Package ‘nanoarrow’

February 1, 2026
Title Interface to the 'nanoarrow' 'C' Library
Version 0.7.0-3

Description Provides an 'R’ interface to the 'nanoarrow' 'C' library and the
'Apache Arrow' application binary interface. Functions to import and
export 'ArrowArray', 'ArrowSchema’, and 'ArrowArrayStream' 'C' structures
to and from 'R’ objects are provided alongside helpers to facilitate zero-copy
data transfer among 'R’ bindings to libraries implementing the 'Arrow' 'C'
data interface.

License Apache License (>= 2)
Encoding UTF-8
RoxygenNote 7.3.3

URL https://arrow.apache.org/nanoarrow/latest/r/,

https://github.com/apache/arrow-nanoarrow

BugReports https://github.com/apache/arrow-nanoarrow/issues

Suggests arrow (>= 9.0.0), bit64, blob, dplyr, hms, jsonlite, rlang,
testthat (>= 3.0.0), tibble, vctrs, withr

SystemRequirements libzstd (optional)
Config/testthat/edition 3
Config/build/bootstrap TRUE
NeedsCompilation yes

Author Dewey Dunnington [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9415-4582>),
Apache Arrow [aut, cph],
Apache Software Foundation [cph]

Maintainer Dewey Dunnington <dewey@dunnington.ca>
Repository CRAN
Date/Publication 2026-02-01 06:10:19 UTC

https://arrow.apache.org/nanoarrow/latest/r/
https://github.com/apache/arrow-nanoarrow
https://github.com/apache/arrow-nanoarrow/issues
https://orcid.org/0000-0002-9415-4582

2 array_stream_set_finalizer

Contents
array_stream_set_finalizer oL 2
AS_NANOATTOW_ATTAY . + + v v v v v v e e e e e e e e e e e e e e e e e 3
as_Nanoarrow_array_Streamo et e e e e e e e e e 4
as_nanoarrow_buffer L e 5
as_nanoarrow_schema e 5
AS_NANOAITOW_VCET . . . vt v v e v e e e e e e e e e e e e e e e e e 6
basic_array_streamo Lo e e 7
CONVETL_ATTAY « . o v v v e e e et e e e e e e e e e e e e e e e e 8
CONVErt_array_Stream v v v vt e it e et e e e e e e e 10
example_ipc_stream e e 11
infer_nanoarrow_ptypeo 11
infer_nanoarrow_ptype_extensiono e 12
NanoArroW_array_init 13
nanoarrow_buffer_init L L L e e 14
NanoAIrOW_eXtenSion_array « . v v v v v v v v e e e e e e e e e e e 15
Nanoarrow_exXtension_SPEC « . v v v v vt i e e e e e e e e e 16
nanoarrow_pointer_is_valid 0oL 17
NANOAITOW_VETSION+ v v v v v v e e e e e e e e e e e e e e e 19
NA_LYPE e 19
NA_VCIS . . o v v e e e e e e e e e 23
read_NanoarroW e e e e e e e e e e e 24
Index 25

array_stream_set_finalizer
Register an array stream finalizer

Description

In some cases, R functions that return a nanoarrow_array_stream may require that the scope of
some other object outlive that of the array stream. If there is a need for that object to be released de-
terministically (e.g., to close open files), you can register a function to run after the stream’s release
callback is invoked from the R thread. Note that this finalizer will not be run if the stream’s release
callback is invoked from a non-R thread. In this case, the finalizer and its chain of environments
will be garbage-collected when nanoarrow: : :preserved_empty() is run.

Usage

array_stream_set_finalizer(array_stream, finalizer)

Arguments

array_stream A nanoarrow_array_stream

finalizer A function that will be called with zero arguments.

as_nanoarrow_array 3

Value

A newly allocated array_stream whose release callback will call the supplied finalizer.

Examples

stream <- array_stream_set_finalizer(
basic_array_stream(list(1:5)),
function() message("All done!")

)

stream$release()

as_nanoarrow_array Convert an object to a nanoarrow array

Description

In nanoarrow an ’array’ refers to the struct ArrowArray definition in the Arrow C data interface.
At the R level, we attach a schema such that functionally the nanoarrow_array class can be used
in a similar way as an arrow: :Array. Note that in nanoarrow an arrow: :RecordBatch and a
non-nullable arrow: : StructArray are represented identically.

Usage
as_nanoarrow_array(x, ..., schema = NULL)
Arguments
X An object to convert to a array
Passed to S3 methods
schema An optional schema used to enforce conversion to a particular type. Defaults to
infer_nanoarrow_schema().
Value

An object of class 'nanoarrow_array’

Examples

(array <- as_nanoarrow_array(1:5))
as.vector(array)

(array <- as_nanoarrow_array(data.frame(x = 1:5)))
as.data.frame(array)

4 as_nanoarrow_array_stream

as_nanoarrow_array_stream
Convert an object to a nanoarrow array_stream

Description

In nanoarrow, an ’array stream’ corresponds to the struct ArrowArrayStream as defined in the
Arrow C Stream interface. This object is used to represent a stream of arrays with a common
schema. This is similar to an arrow::RecordBatchReader except it can be used to represent a stream
of any type (not just record batches). Note that a stream of record batches and a stream of non-
nullable struct arrays are represented identically. Also note that array streams are mutable objects
and are passed by reference and not by value.

