
Package ‘robustlmm’
January 28, 2026

Type Package

Title Robust Linear Mixed Effects Models

Version 3.4-2

Date 2026-01-28

Author Manuel Koller [aut, cre]

Maintainer Manuel Koller <kollerma@proton.me>

Description Implements the Robust Scoring Equations estimator to fit linear
mixed effects models robustly.
Robustness is achieved by modification of the scoring equations
combined with the Design Adaptive Scale approach.

License GPL-2

URL https://github.com/kollerma/robustlmm

LazyLoad yes

Depends lme4 (>= 1.1-9), Matrix (>= 1.6-2), R (>= 3.5.0)

Suggests ggplot2, reshape2, microbenchmark, emmeans (>= 1.4),
estimability, lqmm, rlme, MASS, lemon, RColorBrewer, skewt, fs,
dplyr, ggh4x, testthat, robustvarComp, confintROB

Imports lattice, nlme, methods, robustbase (>= 0.93), xtable, Rcpp (>=
0.12.2), fastGHQuad, parallel, rlang, utils, reformulas

Collate 'ghq.R' 'psiFunc2.R' 'AllClass.R' 'rlmer.R' 'accessors.R'
'fromLme4.R' 'DAS-scale.R' 'fit.effects.R' 'helpers.R'
'AllGeneric.R' 'lmer.R' 'mutators.R' 'plot.R'
'generateAnovaDatasets.R' 'generateLongitudinalDatasets.R'
'plotLongitudinalBySubject.R' 'generateMixedEffectDatasets.R'
'generateSensitivityCurveDatasets.R' 'manageDatasets.R'
'fitDatasets.R' 'processFit.R' 'processFile.R'
'simulationStudies.R' 'asymptoticEfficiency.R' 'emmeans.R'

LinkingTo Rcpp, robustbase, Matrix

Encoding UTF-8

RcppModules psi_function_module

1

https://github.com/kollerma/robustlmm

2 Contents

RoxygenNote 7.3.3

Config/build/clean-inst-doc false

NeedsCompilation yes

Repository CRAN

Date/Publication 2026-01-28 18:50:08 UTC

Contents
robustlmm-package . 3
asymptoticVariance . 3
bindDatasets . 5
chgDefaults . 6
compare . 7
createDatasetsFromList . 9
createRhoFunction . 10
extractTuningParameter . 11
fitDatasets_lmer . 12
generateAnovaDatasets . 17
generateLongitudinalDatasets . 20
generateMixedEffectDatasets . 24
generateSensitivityCurveDatasets . 26
getME . 27
lapplyDatasets . 31
loadAndMergePartialResults . 32
mergeProcessedFits . 33
other . 33
partialMoment_standardNormal . 34
plot-methods . 35
plot.rlmerMod . 36
plotLongitudinalBySubject . 37
prepareMixedEffectDataset . 39
processDatasetsInParallel . 41
processFile . 42
processFit . 44
psi-functions . 48
psi2propII . 49
residuals.rlmerMod . 50
rlmer . 51
rlmerMod-class . 55
saveDatasets . 56
shortenLabelsKS2022 . 57
splitDatasets . 58
viewCopyOfSimulationStudy . 59

Index 60

robustlmm-package 3

robustlmm-package Robust linear mixed effects models

Description

robustlmm provides functions for estimating linear mixed effects models in a robust way.

The main workhorse is the function rlmer; it is implemented as direct robust analogue of the
popular lmer function of the lme4 package. The two functions have similar abilities and limitations.
A wide range of data structures can be modeled: mixed effects models with hierarchical as well as
complete or partially crossed random effects structures are possible. While the lmer function is
optimized to handle large datasets efficiently, the computations employed in the rlmer function are
more complex and for this reason also more expensive to compute. The two functions have the
same limitations in the support of different random effect and residual error covariance structures.
Both support only diagonal and unstructured random effect covariance structures.

The robustlmm package implements most of the analysis tool chain as is customary in R. The usual
functions such as summary, coef, resid, etc. are provided as long as they are applicable for this
type of models (see rlmerMod-class for a full list). The functions are designed to be as similar as
possible to the ones in the lme4 package to make switching between the two packages easy.

Details on the implementation and example analyses are provided in the package vignette available
via vignette("rlmer") (Koller 2016).

References

Manuel Koller (2016). robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects
Models. Journal of Statistical Software, 75(6), 1-24. doi:10.18637/jss.v075.i06

Koller M, Stahel WA (2022). "Robust Estimation of General Linear Mixed Effects Models.” In PM
Yi, PK Nordhausen (eds.), Robust and Multivariate Statistical Methods, Springer Nature Switzer-
land AG.

Manuel Koller (2013). Robust estimation of linear mixed models. (Doctoral dissertation, Diss.,
Eidgenössische Technische Hochschule ETH Zürich, Nr. 20997, 2013).

asymptoticVariance Compute Asymptotic Efficiencies

Description

asymptoticEfficiency computes the theoretical asymptotic efficiency for an M-estimator for var-
ious types of equations.

4 asymptoticVariance

Usage

asymptoticVariance(
psi,
equation = c("location", "scale", "eta", "tau", "mu"),
dimension = 1

)

asymptoticEfficiency(
psi,
equation = c("location", "scale", "eta", "tau", "mu"),
dimension = 1

)

findTuningParameter(
desiredEfficiency,
psi,
equation = c("location", "scale", "eta", "tau", "mu"),
dimension = 1,
interval = c(0.15, 50),
...

)

Arguments

psi object of class psi_func

equation equation to base computations on. "location" and "scale" are for the univari-
ate case. The others are for a multivariate location and scale problem. "eta"
is for the shape of the covariance matrix, "tau" for the size of the covariance
matrix and "mu" for the location.

dimension dimension for the multivariate location and scale problem.
desiredEfficiency

scalar, specifying the desired asymptotic efficiency, needs to be between 0 and
1.

interval interval in which to do the root search, passed on to uniroot.

... passed on to uniroot.

Details

The asymptotic efficiency is defined as the ratio between the asymptotic variance of the maximum
likelihood estimator and the asymptotic variance of the (M-)estimator in question.

The computations are only approximate, using numerical integration in the general case. Depending
on the regularity of the psi-function, these approximations can be quite crude.

References

Maronna, R. A., Martin, R. D., Yohai, V. J., & Salibián-Barrera, M. (2019). Robust statistics: theory
and methods (with R). John Wiley & Sons., equation (2.25)

bindDatasets 5

Rousseeuw, P. J., Hampel, F. R., Ronchetti, E. M., & Stahel, W. A. (2011). Robust statistics: the
approach based on influence functions. John Wiley & Sons., Section 5.3c, Paragraph 2 (Page 286)

bindDatasets Bind Generated Datasets

Description

This method can be used to bind multiple datasets generated using different random genrators into
one large dataset. The underlying dataset needs to be the same.

Usage

bindDatasets(..., datasetList = list(...))

Arguments

... multiple datasets to be bound together

datasetList list of datasets created with one of the generate dataset functions

Value

merged list with generators and the contents of the prepared dataset. See ‘prepareMixedEffectDataset
and generateAnovaDatasets for a description of the contents.

Author(s)

Manuel Koller

See Also

splitDatasets

Examples

datasets1 <- generateAnovaDatasets(2, 4, 4, 4)
datasets2 <- generateAnovaDatasets(2, 4, 4, 4)
datasets <- bindDatasets(datasets1, datasets2)
data <- datasets$generateData(1)
stopifnot(data$numberOfDatasets == 4,

all.equal(datasets2$generateData(1), datasets$generateData(3),
check.attributes = FALSE),

all.equal(datasets2$sphericalRandomEffects(1), datasets$sphericalRandomEffects(3)),
all.equal(datasets2$createXMatrix(data), datasets$createXMatrix(data)),
all.equal(datasets2$createZMatrix(data), datasets$createZMatrix(data)))

preparedDataset <- prepareMixedEffectDataset(Reaction ~ Days + (Days|Subject), sleepstudy)
datasets1 <- generateMixedEffectDatasets(2, preparedDataset)
datasets2 <- generateMixedEffectDatasets(2, preparedDataset)

6 chgDefaults

datasets <- bindDatasets(datasets1, datasets2)
data <- datasets$generateData(1)
stopifnot(data$numberOfDatasets == 4,

all.equal(datasets2$generateData(1), datasets$generateData(3),
check.attributes = FALSE),

all.equal(datasets2$sphericalRandomEffects(1), datasets$sphericalRandomEffects(3)),
all.equal(datasets2$createXMatrix(data), datasets$createXMatrix(data)),
all.equal(datasets2$createZMatrix(data), datasets$createZMatrix(data)))

chgDefaults Change default arguments

Description

Change the default arguments for a psi_func_rcpp object

Usage

S4 method for signature 'psi_func_rcpp'
chgDefaults(object, ...)

