t1$show_prok_func(use_func = "methanotrophy")
}

Method cal_tax4fun2(): Predict functional potential of communities with Tax4Fun2 method.
The function was adapted from the raw Tax4Fun2 package to make it compatible with the mi-
crotable object. Pleas cite: Tax4Fun2: prediction of habitat-specific functional profiles and func-
tional redundancy based on 16S rRNA gene sequences. Environmental Microbiome 15, 11 (2020).
<doi:10.1186/s40793-020-00358-7>

Usage:
trans_func$cal_tax4fun2(
blast_tool_path = NULL,
path_to_reference_data = "Tax4Fun2_ReferenceData_v2",
path_to_temp_folder = NULL,
database_mode = "Ref99NR",
normalize_by_copy_number = T,
min_identity_to_reference = 97,
use_uproc = T,
num_threads = 1,
normalize_pathways = F

)

94 trans_func

Arguments:

blast_tool_path default NULL; the folder path, e.g., ncbi-blast-2.5.0+/bin ; blast tools folder
downloaded from "ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+" ; e.g., ncbi-blast-2.5.0+-
x64-win64.tar.gz for windows system; if blast_tool_path is NULL, search the tools in the
environmental path variable.

path_to_reference_data default "Tax4Fun2_ReferenceData_v2"; the path that points to files
used in the prediction; The directory must contain the Ref99NR or Ref100NR folder; down-
load Ref99NR.zip from "https://cloudstor.aarnet.edu.au/plus/s/DkoZIyZpMNbrzSw/download"
or Ref100NR.zip from "https://cloudstor.aarnet.edu.au/plus/s/jIByczak9ZAFUB4/download".

path_to_temp_folder default NULL; The temporary folder to store the logfile, intermediate
file and result files; if NULL, use the default temporary in the computer system.

database_mode default ’Ref99NR’; "Ref99NR" or "Ref100NR"; Ref99NR: 99% clustering
reference database; Ref100NR: no clustering.

normalize_by_copy_number default TRUE; whether normalize the result by the 16S rRNA
copy number in the genomes.

min_identity_to_reference default 97; the sequences identity threshold used for finding the
nearest species.

use_uproc default TRUE; whether use UProC to functionally anotate the genomes in the ref-
erence data.

num_threads default 1; the threads used in the blastn.
normalize_pathways default FALSE; Different to Tax4Fun, when converting from KEGG

functions to KEGG pathways, Tax4Fun2 does not equally split KO gene abundances be-
tween pathways a functions is affiliated to. The full predicted abundance is affiliated to
each pathway. Use TRUE to split the abundances (default is FALSE).

Returns: res_tax4fun2_KO and res_tax4fun2_pathway in object.

Examples:

\dontrun{
t1$cal_tax4fun2(blast_tool_path = "ncbi-blast-2.5.0+/bin",

path_to_reference_data = "Tax4Fun2_ReferenceData_v2")
}

Method cal_tax4fun2_FRI(): Calculate (multi-) functional redundancy index (FRI) of prokary-
otic community with Tax4Fun2 method. This function is used to calculating aFRI and rFRI use
the intermediate files generated by the function cal_tax4fun2(). please also cite: Tax4Fun2: pre-
diction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene
sequences. Environmental Microbiome 15, 11 (2020). <doi:10.1186/s40793-020-00358-7>

Usage:
trans_func$cal_tax4fun2_FRI()

Returns: res_tax4fun2_aFRI and res_tax4fun2_rFRI in object.

Examples:

\dontrun{
t1$cal_tax4fun2_FRI()
}

Method cal_spe_func(): This is a deprecated function. Please use cal_func function instead.

trans_func 95

Usage:
trans_func$cal_spe_func(...)

Arguments:

... paremeters pass to cal_func.

Method cal_spe_func_perc(): This is a deprecated function. Please use cal_func_FR func-
tion instead.

Usage:
trans_func$cal_spe_func_perc(...)

Arguments:

... paremeters pass to cal_func_FR.

Method trans_spe_func_perc(): This is a deprecated function. Please use trans_func_FR
function instead.

Usage:
trans_func$trans_spe_func_perc(...)

Arguments:

... paremeters pass to trans_func_FR.

Method plot_spe_func_perc(): This is a deprecated function. Please use plot_func_FR
function instead.

Usage:
trans_func$plot_spe_func_perc(...)

Arguments:

... paremeters pass to plot_func_FR.

Method clone(): The objects of this class are cloneable with this method.

Usage:
trans_func$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `trans_func$new`
--

data(dataset)
t1 <- trans_func$new(dataset = dataset)

--
Method `trans_func$cal_func`
--

96 trans_func

t1$cal_func(prok_database = "FAPROTAX")

--
Method `trans_func$cal_func_FR`
--

t1$cal_func_FR(abundance_weighted = TRUE)

--
Method `trans_func$trans_func_FR`
--

t1$trans_func_FR()

--
Method `trans_func$plot_func_FR`
--

t1$plot_func_FR()

--
Method `trans_func$cal_func_FR_comm`
--

t1$cal_func_FR_comm()

--
Method `trans_func$show_prok_func`
--

t1$show_prok_func(use_func = "methanotrophy")

--
Method `trans_func$cal_tax4fun2`
--

Not run:
t1$cal_tax4fun2(blast_tool_path = "ncbi-blast-2.5.0+/bin",

path_to_reference_data = "Tax4Fun2_ReferenceData_v2")

End(Not run)

trans_network 97

--
Method `trans_func$cal_tax4fun2_FRI`
--

Not run:
t1$cal_tax4fun2_FRI()

End(Not run)

trans_network Create trans_network object for network analysis.

Description

This class is a wrapper for a series of network analysis methods, including the network construction,
topological attributes analysis, eigengene analysis, network subsetting, node and edge properties,
network visualization and other operations.

Methods

Public methods:
• trans_network$new()

• trans_network$cal_network()

• trans_network$cal_module()

• trans_network$save_network()

• trans_network$cal_network_attr()

• trans_network$get_node_table()

• trans_network$get_edge_table()

• trans_network$get_adjacency_matrix()

• trans_network$plot_network()

• trans_network$cal_eigen()

• trans_network$plot_taxa_roles()

• trans_network$subset_network()

• trans_network$cal_powerlaw()

• trans_network$cal_sum_links()

• trans_network$plot_sum_links()

• trans_network$random_network()

• trans_network$trans_comm()

• trans_network$print()

• trans_network$clone()

Method new(): Create the trans_network object, store the important intermediate data and
calculate correlations if cor_method parameter is not NULL.

98 trans_network

Usage:

trans_network$new(
dataset = NULL,
cor_method = NULL,
use_WGCNA_pearson_spearman = FALSE,
use_NetCoMi_pearson_spearman = FALSE,
use_sparcc_method = c("NetCoMi", "SpiecEasi")[1],
taxa_level = "OTU",
filter_thres = 0,
nThreads = 1,
SparCC_simu_num = 100,
env_cols = NULL,
add_data = NULL,
...

)

Arguments:

dataset default NULL; the object of microtable class. Default NULL means customized
analysis.

cor_method default NULL; NULL or one of "bray", "pearson", "spearman", "sparcc", "bi-
cor", "cclasso" and "ccrepe"; All the methods refered to NetCoMi package are performed
based on netConstruct function of NetCoMi package and require NetCoMi to be installed
from Github (https://github.com/stefpeschel/NetCoMi); For the algorithm details, please
see Peschel et al. 2020 Brief. Bioinform <doi: 10.1093/bib/bbaa290>;

NULL NULL denotes non-correlation network, i.e. do not use correlation-based network.
If so, the return res_cor_p list will be NULL.