Usage
as_nanoarrow_array_stream(x, ..., schema = NULL)
Arguments
X An object to convert to a array_stream
Passed to S3 methods
schema An optional schema used to enforce conversion to a particular type. Defaults to
infer_nanoarrow_schema().
Value

An object of class *nanoarrow_array_stream’

Examples

(stream <- as_nanoarrow_array_stream(data.frame(x = 1:5)))
stream$get_schema()
stream$get_next()

The last batch is returned as NULL
stream$get_next()

Release the stream
stream$release()

as_nanoarrow_buffer 5

as_nanoarrow_buffer Convert an object to a nanoarrow buffer

Description

Convert an object to a nanoarrow buffer

Usage
as_nanoarrow_buffer(x, ...)
Arguments
X An object to convert to a buffer
Passed to S3 methods
Value

An object of class 'nanoarrow_buffer’

Examples

array <- as_nanoarrow_array(c(NA, 1:4))
array$buffers
as.raw(array$buffers[[1]1])
as.raw(arrays$buffers[[2]])
convert_buffer(arrays$buffers[[1]])
convert_buffer(array$buffers[[2]1])

as_nanoarrow_schema Convert an object to a nanoarrow schema

Description

In nanoarrow a ’schema’ refers to a struct ArrowSchema as defined in the Arrow C Data inter-
face. This data structure can be used to represent an arrow: : schema(), an arrow: : field(), or an
arrow: :DataType. Note that in nanoarrow, an arrow: : schema() and a non-nullable arrow: : struct()
are represented identically.

6 as_nanoarrow_vctr
Usage

as_nanoarrow_schema(x, ...)

infer_nanoarrow_schema(x, ...)

nanoarrow_schema_parse(x, recursive = FALSE)

nanoarrow_schema_modify(x, new_values, validate = TRUE)

Arguments
X An object to convert to a schema
Passed to S3 methods
recursive Use TRUE to include a children member when parsing schemas.
new_values New schema component to assign
validate Use FALSE to skip schema validation
Value

An object of class 'nanoarrow_schema’

Examples

infer_nanoarrow_schema(integer())
infer_nanoarrow_schema(data.frame(x = integer()))

as_nanoarrow_vctr Experimental Arrow encoded arrays as R vectors

Description

This experimental vctr class allows zero or more Arrow arrays to present as an R vector without
converting them. This is useful for arrays with types that do not have a non-lossy R equivalent,
and helps provide an intermediary object type where the default conversion is prohibitively expen-
sive (e.g., a nested list of data frames). These objects will not survive many vctr transformations;
however, they can be sliced without copying the underlying arrays.

Usage

as_nanoarrow_vctr(x, ..., schema = NULL, subclass = character())

nanoarrow_vctr(schema = NULL, subclass = character())

basic_array_stream 7

Arguments
X An object that works with as_nanoarrow_array_stream().
Passed to as_nanoarrow_array_stream()
schema An optional schema
subclass An optional subclass of nanoarrow_vctr to prepend to the final class name.
Details

The nanoarrow_vctr is currently implemented similarly to factor (): its storage type is an integer ()
that is a sequence along the total length of the vctr and there are attributes that are required to re-
solve these indices to an array + offset. Sequences typically have a very compact representation in
recent versions of R such that this has a cheap storage footprint even for large arrays. The attributes
are currently:

* schema: The nanoarrow_schema shared by each chunk.

¢ chunks: A 1list() of nanoarrow_array.

» offsets: An integer() vector beginning with @ and followed by the cumulative length of
each chunk. This allows the chunk index + offset to be resolved from a logical index with
log(n) complexity.

This implementation is preliminary and may change; however, the result of as_nanoarrow_array_stream(some_vctr[begi
should remain stable.

Value

A vctr of class ‘nanoarrow_vctr’

Examples

array <- as_nanoarrow_array(1:5)
as_nanoarrow_vctr(array)

basic_array_stream Create ArrayStreams from batches

Description

Create ArrayStreams from batches

Usage

basic_array_stream(batches, schema = NULL, validate = TRUE)

8 convert_array

Arguments
batches A list () of nanoarrow_array objects or objects that can be coerced via as_nanoarrow_array().
schema A nanoarrow_schema or NULL to guess based on the first schema.
validate Use FALSE to skip the validation step (i.e., if you know that the arrays are valid).