Arguments

object instance to convert

... arguments to change

Note

Note that names of named arguments are ignored. Only the order of the arguments considered when
assigning new arguments.

Examples

sPsi <- chgDefaults(smoothPsi, k=2)
curve(sPsi@psi(x), 0, 3)
curve(smoothPsi@psi(x), 0, 3, col="blue", add=TRUE)

compare 7

compare Create comparison charts for multiple fits

Description

Use compare to quickly compare the estimated parameters of the fits of multiple lmerMod or rlmer-
Mod objects.

Usage

compare(..., digits = 3, dnames = NULL, show.rho.functions = TRUE)

S3 method for class 'lmerMod'
getInfo(object, ...)

S3 method for class 'rlmerMod'
getInfo(object, ...)

S3 method for class 'comparison.table'
xtable(
x,
caption = NULL,
label = NULL,
align = NULL,
digits = NULL,
display = NULL,
...

)

S3 method for class 'xtable.comparison.table'
print(
x,
add.hlines = TRUE,
latexify.namescol = TRUE,
include.rownames = FALSE,
...

)

getInfo(object, ...)

Arguments

... objects to compare, or, for the xtable functions: passed to the respective xtable
function.

digits number of digits to show in output

dnames names of objects given as arguments (optional)

8 compare

show.rho.functions

whether to show rho functions in output.

object object

x object of class "comparison.table" or "xtable.comparison.table"

caption see xtable.

label see xtable.

align see xtable.

display see xtable.

add.hlines replace empty lines in comparison table by hlines. Supersedes hline.after
argument of print.xtable.

latexify.namescol

replace “sigma” and “x” in the first column by latex equivalents.
include.rownames

include row numbers (the object returned by xtable.comparison.table in-
cludes names in the first column)

Details

The functions xtable.comparison.table and print.xtable.comparison.table are wrapper
functions for the respective xtable and print.xtable functions.

The function getInfo is internally used to prepare object for producing a comparison chart in
compare.

Value

getInfo returns a list with estimated coefficients, estimated variance components, sigma, deviance
and parameter configuration used to fit.

See Also

xtable

print.xtable

Examples

Not run:
fm1 <- lmer(Yield ~ (1|Batch), Dyestuff)
fm2 <- rlmer(Yield ~ (1|Batch), Dyestuff)
compare(fm1, fm2)
require(xtable)
xtable(compare(fm1, fm2))
str(getInfo(fm1))

End(Not run)

createDatasetsFromList 9

createDatasetsFromList

Create Dataset List From List of Data Objects

Description

Convert a list of datasets to a dataset list similar to the ones created by generateAnovaDatasets
and generateMixedEffectDatasets.

Usage

createDatasetsFromList(
datasetList,
formula,
trueBeta,
trueSigma,
trueTheta,
...

)

Arguments

datasetList list of data objects, usually of type data.frame.

formula formula to fit the model using lmer.

trueBeta scalar or vector with the true values of the fixed effects coefficients. Can be of
length one in which case it will be replicated to the required length if needed.

trueSigma scalar with the true value of the error scale.

trueTheta scalar or vector with the true values for the variance component coefficients, not
including sigma. Can be of length one in which case it will be replicated to the
required length if needed.

... all additional arguments are added to the returned list.

Details

The returned list can be passed to processFit and to any of the fitDatasets functions. Splitting
and binding of datasets using splitDatasets and bindDatasets is not supported.

Value

list that can be passed to processFit and to any of the fitDatasets functions. Only generateData
is implemented, all the other functions return an error if called.

See Also

generateAnovaDatasets and generateMixedEffectDatasets

10 createRhoFunction

Examples

data(sleepstudy)
sleepstudy2 <- sleepstudy
sleepstudy2[1, "Reaction"] <- sleepstudy2[1, "Reaction"] + 10
fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)
datasets <- createDatasetsFromList(list(sleepstudy, sleepstudy2),

formula = Reaction ~ Days + (Days|Subject),
trueBeta = getME(fm1, "beta"),
trueSigma = sigma(fm1),
trueTheta = getME(fm1, "theta"))

fitDatasets_lmer(datasets)

createRhoFunction Create Rho-Functions With Custom Tuning Parameter

Description

Convenience function to create rho-functions with custom tuning parameter.

Usage

createRhoFunction(
tuningParameter,
which = c("rho.e", "rho.sigma.e", "rho.b.diagonal", "rho.sigma.b.diagonal",
"rho.b.blockDiagonal", "rho.sigma.b.blockDiagonal"),

rho.e = smoothPsi,
rho.sigma.e = psi2propII(rho.e),
rho.b.diagonal = rho.e,
rho.sigma.b.diagonal = psi2propII(rho.b.diagonal),
rho.b.blockDiagonal = rho.e,
rho.sigma.b.blockDiagonal = rho.b.blockDiagonal,
...

)

Arguments

tuningParameter

argument passed on to extractTuningParameter. See its documentation for
details.

which string specifiying which tuning parameter should be extracted.

rho.e PsiFunction to be used for rho.e.

rho.sigma.e PsiFunction to be used for rho.sigma.e.

rho.b.diagonal PsiFunction to be used for rho.b for models with diagonal random effects
covariance matrix.

rho.sigma.b.diagonal

PsiFunction to be used for rho.sigma.b for models with diagonal random
effects covariance matrix.

extractTuningParameter 11

rho.b.blockDiagonal

PsiFunction to be used for rho.b for models with block-diagonal random ef-
fects covariance matrix.

rho.sigma.b.blockDiagonal

PsiFunction to be used for rho.sigma.b for models with block-diagonal ran-
dom effects covariance matrix.

... passed on to chgDefaults.

Details

’rho.b.diagonal’ denotes the tuning parameter to be used for ’rho.b’ for models with diagonal ran-
dom effects covariance matrix. ’rho.b.blockDiagonal’ is the tuning parameter to be used in the block
diagonal case, respectively.

For arguments rho.sigma.e (and rho.sigma.b.diagonal), the Proposal 2 variant of the function
specified for rho.e (and rho.b) is used.

Author(s)

Manuel Koller

Examples

createRhoFunction(c(1.345, 2.28, 1.345, 2.28, 5.14, 5.14), "rho.sigma.e")

extractTuningParameter

Extract Tuning Parameters Used In Fitting

Description

Methods to extract which tuning parameters have been used for fitting models. Use extractTuningParameter
for custom configurations and extractPredefinedTuningParameter for predefined configura-
tions provided in this package.

Usage

extractTuningParameter(
tuningParameter,
which = c("rho.e", "rho.sigma.e", "rho.b.diagonal", "rho.sigma.b.diagonal",
"rho.b.blockDiagonal", "rho.sigma.b.blockDiagonal")

)

extractPredefinedTuningParameter(label, which)

12 fitDatasets_lmer

Arguments

tuningParameter

vector of tuning parameters. The vector is expected to be of length 6, containing
the tuning parameters for rho.e, rho.sigma.e, rho.b.diagonal, rho.sigma.b.diagonal,
rho.b.blockDiagonal and rho.sigma.b.blockDiagonal. ’rho.b.diagonal’ denotes
the tuning parameter to be used for ’rho.b’ for models with diagonal random
effects covariance matrix. Names are optional.

which string specifiying which tuning parameter should be extracted.

label label or vector of labels in results. Only predefined labels of the form ’fit-
Datasets_rlmer_...’ are supported (for others NA is returned).

Value

scalar tuning parameter

Author(s)

Manuel Koller

Examples

extractPredefinedTuningParameter("fitDatasets_rlmer_DAStau", "rho.e")

fitDatasets_lmer Fitting Functions

Description

Methods to fit various mixed effects estimators to all generated datasets.