’bray’ 1-B, where B is Bray-Curtis dissimilarity; based on vegan::vegdist function

’pearson’ Pearson correlation; If use_WGCNA_pearson_spearman and use_NetCoMi_pearson_spearman
are both FALSE, use the function cor.test in R; use_WGCNA_pearson_spearman =
TRUE invoke corAndPvalue function of WGCNA package; use_NetCoMi_pearson_spearman
= TRUE invoke netConstruct function of NetCoMi package

’spearman’ Spearman correlation; other details are same with the ’pearson’ option

’sparcc’ SparCC algorithm (Friedman & Alm, PLoS Comp Biol, 2012, <doi:10.1371/journal.pcbi.1002687>);
use NetCoMi package when use_sparcc_method = "NetCoMi"; use SpiecEasi package
when use_sparcc_method = "SpiecEasi" and require SpiecEasi to be installed from
Github (https://github.com/zdk123/SpiecEasi)

’bicor’ Calculate biweight midcorrelation efficiently for matrices based on WGCNA::bicor
function; This option can invoke netConstruct function of NetCoMi package; Make sure
WGCNA and NetCoMi packages are both installed

’cclasso’ Correlation inference of Composition data through Lasso method based on netConstruct
function of NetCoMi package; for details, see NetCoMi::cclasso function

’ccrepe’ Calculates compositionality-corrected p-values and q-values for compositional
data using an arbitrary distance metric based on NetCoMi::netConstruct function; also
see NetCoMi::ccrepe function

use_WGCNA_pearson_spearman default FALSE; whether use WGCNA package to calculate
correlation when cor_method = "pearson" or "spearman".

https://github.com/stefpeschel/NetCoMi
https://github.com/zdk123/SpiecEasi

trans_network 99

use_NetCoMi_pearson_spearman default FALSE; whether use NetCoMi package to calculate
correlation when cor_method = "pearson" or "spearman". The important difference be-
tween NetCoMi and others is the features of zero handling and data normalization; See
<doi: 10.1093/bib/bbaa290>.

use_sparcc_method default c("NetCoMi", "SpiecEasi")[1]; use NetCoMi package or SpiecEasi
package to perform SparCC when cor_method = "sparcc".

taxa_level default "OTU"; taxonomic rank; ’OTU’ denotes using feature abundance table;
other available options should be one of the colnames of tax_table of input dataset.

filter_thres default 0; the relative abundance threshold.
nThreads default 1; the CPU thread number; available when use_WGCNA_pearson_spearman

= TRUE or use_sparcc_method = "SpiecEasi".
SparCC_simu_num default 100; SparCC simulation number for bootstrap when use_sparcc_method

= "SpiecEasi".
env_cols default NULL; numeric or character vector to select the column names of environ-

mental data in dataset$sample_table; the environmental data can be used in the correlation
network (as the nodes) or FlashWeave network.

add_data default NULL; provide environmental variable table additionally instead of env_cols
parameter; rownames must be sample names.

... parameters pass to NetCoMi::netConstruct for other operations, such as zero handling
and/or data normalization when cor_method and other parameters refer to NetCoMi pack-
age.

Returns: res_cor_p list with the correlation (association) matrix and p value matrix. Note that
when cor_method and other parameters refer to NetCoMi package, the p value table are all zero
as the significant associations have been selected.

Examples:

\donttest{
data(dataset)
for correlation network
t1 <- trans_network$new(dataset = dataset, cor_method = "pearson",
taxa_level = "OTU", filter_thres = 0.0002)
for non-correlation network
t1 <- trans_network$new(dataset = dataset, cor_method = NULL)
}

Method cal_network(): Construct network based on the igraph package or SpiecEasi pack-
age or julia FlashWeave package or beemStatic package.

Usage:
trans_network$cal_network(
network_method = c("COR", "SpiecEasi", "gcoda", "FlashWeave", "beemStatic")[1],
COR_p_thres = 0.01,
COR_p_adjust = "fdr",
COR_return_padjust = FALSE,
COR_weight = TRUE,
COR_cut = 0.6,
COR_optimization = FALSE,
COR_optimization_low_high = c(0.01, 0.8),

100 trans_network

COR_optimization_seq = 0.01,
SpiecEasi_method = "mb",
FlashWeave_tempdir = NULL,
FlashWeave_meta_data = FALSE,
FlashWeave_other_para = "alpha=0.01,sensitive=true,heterogeneous=true",
FlashWeave_gml = NULL,
beemStatic_t_strength = 0.001,
beemStatic_t_stab = 0.8,
add_taxa_name = "Phylum",
delete_unlinked_nodes = TRUE,
usename_rawtaxa_notOTU = FALSE,
...

)

Arguments:

network_method default "COR"; "COR", "SpiecEasi", "gcoda", "FlashWeave" or "beemStatic";
network_method = NULL means skipping the network construction for the customized use.
The option details:
’COR’ correlation-based network; use the correlation and p value matrices in res_cor_p

list stored in the object; See Deng et al. (2012) <doi:10.1186/1471-2105-13-113> for
other details

’SpiecEasi’ SpiecEasi network; relies on algorithms of sparse neighborhood and inverse
covariance selection; belong to the category of conditional dependence and graphical
models; see https://github.com/zdk123/SpiecEasi for installing the R package; see Kurtz
et al. (2015) <doi:10.1371/journal.pcbi.1004226> for the algorithm details

’gcoda’ hypothesize the logistic normal distribution of microbiome data; use penalized
maximum likelihood method to estimate the sparse structure of inverse covariance for
latent normal variables to address the high dimensionality of the microbiome data; be-
long to the category of conditional dependence and graphical models; depend on the
R NetCoMi package https://github.com/stefpeschel/NetCoMi; see FANG et al. (2017)
<doi:10.1089/cmb.2017.0054> for the algorithm details

’FlashWeave’ FlashWeave network; Local-to-global learning framework; belong to the
category of conditional dependence and graphical models; good performance on het-
erogenous datasets to find direct associations among taxa; see https://github.com/meringlab/FlashWeave.jl
for installing julia language and FlashWeave package; julia must be in the computer
system env path, otherwise the program can not find it; see Tackmann et al. (2019)
<doi:10.1016/j.cels.2019.08.002> for the algorithm details

’beemStatic’ beemStatic network; extend generalized Lotka-Volterra model to cases of
cross-sectional datasets to infer interaction among taxa based on expectation-maximization
algorithm; see https://github.com/CSB5/BEEM-static for installing the R package; see Li
et al. (2021) <doi:10.1371/journal.pcbi.1009343> for the algorithm details

COR_p_thres default 0.01; the p value threshold for the correlation-based network.
COR_p_adjust default "fdr"; p value adjustment method, see method parameter of p.adjust

function for available options, in which COR_p_adjust = "none" means giving up the p
value adjustment.

COR_return_padjust default FALSE; Whether to return the adjusted p-value matrix and store
it in the object (named res_cor_p$p.adjust).

https://github.com/zdk123/SpiecEasi
https://github.com/stefpeschel/NetCoMi
https://github.com/meringlab/FlashWeave.jl
https://github.com/CSB5/BEEM-static

trans_network 101

COR_weight default TRUE; whether use correlation coefficient as the weight of edges; FALSE
represents weight = 1 for all edges.

COR_cut default 0.6; correlation coefficient threshold for the correlation network.
COR_optimization default FALSE; whether use random matrix theory (RMT) based method

to determine the correlation coefficient; see https://doi.org/10.1186/1471-2105-13-113
COR_optimization_low_high default c(0.01, 0.8); the low and high value threshold used

for the RMT optimization; only useful when COR_optimization = TRUE.
COR_optimization_seq default 0.01; the interval of correlation coefficient used for RMT op-

timization; only useful when COR_optimization = TRUE.
SpiecEasi_method default "mb"; either ’glasso’ or ’mb’;see spiec.easi function in package

SpiecEasi and https://github.com/zdk123/SpiecEasi.
FlashWeave_tempdir default NULL; The temporary directory used to save the temporary files

for running FlashWeave; If not assigned, use the system user temp.
FlashWeave_meta_data default FALSE; whether use env data for the optimization, If TRUE,

the function automatically find the env_data in the object and generate a file for meta_data_path
parameter of FlashWeave package.

FlashWeave_other_para default "alpha=0.01,sensitive=true,heterogeneous=true"; the
parameters passed to julia FlashWeave package; user can change the parameters or add more
according to FlashWeave help document; An exception is meta_data_path parameter as it is
generated based on the data inside the object, see FlashWeave_meta_data parameter for the
description.

FlashWeave_gml default NULL; The path of FlashWeave output gml file for customized usage.
This parameter is provided for some customized needs. For instance, it can be cumbersome
to input bacterial and fungal abundances as separate input files for network analysis using
the above parameter. Users can run FlashWeave on their own, and then provide the resulting
gml file to this parameter, which allows them to continue using other functions.

beemStatic_t_strength default 0.001; for network_method = "beemStatic"; the threshold
used to limit the number of interactions (strength); same with the t.strength parameter in
showInteraction function of beemStatic package.

beemStatic_t_stab default 0.8; for network_method = "beemStatic"; the threshold used to
limit the number of interactions (stability); same with the t.stab parameter in showInterac-
tion function of beemStatic package.

add_taxa_name default "Phylum"; one or more taxonomic rank name; used to add taxonomic
rank name to network node properties.

delete_unlinked_nodes default TRUE; whether delete the nodes without any link.
usename_rawtaxa_notOTU default FALSE; whether use OTU name as representatives of taxa

when taxa_level != "OTU". Default FALSE means using taxonomic information of taxa_level
instead of OTU name.

... parameters pass to SpiecEasi::spiec.easi when network_method = "SpiecEasi"; pass
to NetCoMi::netConstruct when network_method = "gcoda"; pass to beemStatic::func.EM
when network_method = "beemStatic".