Value

An nanoarrow_array_stream

Examples

(stream <- basic_array_stream(list(data.frame(a = 1, b = 2))))
as.data.frame(stream$get_next())
stream$get_next()

convert_array Convert an Array into an R vector

Description

Converts array to the type specified by to. This is a low-level interface; most users should use
as.data.frame() or as.vector () unless finer-grained control is needed over the conversion. This
function is an S3 generic dispatching on to: developers may implement their own S3 methods for
custom vector types.

Usage
convert_array(array, to = NULL, ...)
Arguments
array A nanoarrow_array.
to A target prototype object describing the type to which array should be con-

verted, or NULL to use the default conversion as returned by infer_nanoarrow_ptype().
Alternatively, a function can be passed to perform an alternative calculation of
the default ptype as a function of array and the default inference of the proto-

type.
Passed to S3 methods

convert_array 9

Details
Note that unregistered extension types will by default issue a warning. Use options(nanoarrow.warn_unregistered_exte
= FALSE) to disable this behaviour.
Conversions are implemented for the following R vector types:
* logical(): Any numeric type can be converted to logical() in addition to the bool type.
For numeric types, any non-zero value is considered TRUE.

* integer(): Any numeric type can be converted to integer(); however, a warning will be
signaled if the any value is outside the range of the 32-bit integer.

* double(): Any numeric type can be converted to double (). This conversion currently does
not warn for values that may not roundtrip through a floating-point double (e.g., very large
uint64 and int64 values).

* character(): String and large string types can be converted to character (). The conversion
does not check for valid UTF-8: if you need finer-grained control over encodings, use to =
blob: :blob().

» factor(): Dictionary-encoded arrays of strings can be converted to factor (); however, this
must be specified explicitly (i.e., convert_array(array, factor())) because arrays arriv-
ing in chunks can have dictionaries that contain different levels. Use convert_array(array,
factor(levels =c(...))) to materialize an array into a vector with known levels.

* Date: Only the date32 type can be converted to an R Date vector.
* hms: :hms(): Time32 and time64 types can be converted to hms: :hms ().

e difftime(): Time32, time64, and duration types can be converted to R difftime() vectors.
The value is converted to match the units() attribute of to.

* blob: :blob(): String, large string, binary, and large binary types can be converted to blob: :blob().
e vctrs::list_of (): List, large list, and fixed-size list types can be converted to vetrs: :1ist_of ().
* matrix(): Fixed-size list types can be converted to matrix(ptype, ncol = fixed_size).

* data.frame(): Struct types can be converted to data. frame().

e vctrs::unspecified(): Any type can be converted to vctrs: :unspecified(); however, a

warning will be raised if any non-null values are encountered.

In addition to the above conversions, a null array may be converted to any target prototype except
data.frame(). Extension arrays are currently converted as their storage type.

Value

An R vector of type to.

Examples

array <- as_nanoarrow_array(data.frame(x = 1:5))
str(convert_array(array))
str(convert_array(array, to = data.frame(x = double())))

10 convert_array_stream

convert_array_stream Convert an Array Stream into an R vector

Description

Converts array_stream to the type specified by to. This is a low-level interface; most users should
use as.data.frame() or as.vector() unless finer-grained control is needed over the conversion.
See convert_array() for details of the conversion process; see infer_nanoarrow_ptype() for
default inferences of to.

Usage

convert_array_stream(array_stream, to = NULL, size = NULL, n = Inf)

collect_array_stream(array_stream, n = Inf, schema = NULL, validate = TRUE)

Arguments

array_stream A nanoarrow_array_stream.

to A target prototype object describing the type to which array should be con-
verted, or NULL to use the default conversion as returned by infer_nanoarrow_ptype().
Alternatively, a function can be passed to perform an alternative calculation of
the default ptype as a function of array and the default inference of the proto-

type.
size The exact size of the output, if known. If specified, slightly more efficient im-
plementation may be used to collect the output.
n The maximum number of batches to pull from the array stream.
schema A nanoarrow_schema or NULL to guess based on the first schema.
validate Use FALSE to skip the validation step (i.e., if you know that the arrays are valid).
Value

* convert_array_stream(): An R vector of type to.

e collect_array_stream(): A list() of nanoarrow_array

Examples

stream <- as_nanoarrow_array_stream(data.frame(x = 1:5))
str(convert_array_stream(stream))
str(convert_array_stream(stream, to = data.frame(x

double())))

stream <- as_nanoarrow_array_stream(data.frame(x = 1:5))
collect_array_stream(stream)

example_ipc_stream 11

example_ipc_stream Example Arrow IPC Data

Description

An example stream that can be used for testing or examples.

Usage

example_ipc_stream(compression = c("none”, "zstd"))
Arguments

compression One of "none" or "zstd"
Value

A raw vector that can be passed to read_nanoarrow()

Examples

as.data.frame(read_nanoarrow(example_ipc_stream()))

infer_nanoarrow_ptype Infer an R vector prototype

Description

Resolves the default to value to use in convert_array() and convert_array_stream(). The
default conversions are:

Usage

infer_nanoarrow_ptype(x)

Arguments

X A nanoarrow_schema, nanoarrow_array, or nanoarrow_array_stream.