Usage

fitDatasets_lmer(datasets, control, label, postFit, datasetIndices = "all")

fitDatasets_lmer_bobyqa(datasets, postFit, datasetIndices = "all")

fitDatasets_lmer_Nelder_Mead(datasets, postFit, datasetIndices = "all")

fitDatasets_rlmer(
datasets,
method,
tuningParameter,
label,
postFit,
datasetIndices = "all",
...,
init

fitDatasets_lmer 13

)

fitDatasets_rlmer_DAStau(datasets, postFit, datasetIndices = "all")

fitDatasets_rlmer_DAStau_lmerNoFit(datasets, postFit, datasetIndices = "all")

fitDatasets_rlmer_DASvar(datasets, postFit, datasetIndices = "all")

fitDatasets_rlmer_DAStau_noAdj(datasets, postFit, datasetIndices = "all")

fitDatasets_rlmer_DAStau_k_0_5(datasets, postFit, datasetIndices = "all")

fitDatasets_rlmer_DAStau_k_0_5_noAdj(datasets, postFit, datasetIndices = "all")

fitDatasets_rlmer_DAStau_k_2(datasets, postFit, datasetIndices = "all")

fitDatasets_rlmer_DAStau_k_2_noAdj(datasets, postFit, datasetIndices = "all")

fitDatasets_rlmer_DAStau_k_5(datasets, postFit, datasetIndices = "all")

fitDatasets_rlmer_DAStau_k_5_noAdj(datasets, postFit, datasetIndices = "all")

fitDatasets_heavyLme(datasets, postFit, datasetIndices = "all")

fitDatasets_lqmm(datasets, postFit, datasetIndices = "all")

fitDatasets_rlme(datasets, postFit, datasetIndices = "all")

fitDatasets_varComprob(
datasets,
control,
label,
postFit,
datasetIndices = "all"

)

fitDatasets_varComprob_compositeTau(datasets, postFit, datasetIndices = "all")

fitDatasets_varComprob_compositeTau_OGK(
datasets,
postFit,
datasetIndices = "all"

)

fitDatasets_varComprob_compositeTau_2SGS(
datasets,
postFit,
datasetIndices = "all"

14 fitDatasets_lmer

)

fitDatasets_varComprob_compositeS(datasets, postFit, datasetIndices = "all")

fitDatasets_varComprob_compositeS_OGK(
datasets,
postFit,
datasetIndices = "all"

)

fitDatasets_varComprob_compositeS_2SGS(
datasets,
postFit,
datasetIndices = "all"

)

fitDatasets_varComprob_S(datasets, postFit, datasetIndices = "all")

fitDatasets_varComprob_S_OGK(datasets, postFit, datasetIndices = "all")

fitDatasets_varComprob_S_2SGS(datasets, postFit, datasetIndices = "all")

Arguments

datasets Datasets list to be used to generate datasets.

control a list (of correct class for the respective fitting function) containing control pa-
rameters to be passed through.

label a string used to identify which fits have been created by which function.

postFit a function, taking one argument, the resulting fit. This makes it easy to add an
additional step after fitting.

datasetIndices optional vector of dataset indices to fit, useful to try only a few datasets instead
of all of them.

method argument passed on to rlmer.
tuningParameter

argument passed on to extractTuningParameter.

... argument passed on to createRhoFunction.

init optional argument passed on to rlmer.

Details

Existing fitting functions are:

fitDatasets_lmer: Fits datasets using lmer using its default options.

fitDatasets_lmer_bobyqa: Fits datasets using lmer using the bobyqa optimizer.

fitDatasets_lmer_Nelder_Mead: Fits datasets using lmer using the Nelder Mead optimizer.

fitDatasets_rlmer: Fits datasets using rlmer using a custom configuration. The argument ’tun-
ingParameter’ is passed to extractTuningParameter, details are documented there.

fitDatasets_lmer 15

fitDatasets_rlmer_DAStau: Fits datasets using rlmer using method DAStau and smoothPsi for
the rho functions. The tuning parameters are k = 1.345 for rho.e. For rho.sigma.e, the Proposal
2 variant is used using k = 2.28. The choices for rho.b and rho.sigma.b depend on whether the
model uses a diagonal or a block diagonal matrix for Lambda. In the former case, the same psi
functions and tuning parameters are use as for rho.e and rho.sigma.b. In the block diagonal case,
rho.b and rho.sigma.b both use smoothPsi using a tuning parameter k = 5.14 (assuming blocks
of dimension 2).

fitDatasets_rlmer_DAStau_lmerNoFit: Fits datasets using rlmer using the same configuration
as fitDatasets_rlmer_DAStau except for that it is using lmerNoFit as initial estimator.

fitDatasets_rlmer_DASvar: Fits datasets using rlmer using method DASvar. The same rho
functions and tuning parameters are used as for fitDatasets_rlmer_DAStau.

fitDatasets_rlmer_DAStau_noAdj: Fits datasets using rlmer using method DAStau. The same
rho functions and tuning parameters are used as for fitDatasets_rlmer_DAStau, except for rho.sigma.e
(and rho.sigma.b in the diagonal case) for which the Proposal 2 variant of smoothPsi using k =
1.345 is used.

fitDatasets_rlmer_DAStau_k_0_5: Fits datasets using rlmer using method DAStau. Use smoothPsi
psi-function with tuning parameter k = 0.5 for rho.e and k = 1.47 for rho.sigma.e, the latter ad-
justed to reach the same asymptotic efficiency. In the diagonal case, the same are used for rho.b and
rho.sigma.b as well. In the block-diagonal case, the tuning parameter k = 2.17 is used for rho.b
and rho.sigma.b. The tuning parameter is chosen to reach about the same asymptotic efficiency
for theta as for the fixed effects.

fitDatasets_rlmer_DAStau_k_0_5_noAdj: Fits datasets using rlmer using method DAStau. Use
smoothPsi psi-function with tuning parameter k = 0.5 for rho.e and rho.sigma.e. In the diagonal
case, the same are used for rho.b and rho.sigma.b as well. In the block-diagonal case, the tuning
parameter k = 2.17 is used for rho.b and rho.sigma.b. The tuning parameter is chosen to reach
about the same asymptotic efficiency for theta as for the fixed effects.

fitDatasets_rlmer_DAStau_k_2: Fits datasets using rlmer using method DAStau. Use smoothPsi
psi-function with tuning parameter k = 2 for rho.e and k = 2.9 rho.sigma.e, the latter adjusted
to reach the same asymptotic efficiency. In the diagonal case, the same are used for rho.b and
rho.sigma.b as well. In the block-diagonal case, the tuning parameter k = 8.44 is used for rho.b
and rho.sigma.b. The tuning parameter is chosen to reach about the same asymptotic efficiency
for theta as for the fixed effects.

fitDatasets_rlmer_DAStau_k_2_noAdj: Fits datasets using rlmer using method DAStau. Use
smoothPsi psi-function with tuning parameter k = 2 for rho.e and rho.sigma.e. In the diagonal
case, the same are used for rho.b and rho.sigma.b as well. In the block-diagonal case, the tuning
parameter k = 8.44 is used for rho.b and rho.sigma.b. The tuning parameter is chosen to reach
about the same asymptotic efficiency for theta as for the fixed effects.

fitDatasets_rlmer_DAStau_k_5: Fits datasets using rlmer using method DAStau. Use smoothPsi
psi-function with tuning parameter k = 5 for rho.e and k = 5.03 rho.sigma.e, the latter adjusted
to reach the same asymptotic efficiency. In the diagonal case, the same are used for rho.b and
rho.sigma.b as well. In the block-diagonal case, the tuning parameter k = 34.21 is used for rho.b
and rho.sigma.b. The tuning parameter is chosen to reach about the same asymptotic efficiency
for theta as for the fixed effects.

fitDatasets_rlmer_DAStau_k_5_noAdj: Fits datasets using rlmer using method DAStau. Use
smoothPsi psi-function with tuning parameter k = 5 for rho.e and rho.sigma.e. In the diagonal
case, the same are used for rho.b and rho.sigma.b as well. In the block-diagonal case, the tuning

16 fitDatasets_lmer

parameter k = 34.21 is used for rho.b and rho.sigma.b. The tuning parameter is chosen to reach
about the same asymptotic efficiency for theta as for the fixed effects.

fitDatasets_heavyLme: Fits datasets using heavyLme from package heavy. Additional required
arguments are: lmeFormula, heavyLmeRandom and heavyLmeGroups. They are passed to the
formula, random and groups arguments of heavyLme.