Returns: res_network stored in object.

Examples:

\dontrun{
for correlation network

102 trans_network

t1 <- trans_network$new(dataset = dataset, cor_method = "pearson",
taxa_level = "OTU", filter_thres = 0.001)
t1$cal_network(COR_p_thres = 0.05, COR_cut = 0.6)
t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.003)
t1$cal_network(network_method = "SpiecEasi", SpiecEasi_method = "mb")
t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.005)
t1$cal_network(network_method = "beemStatic")
t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.001)
t1$cal_network(network_method = "FlashWeave")
}

Method cal_module(): Calculate network modules and add module names to the network node
properties.

Usage:
trans_network$cal_module(
method = "cluster_fast_greedy",
module_name_prefix = "M"

)

Arguments:

method default "cluster_fast_greedy"; the method used to find the optimal community structure
of a graph; the following are available functions (options) from igraph package:
"cluster_fast_greedy", "cluster_walktrap", "cluster_edge_betweenness",
"cluster_infomap", "cluster_label_prop", "cluster_leading_eigen",
"cluster_louvain", "cluster_spinglass", "cluster_optimal".
For the details of these functions, please see the help document, such as help(cluster_fast_greedy);
Note that the default "cluster_fast_greedy" method can not be applied to directed net-
work. If directed network is provided, the function can automatically switch the default
method from "cluster_fast_greedy" to "cluster_walktrap".

module_name_prefix default "M"; the prefix of module names; module names are made of the
module_name_prefix and numbers; numbers are assigned according to the sorting result of
node numbers in modules with decreasing trend.

Returns: res_network with modules, stored in object.

Examples:

\donttest{
t1 <- trans_network$new(dataset = dataset, cor_method = "pearson",
taxa_level = "OTU", filter_thres = 0.0002)
t1$cal_network(COR_p_thres = 0.01, COR_cut = 0.6)
t1$cal_module(method = "cluster_fast_greedy")
}

Method save_network(): Save network as gexf style, which can be opened by Gephi (https://gephi.org/).

Usage:
trans_network$save_network(filepath = "network.gexf", ...)

Arguments:

filepath default "network.gexf"; file path to save the network.

trans_network 103

... parameters pass to gexf function of rgexf package except for nodes, edges, edgesLabel,
edgesWeight, nodesAtt, edgesAtt and meta.

Returns: None

Examples:
\dontrun{
t1$save_network(filepath = "network.gexf")
}

Method cal_network_attr(): Calculate network properties.

Usage:
trans_network$cal_network_attr()

Returns: res_network_attr stored in object.

Examples:
\donttest{
t1$cal_network_attr()
}

Method get_node_table(): Get the node property table. The properties include the node
names, modules allocation, degree, betweenness, abundance, taxonomy, within-module connec-
tivity (zi) and among-module connectivity (Pi) <doi:10.1186/1471-2105-13-113; 10.1016/j.geoderma.2022.115866>.

Usage:
trans_network$get_node_table(node_roles = TRUE)

Arguments:
node_roles default TRUE; whether calculate the node roles <doi:10.1038/nature03288; 10.1186/1471-

2105-13-113>. The role of node i is characterized by its within-module connectivity (zi)
and among-module connectivity (Pi) as follows

zi =
kib − k̄b
σkb

Pi = 1−
NM∑
c=1

(
kic
ki

)2

where kib is the number of links of node i to other nodes in its module b, k̄b and σkb
are

the average and standard deviation of within-module connectivity, respectively over all the
nodes in module b, ki is the number of links of node i in the whole network, kic is the
number of links from node i to nodes in module c, and NM is the number of modules in the
network.

Returns: res_node_table in object; Abundance expressed as a percentage; betweenness_centrality:
betweenness centrality; betweenness_centrality: closeness centrality; eigenvector_centrality:
eigenvector centrality; z: within-module connectivity; p: among-module connectivity.

Examples:
\donttest{
t1$get_node_table(node_roles = TRUE)
}

104 trans_network

Method get_edge_table(): Get the edge property table, including connected nodes, label and
weight.

Usage:
trans_network$get_edge_table()

Returns: res_edge_table in object.

Examples:

\donttest{
t1$get_edge_table()
}

Method get_adjacency_matrix(): Get the adjacency matrix from the network graph.

Usage:
trans_network$get_adjacency_matrix(...)

Arguments:

... parameters passed to as_adjacency_matrix function of igraph package.

Returns: res_adjacency_matrix in object.

Examples:

\donttest{
t1$get_adjacency_matrix(attr = "weight")
}

Method plot_network(): Plot the network based on a series of methods from other packages,
such as igraph, ggraph and networkD3. The networkD3 package provides dynamic network. It
is especially useful for a glimpse of the whole network structure and finding the interested nodes
and edges in a large network. In contrast, the igraph and ggraph methods are suitable for relatively
small network.

Usage:
trans_network$plot_network(
method = c("igraph", "ggraph", "networkD3")[1],
node_label = "name",
node_color = NULL,
ggraph_layout = "fr",
ggraph_node_size = 2,
ggraph_node_text = TRUE,
ggraph_text_color = NULL,
ggraph_text_size = 3,
networkD3_node_legend = TRUE,
networkD3_zoom = TRUE,
...

)

Arguments:

method default "igraph"; The available options:
’igraph’ call plot.igraph function in igraph package for a static network; see plot.igraph

for the parameters

trans_network 105

’ggraph’ call ggraph function in ggraph package for a static network
’networkD3’ use forceNetwork function in networkD3 package for a dynamic network;

see forceNetwork function for the parameters
node_label default "name"; node label shown in the plot for method = "ggraph" or method

= "networkD3"; Please see the column names of object$res_node_table, which is the re-
turned table of function object$get_node_table; User can select other column names in
res_node_table.

node_color default NULL; node color assignment for method = "ggraph" or method = "networkD3";
Select a column name of object$res_node_table, such as "module".

ggraph_layout default "fr"; for method = "ggraph"; see layout parameter of create_layout
function in ggraph package.

ggraph_node_size default 2; for method = "ggraph"; the node size.
ggraph_node_text default TRUE; for method = "ggraph"; whether show the label text of

nodes.
ggraph_text_color default NULL; for method = "ggraph"; a column name of object$res_node_table

used to assign label text colors.
ggraph_text_size default 3; for method = "ggraph"; the node label text size.
networkD3_node_legend default TRUE; used for method = "networkD3"; logical value to en-

able node colour legends; Please see the legend parameter in networkD3::forceNetwork
function.

networkD3_zoom default TRUE; used for method = "networkD3"; logical value to enable (TRUE)
or disable (FALSE) zooming; Please see the zoom parameter in networkD3::forceNetwork
function.

... parameters passed to plot.igraph function when method = "igraph" or forceNetwork
function when method = "networkD3".

Returns: network plot.

Examples:
\donttest{
t1$plot_network(method = "igraph", layout = layout_with_kk)
t1$plot_network(method = "ggraph", node_color = "module")
t1$plot_network(method = "networkD3", node_color = "module")
}

Method cal_eigen(): Calculate eigengenes of modules, i.e. the first principal component based
on PCA analysis, and the percentage of variance <doi:10.1186/1471-2105-13-113>.

Usage:
trans_network$cal_eigen()

Returns: res_eigen and res_eigen_expla in object.

Examples:
\donttest{
t1$cal_eigen()
}

Method plot_taxa_roles(): Plot the roles or metrics of nodes based on the res_node_table
data (coming from function get_node_table) stored in the object.

106 trans_network

Usage:
trans_network$plot_taxa_roles(
use_type = c(1, 2)[1],
roles_color_background = FALSE,
roles_color_values = NULL,
add_label = FALSE,
add_label_group = c("Network hubs", "Module hubs", "Connectors"),
add_label_text = "name",
label_text_size = 4,
label_text_color = "grey50",
label_text_italic = FALSE,
label_text_parse = FALSE,
plot_module = FALSE,
x_lim = c(0, 1),
use_level = "Phylum",
show_value = c("z", "p"),
show_number = 1:10,
plot_color = "Phylum",
plot_shape = "taxa_roles",
plot_size = "Abundance",
color_values = RColorBrewer::brewer.pal(12, "Paired"),
shape_values = c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14),
...