12 infer_nanoarrow_ptype_extension

Details

e null to vctrs: :unspecified()

¢ boolean to logical()

e int8, uint8, int16, uint16, and intl13 to integer ()

e uint32, int64, uint64, float, and double to double ()
* string and large string to character()

e struct to data.frame()

* binary and large binary to blob: :blob()

* list, large_list, and fixed_size_list to vctrs: :list_of ()
¢ time32 and time64 to hms: :hms ()

e duration to difftime()

e date32 to as.Date()

* timestamp to as.POSIXct()

Additional conversions are possible by specifying an explicit value for to. For details of each
conversion, see convert_array().

Value

An R vector of zero size describing the target into which the array should be materialized.

Examples

infer_nanoarrow_ptype(as_nanoarrow_array(1:10))

infer_nanoarrow_ptype_extension
Implement Arrow extension types

Description

Implement Arrow extension types

Usage

infer_nanoarrow_ptype_extension(
extension_spec,
X,
-
warn_unregistered = TRUE

)

convert_array_extension(

nanoarrow_array._init 13

extension_spec,
array,
to,

L

warn_unregistered = TRUE

as_nanoarrow_array_extension(extension_spec, x, ..., schema = NULL)

Arguments

extension_spec An extension specification inheriting from ’nanoarrow_extension_spec’.

X, array, to, schema, ...
Passed from infer_nanoarrow_ptype(), convert_array(), as_nanoarrow_array(),
and/or as_nanoarrow_array_stream().

warn_unregistered
Use FALSE to infer/convert based on the storage type without a warning.

Value

* infer_nanoarrow_ptype_extension(): The R vector prototype to be used as the default
conversion target.

* convert_array_extension(): An R vector of type to.

* as_nanoarrow_array_extension(): A nanoarrow_array of type schema.

nanoarrow_array_init Modify nanoarrow arrays

Description

Create a new array or from an existing array, modify one or more parameters. When importing an
array from elsewhere, nanoarrow_array_set_schema() is useful to attach the data type informa-
tion to the array (without this information there is little that nanoarrow can do with the array since
its content cannot be otherwise interpreted). nanoarrow_array_modify() can create a shallow
copy and modify various parameters to create a new array, including setting children and buffers
recursively. These functions power the $<- operator, which can modify one parameter at a time.

Usage

nanoarrow_array_init(schema)

nanoarrow_array_set_schema(array, schema, validate = TRUE)

nanoarrow_array_modify(array, new_values, validate = TRUE)

14 nanoarrow_buffer init

Arguments
schema A nanoarrow_schema to attach to this array.
array A nanoarrow_array.
validate Use FALSE to skip validation. Skipping validation may result in creating an array
that will crash R.
new_values A named list () of values to replace.
Value

* nanoarrow_array_init() returns a possibly invalid but initialized array with a given schema.

* nanoarrow_array_set_schema() returns array, invisibly. Note that array is modified in
place by reference.

* nanoarrow_array_modify() returns a shallow copy of array with the modified parameters
such that the original array remains valid.

Examples

nanoarrow_array_init(na_string())

Modify an array using $ and <-
array <- as_nanoarrow_array(1:5)
array$length <- 4
as.vector(array)

Modify potentially more than one component at a time
array <- as_nanoarrow_array(1:5)
as.vector(nanoarrow_array_modify(array, list(length = 4)))

Attach a schema to an array

array <- as_nanoarrow_array(-1L)
nanoarrow_array_set_schema(array, na_uint32())
as.vector(array)

nanoarrow_buffer_init Create and modify nanoarrow buffers

Description

Create and modify nanoarrow buffers

Usage

nanoarrow_buffer_init()
nanoarrow_buffer_append(buffer, new_buffer)

convert_buffer(buffer, to = NULL)

nanoarrow_extension_array 15

Arguments

buffer, new_buffer
nanoarrow_buffers.

to A target prototype object describing the type to which array should be con-
verted, or NULL to use the default conversion as returned by infer_nanoarrow_ptype().
Alternatively, a function can be passed to perform an alternative calculation of
the default ptype as a function of array and the default inference of the proto-

type.

Value

* nanoarrow_buffer_init(): An object of class 'nanoarrow_buffer’

* nanoarrow_buffer_append(): Returns buffer, invisibly. Note that buffer is modified in
place by reference.