fitDatasets_lqmm: Fits datasets using lqmm from package lqmm. Additional required arguments
are: lmeFormula, lqmmRandom, lqmmGroup and lqmmCovariance. They are passed to the formula,
random, groups and covariance arguments of lqmm. lqmmCovariance is optional, if omitted
pdDiag is used.

fitDatasets_rlme: Fits datasets using rlme from package rlme.

fitDatasets_varComprob: Prototype method to fit datasets using varComprob from package
robustvarComp. Additional required items in datasets are: lmeFormula, groups, varcov and
lower. They are passed to the fixed, groups, varcov and lower arguments of varComprob. The
running of this method produces many warnings of the form "passing a char vector to .Fortran is
not portable" which are suppressed.

fitDatasets_varComprob_compositeTau: Fits datasets with the composite Tau method using
varComprob from package robustvarComp. See fitDatasets_varComprob for additional details.

fitDatasets_varComprob_compositeTau_OGK: Similar to fitDatasets_varComprob_compositeTau
but using covOGK as initial covariance matrix estimator.

fitDatasets_varComprob_compositeTau_2SGS: Similar to fitDatasets_varComprob_compositeTau
but using 2SGS as initial covariance matrix estimator.

fitDatasets_varComprob_compositeS: Similar to fitDatasets_varComprob_compositeTau but
using method composite S.

fitDatasets_varComprob_compositeS_OGK: Similar to fitDatasets_varComprob_compositeS
but using covOGK as initial covariance matrix estimator.

fitDatasets_varComprob_compositeS_2SGS: Similar to fitDatasets_varComprob_compositeS
but using 2SGS as initial covariance matrix estimator.

fitDatasets_varComprob_S: Similar to fitDatasets_varComprob_compositeTau but using method
S and the Rocke psi-function.

fitDatasets_varComprob_S_OGK: Similar to fitDatasets_varComprob_S but using covOGK as
initial covariance matrix estimator.

fitDatasets_varComprob_S_2SGS: Similar to fitDatasets_varComprob_S but using 2SGS as
initial covariance matrix estimator.

Value

list of fitted models. See also lapplyDatasets which is called internally.

Author(s)

Manuel Koller

generateAnovaDatasets 17

Examples

set.seed(1)
oneWay <- generateAnovaDatasets(1, 1, 10, 4,

lmeFormula = y ~ 1,
heavyLmeRandom = ~ 1,
heavyLmeGroups = ~ Var2,
lqmmRandom = ~ 1,
lqmmGroup = "Var2",
groups = cbind(rep(1:4, each = 10), rep(1:10, 4)),
varcov = matrix(1, 4, 4),
lower = 0)

fitDatasets_lmer(oneWay)
call rlmer with custom arguments
fitDatasets_rlmer_custom <- function(datasets) {

return(fitDatasets_rlmer(datasets,
method = "DASvar",
tuningParameter = c(1.345, 2.28, 1.345, 2.28, 5.14, 5.14),
label = "fitDatasets_rlmer_custom"))

}
fitDatasets_rlmer_custom(oneWay)

generateAnovaDatasets Generate ANOVA type datasets

Description

Generate balanced datasets with multiple factors. All combinations of all factor variables are gen-
erated, i.e., a fully crossed dataset will be generated. numberOfReplicates specifies the number of
replications per unique combination.

Usage

generateAnovaDatasets(
numberOfDatasetsToGenerate,
numberOfLevelsInFixedFactor,
numberOfSubjects,
numberOfReplicates,
errorGenerator = rnorm,
randomEffectGenerator = rnorm,
trueBeta = 1,
trueSigma = 4,
trueTheta = 1,
...,
arrange = FALSE

)

18 generateAnovaDatasets

Arguments

numberOfDatasetsToGenerate

number of datasets to generate.
numberOfLevelsInFixedFactor

scalar or vector with the number of levels per fixed factor or grouping variable.
numberOfSubjects

scalar or vector with the number of levels per variance component.
numberOfReplicates

number of replicates per unique combination of fixed factor and variance com-
ponent.

errorGenerator random number generator used for the errors.
randomEffectGenerator

random number generator used for the spherical random effects.

trueBeta scalar or vector with the true values of the fixed effects coefficients. Can be of
length one in which case it will be replicated to the required length if needed.

trueSigma scalar with the true value of the error scale.

trueTheta scalar of vector with the true values for the variance component coefficients, not
including sigma. Can be of length one in which case it will be replicated to the
required length if needed.

... all additional arguments are added to the returned list.

arrange If TRUE, the observations in the dataset are arranged such that the call to arrange
in varComprob does not break the observation- group relationship. This requires
package dplyr to be installed.

Details

numberOfLevelsInFixedFactor can either be a scalar or a vector with the number of levels for
each fixed effects group. If numberOfLevelsInFixedFactor is a scalar, the value of 1 is allowed.
This can be used to generate a dataset with an intercept only. If numberOfLevelsInFixedFactor
is a vector with more than one entry, then all the values need to be larger than one.

numberOfSubjects can also be a scalar of a vector with the number of levels for each variance
component. Each group needs to have more than one level. The vector is sorted descending before
the names are assigned. This ensures that, when running lmer, the order of the random effects does
not change. lmer also sorts the random effects by decending number of levels.

In order to save memory, only the generated random effects and the errors are stored. The dataset
is only created on demand when the method generateData in the returned list is evaluated.

The random variables are generated in a way that one can simulate more datasets easily. When
starting from the same seed, the first generated datasets will be the same as for the a previous call
of generateAnovaDatasets with a smaller number of datasets to generate, see examples.

Value

list with generators and the original arguments

generateData: function to generate data taking one argument, the dataset index.

generateAnovaDatasets 19

createXMatrix: function to generate X matrix taking one argument, the result of generateData.

createZMatrix: function to generate Z matrix taking one argument, the result of generateData.
createLambdaMatrix:

function to generate Lambda matrix taking one argument, the result of generateData.

randomEffects: function to return the generated random effects taking one argument, the dataset
index.

sphericalRandomeffects:

function to return the generated spherical random effects taking one argument,
the dataset index.

errors: function to return the generated errors taking one argument, the dataset index.
allRandomEffects:

function without arguments that returns the matrix of all generated random ef-
fects.

allErrors: function without arguments that returns the matrix of all generated errors.
numberOfDatasets:

numberOfDatasetsToGenerate as supplied
numberOfLevelsInFixedFactor:

numberOfLevelsInFixedFactor as supplied
numberOfSubjects:

numberOfSubjects sorted.
numberOfReplicates:

numberOfReplicates as supplied

numberOfRows: number of rows in the generated dataset

trueBeta: true values used for beta

trueSigma: true value used for sigma

trueTheta: true values used for theta

formula: formula to fit the model using lmer

...: additional arguments passed via ...

Author(s)

Manuel Koller

See Also

generateMixedEffectDatasets and createDatasetsFromList

Examples

oneWay <- generateAnovaDatasets(2, 1, 5, 4)
head(oneWay$generateData(1))
head(oneWay$generateData(2))
oneWay$formula
head(oneWay$randomEffects(1))
head(oneWay$sphericalRandomEffects(1))

20 generateLongitudinalDatasets

head(oneWay$errors(1))

twoWayFixedRandom <- generateAnovaDatasets(2, 3, 5, 4)
head(twoWayFixedRandom$generateData(1))
twoWayFixedRandom$formula

twoWayRandom <- generateAnovaDatasets(2, 1, c(3, 5), 4)
head(twoWayRandom$generateData(1))
twoWayRandom$formula

large <- generateAnovaDatasets(2, c(10, 15), c(20, 30), 5)
head(large$generateData(1))
large$formula

illustration how to generate more datasets
set.seed(1)
datasets1 <- generateAnovaDatasets(2, 1, 5, 4)
set.seed(1)
datasets2 <- generateAnovaDatasets(3, 1, 5, 4)
stopifnot(all.equal(datasets1$generateData(1), datasets2$generateData(1)),

all.equal(datasets1$generateData(2), datasets2$generateData(2)))

generateLongitudinalDatasets

Generate Longitudinal Datasets

Description

Generate balanced longitudinal datasets with random intercepts and slopes. Subjects are observed
at multiple time points with optional treatment groups. Treatment and its interaction with time are
coded as contrasts relative to the first level.