)

Arguments:

use_type default 1; 1 or 2; 1 represents taxa roles plot (node roles include Module hubs, Net-
work hubs, Connectors and Peripherals <doi:10.1038/nature03288; 10.1186/1471-2105-13-
113>). The ’p’ column (Pi, among-module connectivity) in res_node_table table is used
in x-axis. The ’z’ column (Zi, within-module connectivity) is used in y-axis; 2 represents
the layered plot with taxa as x axis and the index (e.g., Zi and Pi) as y axis. Please refer to
res_node_table data stored in the object for the detailed information.

roles_color_background default FALSE; for use_type=1; TRUE: use background colors for
each area; FALSE: use classic point colors.

roles_color_values default NULL; for use_type=1; color palette for background or points.
add_label default FALSE; for use_type = 1; whether add labels for the points.
add_label_group default c("Network hubs", "Module hubs", "Connectors"); If add_label =

TRUE, which part in taxa_roles column is used to show labels; character vectors.
add_label_text default "name"; If add_label = TRUE; which column of object$res_node_table

is used to label the text.
label_text_size default 4; The text size of the label.
label_text_color default "grey50"; The text color of the label.
label_text_italic default FALSE; whether use italic style for the label text.
label_text_parse default FALSE; whether parse the label text. See the parse parameter in

ggrepel::geom_text_repel function.
plot_module default FALSE; for use_type=1; whether plot the modules information.
x_lim default c(0, 1); for use_type=1; x axis range when roles_color_background = FALSE.

trans_network 107

use_level default "Phylum"; for use_type=2; used taxonomic level in x axis.
show_value default c("z", "p"); for use_type=2; indexes used in y axis. Please see res_node_table

in the object for other available indexes.
show_number default 1:10; for use_type=2; showed number in x axis, sorting according to the

nodes number.
plot_color default "Phylum"; for use_type=2; variable for color.
plot_shape default "taxa_roles"; for use_type=2; variable for shape.
plot_size default "Abundance"; for use_type=2; used for point size; a fixed number (e.g. 5)

is also acceptable.
color_values default RColorBrewer::brewer.pal(12, "Paired"); for use_type=2; color vector.
shape_values default c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14); for use_type=2;

shape vector, see ggplot2 tutorial for the shape meaning.
... parameters pass to geom_point function of ggplot2 package.

Returns: ggplot.

Examples:

\donttest{
t1$plot_taxa_roles(roles_color_background = FALSE)
}

Method subset_network(): Subset of the network.

Usage:
trans_network$subset_network(
node = NULL,
edge = NULL,
rm_single = TRUE,
node_alledges = FALSE,
return_igraph = TRUE,
sample_name = NULL

)

Arguments:

node default NULL; provide the node names that will be used in the sub-network.
edge default NULL; provide the edge label or numbers that need to be remained. For the edge

label, it should must be "+" or "-". For the numbers, they should fall within the range of
rows in res_edge_table of the object.

rm_single default TRUE; whether remove the nodes without any edge in the sub-network. So
this function can also be used to remove the nodes withou any edge when node and edge
are both NULL.

node_alledges default FALSE; whether remain the nodes and edges that related to the nodes
provided in node parameter. When this parameter is set to TRUE, the network will filter
based on edges rather than directly on nodes. The logic is that if at least one of the two
nodes connected by an edge is included in the nodes provided by the node parameter, the
edge will be retained. Otherwise, it will be filtered out. When this parameter is set to FALSE,
the network will filter directly based on the node parameter. Any nodes not included in the
node parameter will be filtered out.

108 trans_network

return_igraph default TRUE; whether return the network with igraph format. If FALSE,
return trans_network object.

sample_name default NULL; Sample names. If sample names are provided, the network will be
extracted based on the nodes in these samples, and the corresponding data (e.g., otu_table)
in the object will also be filtered when return_igraph = FALSE.

Returns: a new network

Examples:

\donttest{
t1$subset_network(node = t1$res_node_table %>% base::subset(module == "M1") %>%
rownames, rm_single = TRUE)

return a sub network that contains all nodes of module M1
}

Method cal_powerlaw(): Fit degrees to a power law distribution. First, perform a bootstrapping
hypothesis test to determine whether degrees follow a power law distribution. If the distribution
follows power law, then fit degrees to power law distribution and return the parameters.

Usage:
trans_network$cal_powerlaw(...)

Arguments:

... parameters pass to bootstrap_p function in poweRlaw package.

Returns: res_powerlaw_p and res_powerlaw_fit; see poweRlaw::bootstrap_p function
for the bootstrapping p value details; see igraph::fit_power_law function for the power law
fit return details.

Examples:

\donttest{
t1$cal_powerlaw()
}

Method cal_sum_links(): This function is used to sum the links number from one taxa to
another or in the same taxa, for example, at Phylum level. This is very useful to fast see how
many nodes are connected between different taxa or within the taxa.

Usage:
trans_network$cal_sum_links(taxa_level = "Phylum")

Arguments:

taxa_level default "Phylum"; taxonomic rank.

Returns: res_sum_links_pos and res_sum_links_neg in object.

Examples:

\donttest{
t1$cal_sum_links(taxa_level = "Phylum")
}

Method plot_sum_links(): Plot the summed linkages among taxa.

Usage:

trans_network 109

trans_network$plot_sum_links(
plot_pos = TRUE,
plot_num = NULL,
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
method = c("chorddiag", "circlize")[1],
...

)

Arguments:
plot_pos default TRUE; If TRUE, plot the summed positive linkages; If FALSE, plot the

summed negative linkages.
plot_num default NULL; number of taxa presented in the plot.
color_values default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for taxa.
method default c("chorddiag", "circlize")[1]; chorddiag package <https://github.com/mattflor/chorddiag>

or circlize package.
... pass to chorddiag::chorddiag function when method = "chorddiag" or circlize::chordDiagram

function when method = "circlize". Note that for circlize::chordDiagram function,
keep.diagonal, symmetric and self.link parameters have been fixed to fit the input
data.

Returns: please see the invoked function.

Examples:
\dontrun{
test1$plot_sum_links(method = "chorddiag", plot_pos = TRUE, plot_num = 10)
test1$plot_sum_links(method = "circlize", transparency = 0.2,
annotationTrackHeight = circlize::mm_h(c(5, 5)))

}

Method random_network(): Generate random networks, compare them with the empirical
network and get the p value of topological properties. The generation of random graph is based
on the erdos.renyi.game function of igraph package. The numbers of vertices and edges in the
random graph are same with the empirical network stored in the object.

Usage:
trans_network$random_network(runs = 100, output_sim = FALSE)

Arguments:
runs default 100; simulation number of random network.
output_sim default FALSE; whether output each simulated network result.

Returns: a data.frame with the following components:
Observed Topological properties of empirical network
Mean_sim Mean of properties of simulated networks
SD_sim SD of properties of simulated networks
p_value Significance, i.e. p values
When output_sim = TRUE, the columns from the five to the last are each simulated result.

Examples:
\dontrun{
t1$random_network(runs = 100)
}

110 trans_network

Method trans_comm(): Transform classifed features to community-like microtable object for
further analysis, such as module-taxa table.

Usage:
trans_network$trans_comm(use_col = "module", abundance = TRUE)

Arguments:

use_col default "module"; which column to use as the ’community’; must be one of the name
of res_node_table from function get_node_table.

abundance default TRUE; whether sum abundance of taxa. TRUE: sum the abundance for a
taxon across all samples; FALSE: sum the frequency for a taxon across all samples.

Returns: a new microtable class.

Examples:

\donttest{
t2 <- t1$trans_comm(use_col = "module")
}

Method print(): Print the trans_network object.

Usage:
trans_network$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
trans_network$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `trans_network$new`
--

data(dataset)
for correlation network
t1 <- trans_network$new(dataset = dataset, cor_method = "pearson",
taxa_level = "OTU", filter_thres = 0.0002)
for non-correlation network
t1 <- trans_network$new(dataset = dataset, cor_method = NULL)

--
Method `trans_network$cal_network`
--

Not run:
for correlation network
t1 <- trans_network$new(dataset = dataset, cor_method = "pearson",

trans_network 111

taxa_level = "OTU", filter_thres = 0.001)
t1$cal_network(COR_p_thres = 0.05, COR_cut = 0.6)
t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.003)
t1$cal_network(network_method = "SpiecEasi", SpiecEasi_method = "mb")
t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.005)
t1$cal_network(network_method = "beemStatic")
t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.001)
t1$cal_network(network_method = "FlashWeave")

End(Not run)

--
Method `trans_network$cal_module`
--

t1 <- trans_network$new(dataset = dataset, cor_method = "pearson",
taxa_level = "OTU", filter_thres = 0.0002)
t1$cal_network(COR_p_thres = 0.01, COR_cut = 0.6)
t1$cal_module(method = "cluster_fast_greedy")

--
Method `trans_network$save_network`
--

Not run:
t1$save_network(filepath = "network.gexf")

End(Not run)

--
Method `trans_network$cal_network_attr`
--

t1$cal_network_attr()

--
Method `trans_network$get_node_table`
--

t1$get_node_table(node_roles = TRUE)