Examples

buffer <- nanoarrow_buffer_init()
nanoarrow_buffer_append(buffer, 1:5)

array <- nanoarrow_array_modify(
nanoarrow_array_init(na_int32()),
list(length = 5, buffers = list(NULL, buffer))
)

as.vector(array)

nanoarrow_extension_array
Create Arrow extension arrays

Description

Create Arrow extension arrays

Usage

nanoarrow_extension_array(
storage_array,
extension_name,
extension_metadata = NULL

16 nanoarrow_extension_spec

Arguments

storage_array A nanoarrow_array.

extension_name For na_extension(), the extension name. This is typically namespaced sepa-
rated by dots (e.g., nanoarrow.r.vctrs).

extension_metadata
A string or raw vector defining extension metadata. Most Arrow extension types
define extension metadata as a JSON object.

Value

A nanoarrow_array with attached extension schema.

Examples

nanoarrow_extension_array(1:10, "some_ext", '{"key": "value"}')

nanoarrow_extension_spec
Register Arrow extension types

Description

Register Arrow extension types

Usage

nanoarrow_extension_spec(data = list(), subclass = character())
register_nanoarrow_extension(extension_name, extension_spec)
unregister_nanoarrow_extension(extension_name)

resolve_nanoarrow_extension(extension_name)

Arguments
data Optional data to include in the extension type specification
subclass A subclass for the extension type specification. Extension methods will dispatch

on this object.
extension_name An Arrow extension type name (€.g., Nanoarrow.r.vetrs)

extension_spec An extension specification inheriting from nanoarrow_extension_spec’.

nanoarrow_pointer._is_valid 17

Value
* nanoarrow_extension_spec() returns an object of class ‘nanoarrow_extension_spec’.
* register_nanoarrow_extension() returns extension_spec, invisibly.
e unregister_nanoarrow_extension() returns extension_name, invisibly.

* resolve_nanoarrow_extension() returns an object of class "nanoarrow_extension_spec’ or
NULL if the extension type was not registered.

Examples

nanoarrow_extension_spec("mynamespace.mytype”, subclass = "mypackage_mytype_spec”)

nanoarrow_pointer_is_valid
Danger zone: low-level pointer operations

Description

The nanoarrow_schema, nanoarrow_array, and nanoarrow_array_stream classes are represented in
R as external pointers (EXTPTRSXP). When these objects go out of scope (i.e., when they are garbage
collected or shortly thereafter), the underlying object’s release() callback is called if the underly-
ing pointer is non-null and if the release() callback is non-null.

Usage
nanoarrow_pointer_is_valid(ptr)
nanoarrow_pointer_addr_dbl(ptr)
nanoarrow_pointer_addr_chr(ptr)
nanoarrow_pointer_addr_pretty(ptr)
nanoarrow_pointer_release(ptr)
nanoarrow_pointer_move(ptr_src, ptr_dst)
nanoarrow_pointer_export(ptr_src, ptr_dst)
nanoarrow_allocate_schema()
nanoarrow_allocate_array()
nanoarrow_allocate_array_stream()

nanoarrow_pointer_set_protected(ptr_src, protected)

18 nanoarrow_pointer._is_valid

Arguments

ptr, ptr_src, ptr_dst
An external pointer to a struct ArrowSchema, struct ArrowArray, or struct ArrowArrayStream.

protected An object whose scope must outlive that of ptr. This is useful for array streams
since at least two specifications involving the array stream specify that the stream
is only valid for the lifecycle of another object (e.g., an AdbcStatement or OGR-
Dataset).

Details

When interacting with other C Data Interface implementations, it is important to keep in mind that
the R object wrapping these pointers is always passed by reference (because it is an external pointer)
and may be referred to by another R object (e.g., an element in a 1ist () or as a variable assigned
in a user’s environment). When importing a schema, array, or array stream into nanoarrow this is
not a problem: the R object takes ownership of the lifecycle and memory is released when the R
object is garbage collected. In this case, one can use nanoarrow_pointer_move() where ptr_dst
was created using nanoarrow_allocate_x().

The case of exporting is more complicated and as such has a dedicated function, nanoarrow_pointer_export(),
that implements different logic schemas, arrays, and array streams:

* Schema objects are (deep) copied such that a fresh copy of the schema is exported and made
the responsibility of some other C data interface implementation.

» Array objects are exported as a shell around the original array that preserves a reference to the
R object. This ensures that the buffers and children pointed to by the array are not copied and
that any references to the original array are not invalidated.

* Array stream objects are moved: the responsibility for the object is transferred to the other
C data interface implementation and any references to the original R object are invalidated.
Because these objects are mutable, this is typically what you want (i.e., you should not be
pulling arrays from a stream accidentally from two places).

If you know the lifecycle of your object (i.e., you created the R object yourself and never passed
references to it elsewhere), you can slightly more efficiently call nanoarrow_pointer_move() for
all three pointer types.

Value

* nanoarrow_pointer_is_valid() returns TRUE if the pointer is non-null and has a non-null
release callback.

* nanoarrow_pointer_addr_dbl () and nanoarrow_pointer_addr_chr () return pointer rep-
resentations that may be helpful to facilitate moving or exporting nanoarrow objects to other
libraries.

* nanoarrow_pointer_addr_pretty() gives a pointer representation suitable for printing or
error messages.