Usage

generateLongitudinalDatasets(
numberOfDatasetsToGenerate,
numberOfSubjects,
numberOfTimepoints,
numberOfTreatmentLevels = 1L,
timeRange = c(0, 1),
errorGenerator = rnorm,
randomEffectGenerator = rnorm,
trueBeta = 0,
trueSigma = 1,
trueTheta = c(1, 0, 1),
contamFun = NULL,
...

)

generateLongitudinalDatasets 21

Arguments

numberOfDatasetsToGenerate

number of datasets to generate.
numberOfSubjects

number of subjects per dataset.
numberOfTimepoints

number of observation time points per subject.
numberOfTreatmentLevels

number of treatment levels. Default: 1 (no treatment effect, intercept and time
only).

timeRange numeric vector of length 2, range of time values (min, max). Default: c(0, 1).

errorGenerator random number generator used for the errors. Called as errorGenerator(n) *
trueSigma.

randomEffectGenerator

random number generator used for the spherical random effects. Called as
randomEffectGenerator(n) * trueSigma.

trueBeta scalar or vector with the true values of the fixed effects coefficients. Can be of
length one in which case it will be replicated to the required length. The order
is: intercept, time, treatment contrasts (if any), treatment-by-time interactions
(if any).

trueSigma scalar with the true value of the error scale.

trueTheta numeric vector of length 3 with the true values for the Cholesky factor of the
random effects covariance matrix (lme4 convention). Default: c(1, 0, 1) (in-
dependent random intercepts and slopes).

contamFun optional contamination function. If provided, it receives the full dataset (a data
frame with columns id, time, treatment, y) and an info list, and must return the
(possibly modified) data frame. This allows arbitrary contamination including
changing group assignments. See Details for the contents of the info list.

... all additional arguments are added to the returned list.

Details

The generated data follows the model:

yij = β0+β1·timeij+
K−1∑
k=1

β1+k·treatmentk,i+
K−1∑
k=1

βK+k·treatmentk,i·timeij+b0i+b1i·timeij+ϵij

where K is the number of treatment groups, bi = (b0i, b1i)
T ∼ N(0, σ2ΛΛT) with Λ being the

lower-triangular Cholesky factor reconstructed from the theta vector.

The theta parameterization follows lme4 conventions:

• For a 2x2 random-effects covariance structure (intercept and slope), theta has 3 elements:
θ = (λ11, λ21, λ22)

• The Cholesky factor is: Λ =

(
λ11 0
λ21 λ22

)

22 generateLongitudinalDatasets

In order to save memory, only the generated random effects and the errors are stored. The dataset
is only created on demand when the method generateData in the returned list is evaluated.

The random variables are generated in a way that one can simulate more datasets easily. When
starting from the same seed, the first generated datasets will be the same as for a previous call of
generateLongitudinalDatasets with a smaller number of datasets to generate, see examples.

Treatment Assignment: Subjects are assigned to treatment groups in a balanced, deterministic
manner. Subject i is assigned to treatment (i - 1) mod numberOfTreatmentLevels + 1.

Contamination Function: If contamFun is provided, it is called as contamFun(data, info) after
the response y is computed. The info list contains:

• datasetIndex: the dataset index

• randomEffects: the random effects vector for this dataset

• errors: the error vector for this dataset

• trueBeta: as passed to generateLongitudinalDatasets

• trueSigma: as passed to generateLongitudinalDatasets

• trueTheta: as passed to generateLongitudinalDatasets

The function must return a data frame with the same structure (columns id, time, treatment, y). This
allows arbitrary modifications including:

• Modifying the response y (e.g., adding outliers)

• Changing group assignments (e.g., moving subjects between treatments)

• Modifying time values

• Any combination of the above

Value

list with generators and the original arguments

generateData: function to generate data taking one argument, the dataset index.

createXMatrix: function to generate X matrix taking one argument, the result of generateData.

createZMatrix: function to generate Z matrix taking one argument, the result of generateData.
createLambdaMatrix:

function to generate Lambda matrix taking one argument, the result of generateData.

randomEffects: function to return the generated random effects taking one argument, the dataset
index.

sphericalRandomEffects:

function to return the generated spherical random effects taking one argument,
the dataset index.

errors: function to return the generated errors taking one argument, the dataset index.
allRandomEffects:

function without arguments that returns the matrix of all generated random ef-
fects.

allErrors: function without arguments that returns the matrix of all generated errors.

generateLongitudinalDatasets 23

numberOfDatasets:

numberOfDatasetsToGenerate as supplied
numberOfSubjects:

numberOfSubjects as supplied
numberOfTimepoints:

numberOfTimepoints as supplied
numberOfTreatmentLevels:

numberOfTreatmentLevels as supplied

numberOfRows: number of rows in the generated dataset

trueBeta: true values used for beta

trueSigma: true value used for sigma

trueTheta: true values used for theta

formula: formula to fit the model using lmer

...: additional arguments passed via ...

Author(s)

Manuel Koller

See Also

generateAnovaDatasets, generateMixedEffectDatasets

Examples

oneGroup <- generateLongitudinalDatasets(2, 10, 5)
head(oneGroup$generateData(1))
head(oneGroup$generateData(2))
oneGroup$formula

twoGroups <- generateLongitudinalDatasets(2, 20, 5, numberOfTreatmentLevels = 2)
head(twoGroups$generateData(1))
twoGroups$formula

illustration how to generate more datasets
set.seed(1)
datasets1 <- generateLongitudinalDatasets(2, 10, 5)
set.seed(1)
datasets2 <- generateLongitudinalDatasets(3, 10, 5)
stopifnot(all.equal(datasets1$generateData(1), datasets2$generateData(1)),

all.equal(datasets1$generateData(2), datasets2$generateData(2)))

contamination example: add outliers to 10% of observations
set.seed(42)
contam <- generateLongitudinalDatasets(

numberOfDatasetsToGenerate = 5,
numberOfSubjects = 20,
numberOfTimepoints = 5,
contamFun = function(data, info) {

24 generateMixedEffectDatasets

n <- nrow(data)
idx <- sample(n, size = ceiling(0.1 * n))
data$y[idx] <- data$y[idx] + 10
data

}
)
head(contam$generateData(1))

contamination example: reassign some subjects to different treatment
set.seed(42)
contamGroup <- generateLongitudinalDatasets(

numberOfDatasetsToGenerate = 5,
numberOfSubjects = 20,
numberOfTimepoints = 5,
numberOfTreatmentLevels = 2,
contamFun = function(data, info) {

move first subject from T1 to T2
data$treatment[data$id == 1] <- "T2"
data

}
)
head(contamGroup$generateData(1), 10)

medsim: simulation inspired by the medication dataset from confintROB
Two subjects from treatment are mislabeled as control, and responses
are truncated at a measurement floor of 100.
contaminateMedsim <- function(data, info) {

data$y <- pmax(data$y, 100) # measurement floor
data$treatment[data$id %in% c("2", "4")] <- "T1"
data

}
set.seed(2000)
medsim <- generateLongitudinalDatasets(

numberOfDatasetsToGenerate = 100,
numberOfSubjects = 60,
numberOfTimepoints = 7,
numberOfTreatmentLevels = 2,
timeRange = c(0, 18),
trueBeta = c(240, -3.11, -2.42, 4.00),
trueSigma = sqrt(1229.93),
trueTheta = c(1.310266, -0.07547461, 0.2147735),
contamFun = contaminateMedsim

)
head(medsim$generateData(1))

generateMixedEffectDatasets

Generate Mixed Effects Datasets

generateMixedEffectDatasets 25

Description

Generates mixed effects datasets using parametric bootstrap.

Usage

generateMixedEffectDatasets(
numberOfDatasetsToGenerate,
preparedDataset,
errorGenerator = rnorm,
randomEffectGenerator = rnorm

)

Arguments

numberOfDatasetsToGenerate

number of datasets to generate.
preparedDataset

dataset as prepared by prepareMixedEffectDataset.

errorGenerator random number generator used for the errors.

randomEffectGenerator

random number generator used for the spherical random effects.

Value

list with generators and the contents of the prepared dataset. See prepareMixedEffectDataset
and generateAnovaDatasets for a description of the contents.