--
Method `trans_network$get_edge_table`
--

t1$get_edge_table()

112 trans_network

--
Method `trans_network$get_adjacency_matrix`
--

t1$get_adjacency_matrix(attr = "weight")

--
Method `trans_network$plot_network`
--

t1$plot_network(method = "igraph", layout = layout_with_kk)
t1$plot_network(method = "ggraph", node_color = "module")
t1$plot_network(method = "networkD3", node_color = "module")

--
Method `trans_network$cal_eigen`
--

t1$cal_eigen()

--
Method `trans_network$plot_taxa_roles`
--

t1$plot_taxa_roles(roles_color_background = FALSE)

--
Method `trans_network$subset_network`
--

t1$subset_network(node = t1$res_node_table %>% base::subset(module == "M1") %>%
rownames, rm_single = TRUE)

return a sub network that contains all nodes of module M1

--
Method `trans_network$cal_powerlaw`
--

t1$cal_powerlaw()

trans_norm 113

--
Method `trans_network$cal_sum_links`
--

t1$cal_sum_links(taxa_level = "Phylum")

--
Method `trans_network$plot_sum_links`
--

Not run:
test1$plot_sum_links(method = "chorddiag", plot_pos = TRUE, plot_num = 10)
test1$plot_sum_links(method = "circlize", transparency = 0.2,

annotationTrackHeight = circlize::mm_h(c(5, 5)))

End(Not run)

--
Method `trans_network$random_network`
--

Not run:
t1$random_network(runs = 100)

End(Not run)

--
Method `trans_network$trans_comm`
--

t2 <- t1$trans_comm(use_col = "module")

trans_norm Feature abundance normalization/transformation.

Description

Feature abundance normalization/transformation for a microtable object or data.frame object.

Methods

Public methods:

• trans_norm$new()

• trans_norm$norm()

114 trans_norm

• trans_norm$clone()

Method new(): Get a transposed abundance table if the input is microtable object. In the table,
rows are samples, and columns are features. This can make the further operations same with the
traditional ecological methods.

Usage:
trans_norm$new(dataset = NULL)

Arguments:
dataset the microtable object or data.frame object. If it is data.frame object, please make

sure that rows are samples, and columns are features.

Returns: data_table, stored in the object.

Examples:
library(microeco)
data(dataset)
t1 <- trans_norm$new(dataset = dataset)

Method norm(): Normalization/transformation methods.

Usage:
trans_norm$norm(
method = "rarefy",
sample.size = NULL,
rngseed = 123,
replace = TRUE,
pseudocount = 1,
intersect.no = 10,
ct.min = 1,
condition = NULL,
MARGIN = NULL,
logbase = 2,
CSS_p = NULL,
...

)

Arguments:
method default "rarefy"; See the following available options.

Methods for normalization:
• "rarefy": classic rarefaction based on the R sample function.
• "SRS": scaling with ranked subsampling method based on the SRS package provided by

Lukas Beule and Petr Karlovsky (2020) <doi:10.7717/peerj.9593>.
• "clr": Centered log-ratio normalization <ISBN:978-0-412-28060-3> <doi: 10.3389/fmicb.2017.02224>.

It is defined:
clrki = log

xki

g(xi)

where xki is the abundance of kth feature in sample i, g(xi) is the geometric mean of
abundances for sample i. A pseudocount need to be added to deal with the zero. For
more information, please see the ’clr’ method in decostand function of vegan package.

trans_norm 115

• "rclr": Robust centered log-ratio normalization <doi:10.1128/msystems.00016-19>. It
is defined:

rclrki = log
xki

g(xi > 0)

where xki is the abundance of kth feature in sample i, g(xi > 0) is the geometric mean
of abundances (> 0) for sample i. In rclr, zero values are kept as zeroes, and not taken
into account.

• "GMPR": Geometric mean of pairwise ratios <doi: 10.7717/peerj.4600>. For a given
sample i, the size factor si is defined:

si =

(n∏
j=1

Mediank|ckickj ̸=0{
cki
ckj

}
)1/n

where k denotes all the features, and n denotes all the samples. For sample i, GMPR =
xi

si
, where xi is the feature abundances of sample i.

• "CSS": Cumulative sum scaling normalization based on the metagenomeSeq package
<doi:10.1038/nmeth.2658>. For a given sample j, the scaling factor slj is defined:

slj =
∑

i|cij⩽qlj

cij

where qlj is the lth quantile of sample j, that is, in sample j there are l features with
counts smaller than qlj . cij denotes the count (abundance) of feature i in sample j. For l
= 0.95m (feature number), qlj corresponds to the 95th percentile of the count distribution
for sample j. Normalized counts c̃ij = (

cij
slj
)(N), where N is an appropriately chosen

normalization constant.
• "TSS": Total sum scaling. Abundance is divided by the sequencing depth. For a given

sample j, normalized counts is defined:

c̃ij =
cij∑Nj

i=1 cij

where cij is the counts of feature i in sample j, and Nj is the feature number of sample
j.

• "eBay": Empirical Bayes approach to normalization <10.1186/s12859-020-03552-z>.
The implemented method is not tree-related. In the output, the sum of each sample is 1.

• "TMM": Trimmed mean of M-values method based on the normLibSizes function of
edgeR package <doi: 10.1186/gb-2010-11-3-r25>.

• "DESeq2": Median ratio of gene counts relative to geometric mean per gene based on
the DESeq function of DESeq2 package <doi: 10.1186/s13059-014-0550-8>. This option
can invoke the trans_diff class and extract the normalized data from the original result.
Note that either group or formula should be provided. The scaling factor is defined:

sj = Mediani
cij(∏n

j=1 cij
)1/n

where cij is the counts of feature i in sample j, and n is the total sample number.

116 trans_norm

• "Wrench": Group-wise and sample-wise compositional bias factor <doi: 10.1186/s12864-
018-5160-5>. Note that condition parameter is necesary to be passed to condition pa-
rameter in wrench function of Wrench package. As the input data must be microtable
object, so the input condition parameter can be a column name of sample_table. The
scaling factor is defined:

sj =
1

p

∑
ij

Wij
Xij

Xi

where Xij represents the relative abundance (proportion) for feature i in sample j, Xi is
the average proportion of feature i across the dataset, Wij represents a weight specific to
each technique, and p is the feature number in sample.

• "RLE": Relative log expression.
Methods based on decostand function of vegan package:
• "total": divide by margin total (default MARGIN = 1, i.e. rows - samples in data_table

of the object). The default MARGIN = 1 generates results commonly referred to as rela-
tive abundance.

• "max": divide by margin maximum (default MARGIN = 2, i.e. columns - features).
• "frequency": divide by margin total and multiply by the number of non-zero items

(default MARGIN = 2).
• "normalize": make margin sum of squares equal to one (default MARGIN = 1).
• "range": standardize values into range 0...1 (default MARGIN = 2). If all values are

constant, they will be transformed to 0.
• "standardize": scale x to zero mean and unit variance (default MARGIN = 2).
• "pa": scale x to presence/absence scale (0/1).
• "chi.square": see the detailed "chi.square" documents in vegan package.
• "hellinger": square root of method = "total".
• "log": logarithmic transformation.
Other methods for transformation:
• "AST": Arc sine square root transformation.

sample.size default NULL; libray size for rarefaction when method = "rarefy" or "SRS".
If not provided, use the minimum number across all samples. For "SRS" method, this
parameter is passed to Cmin parameter of SRS function of SRS package.

rngseed default 123; random seed. Available when method = "rarefy" or "SRS".
replace default TRUE; see sample for the random sampling; Available when method = "rarefy".
pseudocount default 1; add pseudocount for those features with 0 abundance when method =

"clr".
intersect.no default 10; the intersecting taxa number between paired sample for method =

"GMPR".
ct.min default 1; the minimum number of counts required to calculate ratios for method =

"GMPR".
condition default NULL; Only available when method = "Wrench". This parameter is passed

to the condition parameter of wrench function in Wrench package It must be a column
name of sample_table or a vector with same length of samples.

MARGIN default NULL; 1 = samples, and 2 = features of abundance table; only available when
method comes from decostand function of vegan package. If MARGIN is NULL, use the
default value in decostand function.

trans_nullmodel 117

logbase default 2; The logarithm base.
CSS_p default NULL; the pth quantile passed to the p augument of the cumNorm function when

method = "CSS". Default NULL means the default cumNormStatFast function is used to
calculate the quantile.

... parameters pass to vegan::decostand, or edgeR::normLibSizes when method = "TMM"
or "RLE", or trans_diff class when method = "DESeq2", or wrench function of Wrench
package when method = "Wrench".

Returns: new microtable object or data.frame object.

Examples:

newdataset <- t1$norm(method = "clr")
newdataset <- t1$norm(method = "log")

Method clone(): The objects of this class are cloneable with this method.