* nanoarrow_pointer_release() returns ptr, invisibly.

* nanoarrow_pointer_move() and nanoarrow_pointer_export() reeturn ptr_dst, invisi-
bly.

nanoarrow_ version 19

e nanoarrow_allocate_array(), nanoarrow_allocate_schema(), and nanoarrow_allocate_array_stream()
return an array, a schema, and an array stream, respectively.

nanoarrow_version Underlying ’nanoarrow’ C library build

Description

Underlying 'nanoarrow’ C library build

Usage

nanoarrow_version(runtime = TRUE)

nanoarrow_with_zstd()

Arguments

runtime Compare TRUE and FALSE values to detect a possible ABI mismatch.

Value

A string identifying the version of nanoarrow this package was compiled against.

Examples

nanoarrow_version()
nanoarrow_with_zstd()

na_type Create type objects

Description

In nanoarrow, types, fields, and schemas are all represented by a nanoarrow_schema. These func-
tions are convenience constructors to create these objects in a readable way. Use na_type() to
construct types based on the constructor name, which is also the name that prints/is returned by
nanoarrow_schema_parse().

20

Usage

na_type(

)

type_name,

byte_width = NULL,
unit = NULL,

timezone = NULL,
precision = NULL,
scale = NULL,
column_types = NULL,
item_type = NULL,
key_type = NULL,
value_type = NULL,
index_type = NULL,
ordered = NULL,
list_size = NULL,
keys_sorted = NULL,
storage_type = NULL,
extension_name = NULL,
extension_metadata = NULL,
nullable = NULL

na_na(nullable = TRUE)

na_bool (nullable = TRUE)

na_int8(nullable = TRUE)

na_uint8(nullable

TRUE)

na_int16(nullable = TRUE)

na_uint16(nullable = TRUE)

na_int32(nullable = TRUE)

na_uint32(nullable = TRUE)

na_int64(nullable = TRUE)

na_uint64(nullable = TRUE)

na_half_float(nullable = TRUE)

na_float(nullable = TRUE)

na_double(nullable = TRUE)

na_type

na_type

na_string(nullable = TRUE)
na_large_string(nullable = TRUE)
na_string_view(nullable = TRUE)
na_binary(nullable = TRUE)
na_large_binary(nullable = TRUE)
na_fixed_size_binary(byte_width, nullable = TRUE)
na_binary_view(nullable = TRUE)

na_date32(nullable

TRUE)

na_date64(nullable

TRUE)

na_time32(unit = c("ms"”, "s"), nullable = TRUE)
na_time64(unit = c("us”, "ns"), nullable = TRUE)
na_duration(unit = c("ms"”, "s", "us", "ns"), nullable = TRUE)
na_interval_months(nullable = TRUE)

na_interval_day_time(nullable = TRUE)

na_interval_month_day_nano(nullable = TRUE)

na_timestamp(unit = c("us”, "ns", "s", "ms"), timezone = "", nullable = TRUE)
na_decimal32(precision, scale, nullable = TRUE)
na_decimal64(precision, scale, nullable = TRUE)
na_decimal128(precision, scale, nullable = TRUE)

na_decimal256(precision, scale, nullable = TRUE)
na_struct(column_types = list(), nullable = FALSE)

na_sparse_union(column_types = list())

na_dense_union(column_types = list())

TRUE)

na_list(item_type, nullable

22

na_large_list(item_type, nullable =
na_list_view(item_type, nullable =
na_large_list_view(item_type, nullable =
na_fixed_size_list(item_type, list_size, nullable =
na_map(key_type, item_type, keys_sorted = FALSE, nullable =

na_dictionary(value_type, index_type =

na_type
TRUE)
TRUE)
TRUE)
TRUE)
TRUE)

na_int32(), ordered = FALSE)

na_extension(storage_type, extension_name, extension_metadata = "")
Arguments
type_name The name of the type (e.g., "int32"). This form of the constructor is useful for

byte_width

unit

timezone

precision
scale
column_types

item_type

key_type

value_type

index_type
ordered
list_size
keys_sorted
storage_type

extension_name

writing tests that loop over many types.
For na_fixed_size_binary(), the number of bytes occupied by each item.

One of ’s’ (seconds), 'ms’ (milliseconds), 'us’ (microseconds), or 'ns’ (nanosec-
onds).

"nn

A string representing a timezone name. The empty string "" represents a naive

point in time (i.e., one that has no associated timezone).

The total number of digits representable by the decimal type
The number of digits after the decimal point in a decimal type
A 1list() of nanoarrow_schemas.

For na_list(), na_large_list(), na_fixed_size_list(), and na_map(),
the nanoarrow_schema representing the item type.

The nanoarrow_schema representing the na_map () key type.

The nanoarrow_schema representing the na_dictionary() or na_map() value
type.

The nanoarrow_schema representing the na_dictionary() index type.