Author(s)

Manuel Koller

See Also

generateAnovaDatasets, prepareMixedEffectDataset and createDatasetsFromList

Examples

preparedDataset <- prepareMixedEffectDataset(Reaction ~ Days + (Days|Subject), sleepstudy)
datasets <- generateMixedEffectDatasets(2, preparedDataset)
head(datasets$generateData(1))
head(datasets$generateData(2))
datasets$formula
head(datasets$randomEffects(1))
head(datasets$sphericalRandomEffects(1))
head(datasets$errors(1))

26 generateSensitivityCurveDatasets

generateSensitivityCurveDatasets

Generate Datasets To Create Sensitivity Curves

Description

This method creates a list of datasets that can be used to create sensitivity curves. The response of
the dataset is modified according to the supplied arguments.

Usage

generateSensitivityCurveDatasets(
data,
observationsToChange,
shifts,
scales,
center,
formula,
...

)

Arguments

data dataset to be modified.
observationsToChange

index or logical vector indicating which observations should be modified.

shifts vector of shifts that should be applied one by one to each of the modified obser-
vations.

scales vector scales that should be used to scale the observations around their original
center.

center optional scalar used to define the center from which the observations are scaled
from. If missing, the mean of all the changed observations is used.

formula formula to fit the model using lmer.

... all additional arguments are added to the returned list.

Details

Either shifts or scales need to be provided. Both are also possible.

The argument shifts contains all the values that shall be added to each of the observations that
should be changed. One value per generated dataset.

The argument scales contains all the values that shall be used to move observations away from
their center. If scales is provided, then observationsToChange needs to select more than one
observation.

The returned list can be passed to processFit and to any of the fitDatasets functions. Splitting
and binding of datasets using splitDatasets and bindDatasets is not supported.

getME 27

Value

list that can be passed to processFit and to any of the fitDatasets functions. Only generateData
is implemented, all the other functions return an error if called.

See Also

generateAnovaDatasets

Examples

oneWay <- generateAnovaDatasets(1, 1, 10, 5)
datasets <-

generateSensitivityCurveDatasets(oneWay$generateData(1),
observationsToChange = 1:5,
shifts = -10:10,
formula = oneWay$formula)

datasets$generateData(1)

getME Extract or Get Generalize Components from a Fitted Mixed Effects
Model

Description

Extract (or “get”) “components” – in a generalized sense – from a fitted mixed-effects model, i.e.
from an object of class rlmerMod or merMod.

Usage

S3 method for class 'rlmerMod'
getME(
object,
name = c("X", "Z", "Zt", "Ztlist", "mmList", "y", "mu", "u", "b.s", "b", "Gp", "Tp",
"Lambda", "Lambdat", "Tlist", "A", "U_b", "Lind", "sigma", "flist", "fixef", "beta",
"theta", "ST", "is_REML", "n_rtrms", "n_rfacs", "N", "n", "p", "q", "p_i", "l_i",
"q_i", "k", "m_i", "m", "cnms", "devcomp", "offset", "lower", "rho_e", "rho_b",
"rho_sigma_e", "rho_sigma_b", "M", "w_e", "w_b", "w_b_vector", "w_sigma_e",
"w_sigma_b", "w_sigma_b_vector"),

...
)

theta(object)

28 getME

Arguments

object a fitted mixed-effects model of class rlmerMod, i.e. typically the result of
rlmer().

name a character string specifying the name of the “component”. Possible values are:

"X": fixed-effects model matrix
"Z": random-effects model matrix
"Zt": transpose of random-effects model matrix
"Ztlist": list of components of the transpose of the random-effects model ma-

trix, separated by individual variance component
"mmList": list of raw model matrices associated with random effects terms
"y": response vector
"mu": conditional mean of the response
"u": conditional mode of the “spherical” random effects variable
"b.s": synonym for “u”
"b": conditional mode of the random effects variable
"Gp": groups pointer vector. A pointer to the beginning of each group of ran-

dom effects corresponding to the random-effects terms.
"Tp": theta pointer vector. A pointer to the beginning of the theta sub-vectors

corresponding to the random-effects terms, beginning with 0 and including
a final element giving the total number of random effects

"Lambda": relative covariance factor of the random effects.
"U_b": synonym for “Lambda”
"Lambdat": transpose of the relative covariance factor of the random effects.
"Lind": index vector for inserting elements of θ into the nonzeros of Λ
"A": Scaled sparse model matrix (class dgCMatrix) for the unit, orthogonal

random effects, U , equal to getME(.,"Zt") %*% getME(.,"Lambdat")

"sigma": residual standard error
"flist": a list of the grouping variables (factors) involved in the random effect

terms
"fixef": fixed-effects parameter estimates
"beta": fixed-effects parameter estimates (identical to the result of fixef, but

without names)
"theta": random-effects parameter estimates: these are parameterized as the

relative Cholesky factors of each random effect term
"ST": A list of S and T factors in the TSST’ Cholesky factorization of the rela-

tive variance matrices of the random effects associated with each random-
effects term. The unit lower triangular matrix, T , and the diagonal matrix,
S, for each term are stored as a single matrix with diagonal elements from
S and off-diagonal elements from T .

"is_REML": returns TRUE for rlmerMod-objects (for compatibility with lme4)
"n_rtrms": number of random-effects terms
"n_rfacs": number of distinct random-effects grouping factors

getME 29

"N": number of rows of X
"n": length of the response vector, y
"p": number of columns of the fixed effects model matrix, X
"q": number of columns of the random effects model matrix, Z
"p_i": numbers of columns of the raw model matrices, mmList
"l_i": numbers of levels of the grouping factors
"q_i": numbers of columns of the term-wise model matrices, ZtList
"k": number of random effects terms
"m_i": numbers of covariance parameters in each term
"m": total number of covariance parameters, i.e., the same as dim@nth below.
"cnms": the “component names”, a ‘list’.
"devcomp": a list consisting of a named numeric vector, cmp, and a named in-

teger vector, dims, describing the fitted model. The elements of cmp are:

ldL2 always NA, for consistency with lme4 output
ldRX2 always NA, for consistency with lme4 output
wrss always NA, for consistency with lme4 output
ussq always NA, for consistency with lme4 output
pwrss always NA, for consistency with lme4 output
drsum always NA, for consistency with lme4 output
REML always NA, for consistency with lme4 output
dev always NA, for consistency with lme4 output
sigmaML always NA, for consistency with lme4 output
sigmaREML REML estimate of residual standard deviation
The elements of dims are:

N number of rows of X
n length of y
p number of columns of X
nmp n-p

nth length of theta
q number of columns of Z
nAGQ see glmer

compDev see glmerControl

useSc TRUE if model has a scale parameter
reTrms number of random effects terms
REML 0 indicates the model was fitted by maximum likelihood, any other

positive integer indicates fitting by restricted maximum likelihood
GLMM TRUE if a GLMM
NLMM TRUE if an NLMM

"offset": model offset

30 getME

"lower": lower bounds on random-effects model parameters (i.e, "theta" pa-
rameters). In order to constrain random effects covariance matrices to be
semi-positive-definite, this vector is equal to 0 for elements of the theta
vector corresponding to diagonal elements of the Cholesky factor, -Inf
otherwise. (getME(.,"lower")==0 can be used as a test to identify diago-
nal elements, as in isSingular.)

"rho_e": rho function used for the residuals
"rho_b": list of rho functions used for the random effects
"rho_sigma_e": rho function used for the residuals when estimating sigma
"rho_sigma_b": list of rho functions used for the random effects when esti-

mating the covariance parameters
"M": list of matrices, blocks of the Henderson’s equations and the matrices used

for computing the linear approximations of the estimates of beta and spher-
ical random effects.

"w_e": robustness weights associated with the observations
"w_b": robustness weights associated with the spherical random effects, re-

turned in the same format as ranef()
"w_b_vector": robustness weights associated with the spherical random ef-

fects, returned as one long vector
"w_sigma_e": robustness weights associated with the observations when esti-

mating sigma
"w_sigma_b": robustness weights associated with the spherical random effects

when estimating the covariance parameters, returned in the same format as
ranef()

"w_sigma_b_vector": robustness weights associated with the spherical ran-
dom effects when estimating the covariance parameters, returned as one
long vector

"ALL": get all of the above as a list.

... potentially further arguments; not here.

Details

The function theta is short for getME(, "theta").