Usage:
trans_norm$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `trans_norm$new`
--

library(microeco)
data(dataset)
t1 <- trans_norm$new(dataset = dataset)

--
Method `trans_norm$norm`
--

newdataset <- t1$norm(method = "clr")
newdataset <- t1$norm(method = "log")

trans_nullmodel Create trans_nullmodel object for null model related analysis.

Description

This class is a wrapper for a series of null model related approaches, including the mantel correlo-
gram analysis of phylogenetic signal, beta nearest taxon index (betaNTI), beta net relatedness index
(betaNRI), NTI, NRI and RCbray (Raup–Crick Bray–Curtis) calculations. See <doi:10.1111/j.1600-
0587.2010.06548.x; 10.1890/ES10-00117.1; 10.1038/ismej.2013.93; 10.1038/s41598-017-17736-
w> for the algorithms and applications.

118 trans_nullmodel

Methods

Public methods:
• trans_nullmodel$new()

• trans_nullmodel$cal_mantel_corr()

• trans_nullmodel$plot_mantel_corr()

• trans_nullmodel$cal_betampd()

• trans_nullmodel$cal_betamntd()

• trans_nullmodel$cal_ses_betampd()

• trans_nullmodel$cal_ses_betamntd()

• trans_nullmodel$cal_rcbray()

• trans_nullmodel$cal_process()

• trans_nullmodel$cal_NRI()

• trans_nullmodel$cal_NTI()

• trans_nullmodel$cal_Cscore()

• trans_nullmodel$cal_NST()

• trans_nullmodel$cal_NST_test()

• trans_nullmodel$cal_NST_convert()

• trans_nullmodel$clone()

Method new():
Usage:
trans_nullmodel$new(
dataset = NULL,
filter_thres = 0,
taxa_number = NULL,
group = NULL,
select_group = NULL,
env_cols = NULL,
add_data = NULL,
complete_na = FALSE

)

Arguments:

dataset the object of microtable Class.
filter_thres default 0; the relative abundance threshold.
taxa_number default NULL; how many taxa the user want to keep, if provided, filter_thres

parameter will be forcible invalid.
group default NULL; which column name in sample_table is selected as the group for the

following selection.
select_group default NULL; one or more elements in group, used to select samples.
env_cols default NULL; number or name vector to select the environmental data in dataset$sample_table.
add_data default NULL; provide environmental data table additionally.
complete_na default FALSE; whether fill the NA in environmental data based on the method

in mice package.

trans_nullmodel 119

Returns: data_comm and data_tree in object.

Examples:

data(dataset)
data(env_data_16S)
t1 <- trans_nullmodel$new(dataset, filter_thres = 0.0005, add_data = env_data_16S)

Method cal_mantel_corr(): Calculate mantel correlogram.

Usage:
trans_nullmodel$cal_mantel_corr(
use_env = NULL,
break.pts = seq(0, 1, 0.02),
cutoff = FALSE,
...

)

Arguments:

use_env default NULL; numeric or character vector to select env_data; if provide multiple
variables or NULL, use PCA (principal component analysis) to reduce dimensionality.

break.pts default seq(0, 1, 0.02); see break.pts parameter in mantel.correlog of vegan
package.

cutoff default FALSE; see cutoff parameter in mantel.correlog.
... parameters pass to mantel.correlog function in vegan package.

Returns: res_mantel_corr in object.

Examples:

\dontrun{
t1$cal_mantel_corr(use_env = "pH")
}

Method plot_mantel_corr(): Plot mantel correlogram.

Usage:
trans_nullmodel$plot_mantel_corr(point_shape = 22, point_size = 3)

Arguments:

point_shape default 22; the number for selecting point shape type; see ggplot2 manual for
the number meaning.

point_size default 3; the point size.

Returns: ggplot.

Examples:

\dontrun{
t1$plot_mantel_corr()
}

Method cal_betampd(): Calculate betaMPD (mean pairwise distance). Same with picante::comdist
function, but faster.

Usage:

120 trans_nullmodel

trans_nullmodel$cal_betampd(abundance.weighted = TRUE)

Arguments:
abundance.weighted default TRUE; whether use abundance-weighted method.

Returns: res_betampd in object.

Examples:
\donttest{
t1$cal_betampd(abundance.weighted = TRUE)
}

Method cal_betamntd(): Calculate betaMNTD (mean nearest taxon distance). Same with
picante::comdistnt function, but faster.

Usage:
trans_nullmodel$cal_betamntd(
abundance.weighted = TRUE,
exclude.conspecifics = FALSE,
use_iCAMP = FALSE,
use_iCAMP_force = TRUE,
iCAMP_tempdir = NULL,
...

)

Arguments:
abundance.weighted default TRUE; whether use abundance-weighted method.
exclude.conspecifics default FALSE; see exclude.conspecifics parameter in comdistnt

function of picante package.
use_iCAMP default FALSE; whether use bmntd.big function of iCAMP package to calculate

betaMNTD. This method can store the phylogenetic distance matrix on the disk to lower
the memory spending and perform the calculation parallelly.

use_iCAMP_force default FALSE; whether use bmntd.big function of iCAMP package auto-
matically when the feature number is large.

iCAMP_tempdir default NULL; the temporary directory used to place the large tree file; If
NULL; use the system user tempdir.

... paremeters pass to iCAMP::pdist.big function.

Returns: res_betamntd in object.

Examples:
\donttest{
t1$cal_betamntd(abundance.weighted = TRUE)
}

Method cal_ses_betampd(): Calculate standardized effect size of betaMPD, i.e. beta net
relatedness index (betaNRI).

Usage:
trans_nullmodel$cal_ses_betampd(
runs = 1000,
null.model = c("taxa.labels", "richness", "frequency", "sample.pool", "phylogeny.pool",

trans_nullmodel 121

"independentswap", "trialswap")[1],
abundance.weighted = TRUE,
iterations = 1000

)

Arguments:

runs default 1000; simulation runs.
null.model default "taxa.labels"; The available options include "taxa.labels", "richness", "fre-

quency", "sample.pool", "phylogeny.pool", "independentswap"and "trialswap"; see null.model
parameter of ses.mntd function in picante package for the algorithm details.

abundance.weighted default TRUE; whether use weighted abundance.
iterations default 1000; iteration number for part null models to perform; see iterations pa-

rameter of picante::randomizeMatrix function.

Returns: res_ses_betampd in object.

Examples:

\dontrun{
only run 50 times for the example; default 1000
t1$cal_ses_betampd(runs = 50, abundance.weighted = TRUE)
}

Method cal_ses_betamntd(): Calculate standardized effect size of betaMNTD, i.e. beta near-
est taxon index (betaNTI).

Usage:
trans_nullmodel$cal_ses_betamntd(
runs = 1000,
null.model = c("taxa.labels", "richness", "frequency", "sample.pool", "phylogeny.pool",

"independentswap", "trialswap")[1],
abundance.weighted = TRUE,
exclude.conspecifics = FALSE,
use_iCAMP = FALSE,
use_iCAMP_force = TRUE,
iCAMP_tempdir = NULL,
nworker = 2,
iterations = 1000

)

Arguments:

runs default 1000; simulation number of null model.
null.model default "taxa.labels"; The available options include "taxa.labels", "richness", "fre-

quency", "sample.pool", "phylogeny.pool", "independentswap"and "trialswap"; see null.model
parameter of ses.mntd function in picante package for the algorithm details.

abundance.weighted default TRUE; whether use abundance-weighted method.
exclude.conspecifics default FALSE; see comdistnt in picante package.
use_iCAMP default FALSE; whether use bmntd.big function of iCAMP package to calculate

betaMNTD. This method can store the phylogenetic distance matrix on the disk to lower
the memory spending and perform the calculation parallelly.

122 trans_nullmodel

use_iCAMP_force default FALSE; whether to make use_iCAMP to be TRUE when the feature
number is large.

iCAMP_tempdir default NULL; the temporary directory used to place the large tree file; If
NULL; use the system user tempdir.

nworker default 2; the CPU thread number.
iterations default 1000; iteration number for part null models to perform; see iterations pa-

rameter of picante::randomizeMatrix function.

Returns: res_ses_betamntd in object.

Examples:
\dontrun{
only run 50 times for the example; default 1000
t1$cal_ses_betamntd(runs = 50, abundance.weighted = TRUE, exclude.conspecifics = FALSE)
}

Method cal_rcbray(): Calculate Bray–Curtis-based Raup–Crick (RCbray) <doi: 10.1890/ES10-
00117.1>.

Usage:
trans_nullmodel$cal_rcbray(
runs = 1000,
verbose = TRUE,
null.model = "independentswap"

)

Arguments:
runs default 1000; simulation runs.
verbose default TRUE; whether show the calculation process message.
null.model default "independentswap"; see more available options in randomizeMatrix func-

tion of picante package.