Use TRUE to assert that the order of values in the dictionary are meaningful.
The number of elements in each item in a na_fixed_size_list().

Use TRUE to assert that keys are sorted.

For na_extension(), the underlying value type.

For na_extension(), the extension name. This is typically namespaced sepa-
rated by dots (e.g., nanoarrow.r.vctrs).

extension_metadata

nullable

A string or raw vector defining extension metadata. Most Arrow extension types
define extension metadata as a JSON object.

Use FALSE to assert that this field cannot contain null values.

na_vctrs 23

Value

A nanoarrow_schema

Examples

na_int32()
na_struct(list(coll = na_int32()))

na_vctrs Vctrs extension type

Description

The Arrow format provides a rich type system that can handle most R vector types; however,
many R vector types do not roundtrip perfectly through Arrow memory. The vctrs extension
type uses vctrs::vec_data(), vctrs::vec_restore(), and vctrs::vec_ptype() in calls to
as_nanoarrow_array() and convert_array() to ensure roundtrip fidelity.

Usage

na_vctrs(ptype, storage_type = NULL)

Arguments

ptype A vctrs prototype as returned by vctrs: :vec_ptype(). The prototype can be
of arbitrary size, but a zero-size vector is sufficient here.

storage_type For na_extension(), the underlying value type.

Value

A nanoarrow_schema.

Examples

vctr <- as.POSIX1t("2000-01-02 03:45", tz = "UTC")

array <- as_nanoarrow_array(vctr, schema = na_vctrs(vctr))
infer_nanoarrow_ptype(array)

convert_array(array)

24 read_nanoarrow

read_nanoarrow Read/write serialized streams of Arrow data

Description

Reads/writes connections, file paths, URLs, or raw vectors from/to serialized Arrow data. Arrow
documentation typically refers to this format as "Arrow IPC", since its origin was as a means to
transmit tables between processes (e.g., multiple R sessions). This format can also be written to and
read from files or URLs and is essentially a high performance equivalent of a CSV file that does a
better job maintaining types.

Usage
read_nanoarrow(x, ..., lazy = FALSE)
write_nanoarrow(data, x, ...)
Arguments
X A raw() vector, connection, or file path from which to read binary data. Com-
mon extensions indicating compression (.gz, .bz2, .zip) are automatically un-
compressed.
Currently unused.
lazy By default, read_nanoarrow() will read and discard a copy of the reader’s
schema to ensure that invalid streams are discovered as soon as possible. Use
lazy = TRUE to defer this check until the reader is actually consumed.
data An object to write as an Arrow IPC stream, converted using as_nanoarrow_array_stream().
Notably, this includes a data. frame().
Details

The nanoarrow package implements an IPC writer; however, you can also use arrow: :write_ipc_stream()
to write data from R, or use the equivalent writer from another Arrow implementation in Python,
C++, Rust, JavaScript, Julia, C#, and beyond.

The media type of an Arrow stream is application/vnd.apache.arrow.stream and the recom-
mended file extension is .arrows.

Value

A nanoarrow_array_stream

Examples

as.data.frame(read_nanoarrow(example_ipc_stream()))

Index

array, 19

array stream, 19

array_stream_set_finalizer, 2

arrays, 4

arrow: :field(), 5

arrow: :RecordBatchReader, 4

arrow: :schema(), 5

arrow: :struct(), 5

arrow: :write_ipc_stream(), 24

as.Date(), 12

as.POSIXct(), 12

as_nanoarrow_array, 3

as_nanoarrow_array(), 8, 13, 23

as_nanoarrow_array_extension
(infer_nanoarrow_ptype_extension),
12

as_nanoarrow_array_stream, 4

as_nanoarrow_array_stream(), 7, 13, 24

as_nanoarrow_buffer, 5

as_nanoarrow_schema, 5

as_nanoarrow_vctr, 6

basic_array_stream, 7
blob::blob(), 9, 12

character(), 9, 12

collect_array_stream
(convert_array_stream), 10

convert_array, 8

convert_array(), 10-13, 23

convert_array_extension
(infer_nanoarrow_ptype_extension),
12

convert_array_stream, 10

convert_array_stream(), /1

convert_buffer (nanoarrow_buffer_init),
14

data.frame(), 9, 12, 24
Date, 9

25

difftime(), 9, 12
double(), 9, 12

example_ipc_stream, 11
factor(), 9
hms::hms(), 9, 12

infer_nanoarrow_ptype, 11
infer_nanoarrow_ptype(), 8, 10, 13, 15
infer_nanoarrow_ptype_extension, 12
infer_nanoarrow_schema