The goal is to provide “everything a user may want” from a fitted rlmerMod object as far as it is not
available by methods, such as fixef, ranef, vcov, etc.

Value

Unspecified, as very much depending on the name.

See Also

getCall(); more standard methods for rlmerMod objects, such as ranef, fixef, vcov, etc.: see
methods(class="rlmerMod")

lapplyDatasets 31

Examples

shows many methods you should consider *before* using getME():
methods(class = "rlmerMod")

doFit = FALSE to speed up example
(fm1 <- rlmer(Reaction ~ Days + (Days|Subject), sleepstudy,

method="DASvar", doFit=FALSE))
Z <- getME(fm1, "Z")
stopifnot(is(Z, "CsparseMatrix"),

c(180,36) == dim(Z),
all.equal(fixef(fm1), b1 <- getME(fm1, "beta"),

check.attributes=FALSE, tolerance = 0))

A way to get *all* getME()s :
internal consistency check ensuring that all work:
parts <- getME(fm1, "ALL")
str(parts, max=2)
stopifnot(identical(Z, parts $ Z),

identical(b1, parts $ beta))
stopifnot(all.equal(theta(fm1), getME(fm1, "theta")))

lapplyDatasets Lapply for generated datasets

Description

Apply function for all generated datasets.

Usage

lapplyDatasets(datasets, FUN, ..., label, POST_FUN, datasetIndices = "all")

Arguments

datasets Datasets list to be used to generate datasets.

FUN the function to be applied to each generated dataset. The function will be called
like FUN(data, ...).

... optional arguments to FUN.

label optional parameter, if present, each result is added an attribute named label with
the value of label.

POST_FUN function to be applied to the result of FUN. While one could just modify FUN
instead, this additional argument makes it a bit easier to combine different kinds
of methods together.

datasetIndices optional vector of dataset indices to fit, useful to try only a few datasets instead
of all of them. Use "all" to process all datasets (default).

32 loadAndMergePartialResults

Value

list of results. The items in the resulting list will have two additional attributes: datasetIndex and
proc.time. If FUN failed for an item, then the item will be the error as returned by try, i.e., it ill be
of class try-error.

Author(s)

Manuel Koller

Examples

oneWay <- generateAnovaDatasets(2, 1, 5, 4)
lapplyDatasets(oneWay, function(data) sum(data$y))
lapplyDatasets(oneWay, function(data) sum(data$y), POST_FUN = function(x) x^2)

loadAndMergePartialResults

Load And Merge Partial Results

Description

Convenience function that loads the results stored in each of the files and then calls mergeProcessedFits
to merge them.

Usage

loadAndMergePartialResults(files)

Arguments

files vector of filenames (including paths) of files containing the processed results

Author(s)

Manuel Koller

See Also

processDatasetsInParallel

mergeProcessedFits 33

mergeProcessedFits Merge Processed Fits

Description

Combine list of processed fits into one list in matrix form.

Usage

mergeProcessedFits(processedFitList)

Arguments

processedFitList

list of processed fits as produced by processFit.

Value

similar list as returned by processFit just with matrix entries instead of vectors.

Examples

preparedDataset <-
prepareMixedEffectDataset(Reaction ~ Days + (Days|Subject),

sleepstudy)
set.seed(1)
datasets <- generateMixedEffectDatasets(2, preparedDataset)

fits <- fitDatasets_lmer(datasets)
processedFits <- lapply(fits, processFit, all = TRUE)
merged <- mergeProcessedFits(processedFits)
str(merged)

other Other methods

Description

Other miscellaneous utilities for instances of the PsiFunction class.

34 partialMoment_standardNormal

Usage

S4 method for signature 'Rcpp_SmoothPsi'
show(object)
S4 method for signature 'Rcpp_HuberPsi'
show(object)
S4 method for signature 'Rcpp_PsiFunction'
show(object)
S4 method for signature 'Rcpp_PsiFunctionToPropIIPsiFunctionWrapper'
show(object)

Arguments

object instance of class PsiFunction to be plotted

Examples

show(smoothPsi)

partialMoment_standardNormal

Compute Partial Moments

Description

Computes a partial moment for the standard normal distribution. This is the expectation taken not
from -Infinity to Infinity but just to z.

Usage

partialMoment_standardNormal(z, n)

Arguments

z partial moment boundary, the expectation is taken from -Inf to z.

n which moment to compute, needs to be >= 2.

References

Winkler, R. L., Roodman, G. M., & Britney, R. R. (1972). The Determination of Partial Moments.
Management Science, 19(3), 290–296. https://www.jstor.org/stable/2629511, equation (2.5)

Examples

partialMoment_standardNormal(0, 2)

plot-methods 35

plot-methods Plot an Object of the "Psi Function" Class

Description

The plot method objects of class PsiFunction simply visualizes the ρ(), ψ(), and weight functions
and their derivatives.

Usage

S4 method for signature 'Rcpp_SmoothPsi'
plot(x, y,

which = c("rho", "psi", "Dpsi", "wgt", "Dwgt"),
main = "full",
col = c("black", "red3", "blue3", "dark green", "light green"),
leg.loc = "right", ...)

S4 method for signature 'Rcpp_HuberPsi'
plot(x, y,

which = c("rho", "psi", "Dpsi", "wgt", "Dwgt"),
main = "full",
col = c("black", "red3", "blue3", "dark green", "light green"),
leg.loc = "right", ...)

S4 method for signature 'Rcpp_PsiFunction'
plot(x, y,

which = c("rho", "psi", "Dpsi", "wgt", "Dwgt"),
main = "full",
col = c("black", "red3", "blue3", "dark green", "light green"),
leg.loc = "right", ...)

S4 method for signature 'Rcpp_PsiFunctionToPropIIPsiFunctionWrapper'
plot(x, y,

which = c("rho", "psi", "Dpsi", "wgt", "Dwgt"),
main = "full",
col = c("black", "red3", "blue3", "dark green", "light green"),
leg.loc = "right", ...)

Arguments

x instance of class PsiFunction to be plotted

y (optional) vector of abscissa values (to plot object at).

which character vector of slots to be included in plot; by default, all of the slots are
included

main string or logical indicating the kind of plot title; either "full", "short" or
FALSE which chooses a full, a short or no main title at all.

col colors to be used for the different slots

leg.loc legend placement, see also x argument of legend

... passed to matplot

36 plot.rlmerMod

Note

If you want to specify your own title, use main=FALSE, and a subsequent title(...) call.

See Also

psi-functions.

Examples

plot(huberPsiRcpp)
plot(huberPsiRcpp, which=c("psi", "Dpsi", "wgt"),

main="short", leg = "topleft")

plot(smoothPsi)
Plotting aspect ratio = 1:1 :
plot(smoothPsi, asp=1, main="short",

which = c("psi", "Dpsi", "wgt", "Dwgt"))

plot.rlmerMod Plot Method for "rlmerMod" objects.

Description

Diagnostic plots for objects of class rlmerMod and lmerMod.

Usage

S3 method for class 'rlmerMod'
plot(
x,
y = NULL,
which = 1:4,
title = c("Fitted Values vs. Residuals", "Normal Q-Q vs. Residuals",
"Normal Q-Q vs. Random Effects", "Scatterplot of Random Effects for Group \"%s\""),
multiply.weights = FALSE,
add.line = c("above", "below", "none"),
...

)

S3 method for class 'rlmerMod_plots'
print(x, ask = interactive() & length(x) > 1, ...)

Arguments

x an object as created by rlmer or rlmer; or an object as created by plot.rlmerMod

y currently ignored.

which integer number between 1 and 4 to specify which plot is desired.

plotLongitudinalBySubject 37

title Titles for the different plots. The fourth item can be a format string passed to
sprintf to add the name of the current group.

multiply.weights

multiply the residuals / random effects with the robustness weights when pro-
ducing the Q-Q plots.

add.line add reference line to plots, use "above" or "below" to show the line above or
below the points. Hide the line with "none".

... passed on to geom_hline and geom_qq_line, to customize how the line is
drawn.

ask waits for user input before displaying each plot.

Details

The robustness weights for estimating the fixed and random effects are used in the plots, e.g., the
ones returned by getME(object, "w_e") and getME(object, "w_b").

Value

a list of plots of class ggplot that can be used for further modification before plotting (using print).