Returns: res_rcbray in object.

Examples:
\dontrun{
only run 50 times for the example; default 1000
t1$cal_rcbray(runs = 50)
}

Method cal_process(): Infer the ecological processes according to ses.betaMNTD (betaNTI)/ses.betaMPD
(betaNRI) and rcbray.

Usage:
trans_nullmodel$cal_process(use_betamntd = TRUE, group = NULL)

Arguments:
use_betamntd default TRUE; whether use ses.betaMNTD (betaNTI); if False, use ses.betaMPD

(betaNRI).
group default NULL; a column name in sample_table of microtable object. If provided, the

analysis will be performed for each group instead of the whole.

Returns: res_process in object.

trans_nullmodel 123

Examples:

\dontrun{
t1$cal_process(use_betamntd = TRUE)
}

Method cal_NRI(): Calculates Nearest Relative Index (NRI), equivalent to -1 times the stan-
dardized effect size of MPD.

Usage:
trans_nullmodel$cal_NRI(
null.model = "taxa.labels",
abundance.weighted = FALSE,
runs = 999,
...

)

Arguments:

null.model default "taxa.labels"; Null model to use; see null.model parameter in ses.mpd
function of picante package for available options.

abundance.weighted default FALSE; Should mean nearest relative distances for each species
be weighted by species abundance?

runs default 999; Number of randomizations.
... paremeters pass to ses.mpd function in picante package.

Returns: res_NRI in object, equivalent to -1 times ses.mpd.

Examples:

\donttest{
only run 50 times for the example; default 999
t1$cal_NRI(null.model = "taxa.labels", abundance.weighted = FALSE, runs = 50)
}

Method cal_NTI(): Calculates Nearest Taxon Index (NTI), equivalent to -1 times the standard-
ized effect size of MNTD.

Usage:
trans_nullmodel$cal_NTI(
null.model = "taxa.labels",
abundance.weighted = FALSE,
runs = 999,
...

)

Arguments:

null.model default "taxa.labels"; Null model to use; see null.model parameter in ses.mntd
function of picante package for available options.

abundance.weighted default FALSE; Should mean nearest taxon distances for each species
be weighted by species abundance?

runs default 999; Number of randomizations.
... parameters pass to ses.mntd function in picante package.

124 trans_nullmodel

Returns: res_NTI in object, equivalent to -1 times ses.mntd.

Examples:
\donttest{
only run 50 times for the example; default 999
t1$cal_NTI(null.model = "taxa.labels", abundance.weighted = TRUE, runs = 50)
}

Method cal_Cscore(): Calculates the (normalised) mean number of checkerboard combina-
tions (C-score) using C.score function in bipartite package.

Usage:
trans_nullmodel$cal_Cscore(by_group = NULL, ...)

Arguments:
by_group default NULL; one column name or number in sample_table; calculate C-score for

different groups separately.
... parameters pass to bipartite::C.score function.

Returns: vector.

Examples:
\dontrun{
t1$cal_Cscore(normalise = FALSE)
t1$cal_Cscore(by_group = "Group", normalise = FALSE)
}

Method cal_NST(): Calculate normalized stochasticity ratio (NST) based on the NST package.

Usage:
trans_nullmodel$cal_NST(method = "tNST", group, ...)

Arguments:
method default "tNST"; 'tNST' or 'pNST'. See the help document of tNST or pNST function in

NST package for more details.
group a colname of sample_table in microtable object; the function can select the data from

sample_table to generate a one-column (n x 1) matrix and provide it to the group parameter
of tNST or pNST function.

... paremeters pass to NST::tNST or NST::pNST function; see the document of corresponding
function for more details.

Returns: res_NST stored in the object.

Examples:
\dontrun{
t1$cal_NST(group = "Group", dist.method = "bray", output.rand = TRUE, SES = TRUE)
}

Method cal_NST_test(): Test the significance of NST difference between each pair of groups.

Usage:
trans_nullmodel$cal_NST_test(method = "nst.boot", ...)

Arguments:

trans_nullmodel 125

method default "nst.boot"; "nst.boot" or "nst.panova"; see NST::nst.boot function or NST::nst.panova
function for the details.

... paremeters pass to NST::nst.boot when method = "nst.boot" or NST::nst.panova when
method = "nst.panova".

Returns: list. See the Return part of NST::nst.boot function or NST::nst.panova function
in NST package.

Examples:

\dontrun{
t1$cal_NST_test()
}

Method cal_NST_convert(): Convert NST paired long format table to symmetric matrix form.

Usage:
trans_nullmodel$cal_NST_convert(column = 10)

Arguments:

column default 10; which column is selected for the conversion. See the columns of res_NST$index.pair
stored in the object.

Returns: symmetric matrix.

Examples:

\dontrun{
t1$cal_NST_convert(column = 10)
}

Method clone(): The objects of this class are cloneable with this method.

Usage:
trans_nullmodel$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `trans_nullmodel$new`
--

data(dataset)
data(env_data_16S)
t1 <- trans_nullmodel$new(dataset, filter_thres = 0.0005, add_data = env_data_16S)

--
Method `trans_nullmodel$cal_mantel_corr`
--

Not run:
t1$cal_mantel_corr(use_env = "pH")

126 trans_nullmodel

End(Not run)

--
Method `trans_nullmodel$plot_mantel_corr`
--

Not run:
t1$plot_mantel_corr()

End(Not run)

--
Method `trans_nullmodel$cal_betampd`
--

t1$cal_betampd(abundance.weighted = TRUE)

--
Method `trans_nullmodel$cal_betamntd`
--

t1$cal_betamntd(abundance.weighted = TRUE)

--
Method `trans_nullmodel$cal_ses_betampd`
--

Not run:
only run 50 times for the example; default 1000
t1$cal_ses_betampd(runs = 50, abundance.weighted = TRUE)

End(Not run)

--
Method `trans_nullmodel$cal_ses_betamntd`
--

Not run:
only run 50 times for the example; default 1000
t1$cal_ses_betamntd(runs = 50, abundance.weighted = TRUE, exclude.conspecifics = FALSE)

End(Not run)

--
Method `trans_nullmodel$cal_rcbray`
--

Not run:
only run 50 times for the example; default 1000

trans_nullmodel 127

t1$cal_rcbray(runs = 50)

End(Not run)

--
Method `trans_nullmodel$cal_process`
--

Not run:
t1$cal_process(use_betamntd = TRUE)

End(Not run)

--
Method `trans_nullmodel$cal_NRI`
--

only run 50 times for the example; default 999
t1$cal_NRI(null.model = "taxa.labels", abundance.weighted = FALSE, runs = 50)

--
Method `trans_nullmodel$cal_NTI`
--

only run 50 times for the example; default 999
t1$cal_NTI(null.model = "taxa.labels", abundance.weighted = TRUE, runs = 50)

--
Method `trans_nullmodel$cal_Cscore`
--

Not run:
t1$cal_Cscore(normalise = FALSE)
t1$cal_Cscore(by_group = "Group", normalise = FALSE)

End(Not run)

--
Method `trans_nullmodel$cal_NST`
--

Not run:
t1$cal_NST(group = "Group", dist.method = "bray", output.rand = TRUE, SES = TRUE)

End(Not run)

--
Method `trans_nullmodel$cal_NST_test`
--

128 trans_venn

Not run:
t1$cal_NST_test()

End(Not run)

--
Method `trans_nullmodel$cal_NST_convert`
--

Not run:
t1$cal_NST_convert(column = 10)

End(Not run)

trans_venn Create trans_venn object for the Venn diagram, petal plot and UpSet
plot.

Description

This class is a wrapper for a series of intersection analysis related methods, including 2- to 5-way
venn diagram, more than 5-way petal or UpSet plot and intersection transformations based on David
et al. (2012) <doi:10.1128/AEM.01459-12>.

Methods

Public methods:
• trans_venn$new()

• trans_venn$plot_venn()

• trans_venn$plot_bar()

• trans_venn$trans_comm()

• trans_venn$print()

• trans_venn$clone()

Method new():
Usage:
trans_venn$new(
dataset,
ratio = NULL,
name_joint = "&",
ratio_both_joint = "; "

)

Arguments:

dataset the object of microtable class or a matrix-like table (data.frame or matrix object). If
dataset is a matrix-like table, features must be rows.

trans_venn 129

ratio default NULL; NULL, "numratio", "seqratio" or "both"; "numratio": calculate the per-
centage of feature number; "seqratio": calculate the percentage of feature abundance; "both":
"numratio" + "seqratio"; NULL: no additional percentage (raw counts).

name_joint default "&"; the joint mark for generating multi-sample names.
ratio_both_joint default "; "; the joint mark for the "both" option in ratio parameter. If you

need to insert a line break, you can use ")\n(".