(as_nanoarrow_schema), 5
infer_nanoarrow_schema(), 3, 4
integer(), 9, 12

list(), 8
logical(), 9, 12

matrix(), 9

na_binary (na_type), 19
na_binary_view (na_type), 19
na_bool (na_type), 19

na_date32 (na_type), 19
na_date64 (na_type), 19
na_decimal128 (na_type), 19
na_decimal256 (na_type), 19
na_decimal32 (na_type), 19
na_decimal64 (na_type), 19
na_dense_union (na_type), 19
na_dictionary (na_type), 19
na_dictionary(), 22

na_double (na_type), 19
na_duration (na_type), 19
na_extension (na_type), 19
na_extension(), 16, 22, 23
na_fixed_size_binary (na_type), 19
na_fixed_size_binary(), 22
na_fixed_size_list (na_type), 19

26

na_fixed_size_list(), 22

na_float (na_type), 19

na_half_float (na_type), 19

na_int16 (na_type), 19

na_int32 (na_type), 19

na_int64 (na_type), 19

na_int8 (na_type), 19

na_interval_day_time (na_type), 19

na_interval_month_day_nano (na_type), 19

na_interval_months (na_type), 19

na_large_binary (na_type), 19

na_large_list (na_type), 19

na_large_list(), 22

na_large_list_view (na_type), 19

na_large_string (na_type), 19

na_list (na_type), 19

na_list(), 22

na_list_view (na_type), 19

na_map (na_type), 19

na_map(), 22

na_na (na_type), 19

na_sparse_union (na_type), 19

na_string (na_type), 19

na_string_view (na_type), 19

na_struct (na_type), 19

na_time32 (na_type), 19

na_time64 (na_type), 19

na_timestamp (na_type), 19

na_type, 19

na_type(), 19

na_uint16 (na_type), 19

na_uint32 (na_type), 19

na_uint64 (na_type), 19

na_uint8 (na_type), 19

na_vctrs, 23

nanoarrow_allocate_array
(nanoarrow_pointer_is_valid),
17

nanoarrow_allocate_array_stream
(nanoarrow_pointer_is_valid),
17

nanoarrow_allocate_schema
(nanoarrow_pointer_is_valid),
17

nanoarrow_array, 8, 10, 11, 13, 14, 16, 17

nanoarrow_array_init, 13

nanoarrow_array_modify
(nanoarrow_array_init), 13

INDEX

nanoarrow_array_set_schema
(nanoarrow_array_init), 13
nanoarrow_array_stream, 2,8, 10, 11, 17,24
nanoarrow_buffer, 15
nanoarrow_buffer_append
(nanoarrow_buffer_init), 14
nanoarrow_buffer_init, 14
nanoarrow_extension_array, 15
nanoarrow_extension_spec, 16
nanoarrow_pointer_addr_chr
(nanoarrow_pointer_is_valid),
17
nanoarrow_pointer_addr_dbl
(nanoarrow_pointer_is_valid),
17
nanoarrow_pointer_addr_pretty
(nanoarrow_pointer_is_valid),
17
nanoarrow_pointer_export
(nanoarrow_pointer_is_valid),
17
nanoarrow_pointer_export(), I8
nanoarrow_pointer_is_valid, 17
nanoarrow_pointer_move
(nanoarrow_pointer_is_valid),
17
nanoarrow_pointer_move(), 18
nanoarrow_pointer_release
(nanoarrow_pointer_is_valid),
17
nanoarrow_pointer_set_protected
(nanoarrow_pointer_is_valid),
17
nanoarrow_schema, 7, 8, 10, 11, 14, 17, 19,
22,23
nanoarrow_schema_modify
(as_nanoarrow_schema), 5
nanoarrow_schema_parse
(as_nanoarrow_schema), 5
nanoarrow_schema_parse(), 19
nanoarrow_vctr (as_nanoarrow_vctr), 6
nanoarrow_version, 19
nanoarrow_with_zstd
(nanoarrow_version), 19

read_nanoarrow, 24

read_nanoarrow(), 11

register_nanoarrow_extension
(nanoarrow_extension_spec), 16

INDEX

resolve_nanoarrow_extension
(nanoarrow_extension_spec), 16

schema, 3, 4, 19

units(), 9
unregister_nanoarrow_extension
(nanoarrow_extension_spec), 16

vetrs::list_of (), 9, 12
vctrs: :unspecified(), 9, 12
vctrs: :vec_data(), 23
vctrs: :vec_ptype(), 23
vctrs: :vec_restore(), 23

write_nanoarrow (read_nanoarrow), 24

27

	array_stream_set_finalizer
	as_nanoarrow_array
	as_nanoarrow_array_stream
	as_nanoarrow_buffer
	as_nanoarrow_schema
	as_nanoarrow_vctr
	basic_array_stream
	convert_array
	convert_array_stream
	example_ipc_stream
	infer_nanoarrow_ptype
	infer_nanoarrow_ptype_extension
	nanoarrow_array_init
	nanoarrow_buffer_init
	nanoarrow_extension_array
	nanoarrow_extension_spec
	nanoarrow_pointer_is_valid
	nanoarrow_version
	na_type
	na_vctrs
	read_nanoarrow
	Index