Returns: data_details and data_summary stored in the object.

Examples:
\donttest{
data(dataset)
t1 <- dataset$merge_samples("Group")
t1 <- trans_venn$new(dataset = t1, ratio = "numratio")
}

Method plot_venn(): Plot venn diagram.

Usage:
trans_venn$plot_venn(
color_circle = RColorBrewer::brewer.pal(8, "Dark2"),
fill_color = TRUE,
text_size = 4.5,
text_name_size = 6,
text_name_position = NULL,
alpha = 0.3,
linesize = 1.1,
petal_plot = FALSE,
petal_color = "#BEAED4",
petal_color_center = "#BEBADA",
petal_a = 4,
petal_r = 1,
petal_use_lim = c(-12, 12),
petal_center_size = 40,
petal_move_xy = 4,
petal_move_k = 2.3,
petal_move_k_count = 1.3,
petal_text_move = 40,
other_text_show = NULL,
other_text_position = c(2, 2),
other_text_size = 5

)

Arguments:
color_circle default RColorBrewer::brewer.pal(8, "Dark2"); color pallete.
fill_color default TRUE; whether fill the area color.
text_size default 4.5; text size in plot.
text_name_size default 6; name size in plot.
text_name_position default NULL; name position in plot.
alpha default .3; alpha for transparency.

130 trans_venn

linesize default 1.1; cycle line size.
petal_plot default FALSE; whether use petal plot.
petal_color default "#BEAED4"; color of the petals; If petal_color only has one color value,

all the petals will be assigned with this color value. If petal_color has multiple colors, and
the number of color values is smaller than the petal number, the function can append more
colors automatically with the color interpolation.

petal_color_center default "#BEBADA"; color of the center in the petal plot.
petal_a default 4; the length of the ellipse.
petal_r default 1; scaling up the size of the ellipse.
petal_use_lim default c(-12, 12); the width of the plot.
petal_center_size default 40; petal center circle size.
petal_move_xy default 4; the distance of text to circle.
petal_move_k default 2.3; the distance of title to circle.
petal_move_k_count default 1.3; the distance of data text to circle.
petal_text_move default 40; the distance between two data text.
other_text_show default NULL; other characters used to show in the plot.
other_text_position default c(1, 1); the text position for text in other_text_show.
other_text_size default 5; the text size for text in other_text_show.

Returns: ggplot.

Examples:

\donttest{
t1$plot_venn()
}

Method plot_bar(): Plot the intersections using histogram, i.e. UpSet plot. Especially useful
when samples > 5.

Usage:
trans_venn$plot_bar(
left_plot = TRUE,
sort_samples = FALSE,
up_y_title = "Intersection size",
up_y_title_size = 15,
up_y_text_size = 8,
up_bar_fill = "grey70",
up_bar_width = 0.9,
bottom_y_text_size = 12,
bottom_height = 1,
bottom_point_size = 3,
bottom_point_color = "black",
bottom_background_fill = "grey95",
bottom_background_alpha = 1,
bottom_line_width = 0.5,
bottom_line_colour = "black",
left_width = 0.3,
left_bar_fill = "grey70",

trans_venn 131

left_bar_alpha = 1,
left_bar_width = 0.9,
left_x_text_size = 10,
left_background_fill = "white",
left_background_alpha = 1

)

Arguments:

left_plot default TRUE; whether add the left bar plot to show the feature number of each
sample.

sort_samples default FALSE; TRUE is used to sort samples according to the number of features
in each sample. FALSE means the sample order is same with that in sample_table of the raw
dataset.

up_y_title default "Intersection set"; y axis title of upper plot.
up_y_title_size default 15; y axis title size of upper plot.
up_y_text_size default 4; y axis text size of upper plot.
up_bar_fill default "grey70"; bar fill color of upper plot.
up_bar_width default 0.9; bar width of upper plot.
bottom_y_text_size default 12; y axis text size, i.e. sample name size, of bottom sample

plot.
bottom_height default 1; bottom plot height relative to the upper bar plot. 1 represents the

height of bottom plot is same with the upper bar plot.
bottom_point_size default 3; point size of bottom plot.
bottom_point_color default "black"; point color of bottom plot.
bottom_background_fill default "grey95"; fill color for the striped background in the bottom

sample plot. If the parameter length is 1, use "white" to distinguish the color stripes. If the
parameter length is greater than 1, use all provided colors.

bottom_background_alpha default 1; the color transparency for the parameter bottom_background_fill.
bottom_line_width default 0.5; the line width in the bottom plot.
bottom_line_colour default "black"; the line color in the bottom plot.
left_width default 0.3; left bar plot width relative to the right bottom plot.
left_bar_fill default "grey70"; fill color for the left bar plot presenting feature number.
left_bar_alpha default 1; the color transparency for the parameter left_bar_fill.
left_bar_width default 0.9; bar width of left plot.
left_x_text_size default 10; x axis text size of the left bar plot.
left_background_fill default "white"; fill color for the striped background in the left plot.

If the parameter length is 1, use "white" to distinguish the color stripes. If the parameter
length is greater than 1, use all provided colors.

left_background_alpha default 1; the color transparency for the parameter left_background_fill.

Returns: a ggplot2 object.

Examples:

\donttest{
t2 <- t1$plot_bar()
}

132 trans_venn

Method trans_comm(): Transform intersection result to community-like microtable object for
further composition analysis.

Usage:
trans_venn$trans_comm(use_frequency = TRUE)

Arguments:

use_frequency default TRUE; whether only use OTUs occurrence frequency, i.e. presence/absence
data; if FALSE, use abundance data.

Returns: a new microtable class.

Examples:

\donttest{
t2 <- t1$trans_comm(use_frequency = TRUE)
}

Method print(): Print the trans_venn object.

Usage:
trans_venn$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
trans_venn$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `trans_venn$new`
--

data(dataset)
t1 <- dataset$merge_samples("Group")
t1 <- trans_venn$new(dataset = t1, ratio = "numratio")

--
Method `trans_venn$plot_venn`
--

t1$plot_venn()

--
Method `trans_venn$plot_bar`
--

trans_venn 133

t2 <- t1$plot_bar()

--
Method `trans_venn$trans_comm`
--

t2 <- t1$trans_comm(use_frequency = TRUE)

Index

∗ Description
microeco, 6

∗ datasets
dataset, 3
env_data_16S, 5
fungi_func_FungalTraits, 5
fungi_func_FUNGuild, 5
otu_table_16S, 19
otu_table_ITS, 20
phylo_tree_16S, 20
prok_func_FAPROTAX, 20
prok_func_NJC19_list, 21
sample_info_16S, 21
sample_info_ITS, 21
Tax4Fun2_KEGG, 22
taxonomy_table_16S, 22
taxonomy_table_ITS, 22

aov, 36

clone, 2

data.frame, 23
dataset, 3
dropallfactors, 4

env_data_16S, 5

fungi_func_FungalTraits, 5
fungi_func_FUNGuild, 5

grepl, 14

microeco, 6
microtable, 6, 6, 25, 35, 42, 52, 63, 73, 90,

98, 110, 114, 118, 128, 132

otu_table_16S, 19
otu_table_ITS, 20

phylo_tree_16S, 20

prok_func_FAPROTAX, 20
prok_func_NJC19_list, 21

sample, 116
sample_info_16S, 21
sample_info_ITS, 21

Tax4Fun2_KEGG, 22
taxonomy_table_16S, 22
taxonomy_table_ITS, 22
tidy_taxonomy, 23
trans_abund, 6, 24
trans_alpha, 6, 35, 49, 67, 75
trans_beta, 6, 41
trans_classifier, 6, 51
trans_diff, 6, 62
trans_env, 6, 40, 69, 73
trans_func, 6, 89
trans_network, 6, 97
trans_norm, 6, 10, 65, 113
trans_nullmodel, 6, 117
trans_venn, 6, 128

write.table, 12, 14

134

	clone
	dataset
	dropallfactors
	env_data_16S
	fungi_func_FungalTraits
	fungi_func_FUNGuild
	microeco
	microtable
	otu_table_16S
	otu_table_ITS
	phylo_tree_16S
	prok_func_FAPROTAX
	prok_func_NJC19_list
	sample_info_16S
	sample_info_ITS
	Tax4Fun2_KEGG
	taxonomy_table_16S
	taxonomy_table_ITS
	tidy_taxonomy
	trans_abund
	trans_alpha
	trans_beta
	trans_classifier
	trans_diff
	trans_env
	trans_func
	trans_network
	trans_norm
	trans_nullmodel
	trans_venn
	Index