See Also

getME, ggplot

Examples

Not run:
rfm <- rlmer(Yield ~ (1|Batch), Dyestuff)
plot(rfm)
fm <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)
plot.rlmerMod(fm)

End(Not run)

plotLongitudinalBySubject

Plot longitudinal data with robustness-weight colored lines

Description

Creates a visualization of longitudinal data with one facet per treatment group. Subject trajectories
are colored by their robustness weight from a robust mixed-effects model fit, with darker lines
indicating lower weights (potential outliers). Fixed-effect predictions are overlaid as reference lines.

38 plotLongitudinalBySubject

Usage

plotLongitudinalBySubject(
data,
formula = NULL,
idVar = "id",
timeVar = "time",
treatmentVar = "treatment",
responseVar = "y",
rlmerArgs = list(),
lineAlpha = 0.6,
fixedLineWidth = 1.2,
lowColor = "black",
highColor = "lightgray",
fixedLineColor = "firebrick",
fixedLinetype = "solid",
title = NULL,
xlab = NULL,
ylab = NULL

)

Arguments

data A data frame containing longitudinal data. Must have columns for subject ID,
time, treatment group, and response variable.

formula A formula for the mixed-effects model. Default is y ~ treatment * time + (1
+ time | id) where y, treatment, time, and id refer to the standardized inter-
nal column names (mapped from responseVar, treatmentVar, timeVar, and
idVar).

idVar Character string naming the subject ID column in data. Default: "id".

timeVar Character string naming the time column in data. Default: "time".

treatmentVar Character string naming the treatment column in data. Default: "treatment".

responseVar Character string naming the response column in data. Default: "y".

rlmerArgs A list of additional arguments passed to rlmer.

lineAlpha Numeric in [0, 1]. Transparency of subject lines. Default: 0.6.

fixedLineWidth Numeric. Width of fixed-effect overlay lines. Default: 1.2.

lowColor Color for low robustness weights (potential outliers). Default: "black".

highColor Color for high robustness weights (typical observations). Default: "lightgray".

fixedLineColor Color for the fixed-effect prediction lines. Default: "firebrick".

fixedLinetype Linetype for the fixed-effect prediction lines. Can be a single value (e.g., "solid",
"dashed") applied to all lines, or "byTreatment" to use different linetypes for
each treatment group. Default: "solid".

title Optional plot title.

xlab Label for x-axis. If NULL (default), uses the value of timeVar.

ylab Label for y-axis. If NULL (default), uses the value of responseVar.

prepareMixedEffectDataset 39

Details

The function fits a robust linear mixed-effects model using rlmer and extracts the robustness
weights for the random effects. Subjects with low weights (shown in darker colors) are those whose
random effects deviate substantially from the assumed distribution.

The fixed-effect prediction lines show the population-average trajectory for each treatment group,
ignoring random effects.

Value

A ggplot object.

See Also

rlmer, generateLongitudinalDatasets

Examples

Not run:
Using the medication dataset from confintROB
library(confintROB)
plotLongitudinalBySubject(
medication,
idVar = "id",
treatmentVar = "treat",
responseVar = "pos"

)

Using simulated data
set.seed(123)
simdat <- generateLongitudinalDatasets(

numberOfDatasetsToGenerate = 1,
numberOfSubjects = 40,
numberOfTimepoints = 7,
numberOfTreatmentLevels = 2,
timeRange = c(0, 18),
trueBeta = c(200, -2, -5, 3),
trueSigma = 30

)
plotLongitudinalBySubject(simdat$generateData(1))

End(Not run)

prepareMixedEffectDataset

Prepare Dataset for Parametric Bootstrap

40 prepareMixedEffectDataset

Description

This function runs lmer and extracts all information needed to generate new datasets using para-
metric bootstrap later.

Usage

prepareMixedEffectDataset(
formula,
data,
REML = TRUE,
overrideBeta,
overrideSigma,
overrideTheta,
...

)

Arguments

formula passed on to lmer

data passed on to lmer

REML passed on to lmer

overrideBeta use to override beta used to simulate new datasets, by default getME(fm, "beta")
where fm is the fitted model returned by lmer.

overrideSigma use to override sigma used to simulate new datasets, by default getME(fm,
"sigma") where fm is the fitted model returned by lmer.

overrideTheta use to override theta used to simulate new datasets, by default getME(fm, "theta")
where fm is the fitted model returned by lmer.

... all additional arguments are added to the returned list.

Value

List that can be passed to generateMixedEffectDatasets.

data: the original dataset
X: the X matrix as returned by getME

Z: the Z matrix as returned by getME

Lambda: the Lambda matrix as returned by getME
numberOfFixedEffects:

the number of fixed effects coefficients
numberOfRandomEffects:

the number of random effects
numberOfRows: number of rows in the generated dataset
trueBeta: true values used for beta
trueSigma: true value used for sigma
trueTheta: true values used for theta
formula: formula to fit the model using lmer

...: additional arguments passed via ...

processDatasetsInParallel 41

Author(s)

Manuel Koller

Examples

preparedDataset <- prepareMixedEffectDataset(Reaction ~ Days + (Days|Subject), sleepstudy)
str(preparedDataset)

processDatasetsInParallel

Process Datasets in Parallel

Description

Convenience function to run simulation study in parallel on a single machine.

Usage

processDatasetsInParallel(
datasets,
path,
baseFilename,
fittingFunctions,
chunkSize,
saveFitted = FALSE,
checkProcessed = FALSE,
createMinimalSaveFile = FALSE,
ncores = 1,
clusterType = "PSOCK",
...

)

Arguments

datasets dataset list generated by one of the generate functions.

path path to save the datasets to.

baseFilename filename to use, without extension.
fittingFunctions

vector of fitDatasets functions that should be applied to each dataset.

chunkSize number of datasets to process together in a single job.

saveFitted logical, if true, the raw fits are also stored.

checkProcessed logical, if true, will check whether the contents of the processed output is re-
produced for the first dataset. This is useful to ensure that everything is still
working as expected without having to re-run the whole simulation study.

42 processFile

createMinimalSaveFile

logical, if true, will create a file with the processed results of the first three
datasets. This is helpful if one wants to store only the final aggregated results
but still wants to make sure that the full code works as expected.

ncores number of cores to use in processing, if set to 1, datasets are processed in the
current R session. Use detectCores to find out how many cores are available
on your machine.

clusterType type of cluster to be created, passed to makeCluster.

... passed on to processFit. Use this to control what to save.

Details

The merged results are saved in a file taking the name <path>/<baseFilename>-processed.Rdata.
You can delete the intermediate result files with the numbers (the chunk index) in the name.

To run on multiple machines, use saveDatasets to save datasets into multiple files. Then call
processFile on each of them on the designated machine. Finally, load and merge the results
together using loadAndMergePartialResults.

Value

The list of all processed results merged together.

To help reproduciblility, the output of toLatex(sessionInfo(), locale = FALSE) is stored in the
sessionInfo attribute.

Author(s)

Manuel Koller

See Also

saveDatasets, processFile

processFile Process File of Stored Datasets

Description

Call this function for each file stored using saveDatasets. If a file hasn’t been processed yet, then
it is processed and a new file with the postfix “processed” is created containing the results.

processFile 43

Usage

processFile(
file,
fittingFunctions,
saveFitted = FALSE,
checkProcessed = FALSE,
createMinimalSaveFile = FALSE,
datasets,
...

)

Arguments

file file saved by saveDatasets.
fittingFunctions

vector of fitDatasets functions that should be applied to each dataset.

saveFitted logical, if true, the raw fits are also stored.

checkProcessed logical, if true, will check whether the contents of the processed output is re-
produced for the first dataset. This is useful to ensure that everything is still
working as expected without having to re-run the whole simulation study.

createMinimalSaveFile

logical, if true, will create a file with the processed results of the first three
datasets. This is helpful if one wants to store only the final aggregated results
but still wants to make sure that the full code works as expected.

datasets optional, datasets as stored in file, to avoid doing a detour of saving and loading
the file.

... passed on to processFit. Use this to control what to save.

Details

In case the raw fits may have to be inspected or processFit may be called with another set of
arguments, then set saveFitted to TRUE. In that case, another file with the postfix “fitted” is
created. Remove the files with postfix “processed” and run processFile again. The fits will not be
re-done but instead loaded from the file with postfix “fitted”.

Value

The list of all processed results merged together.

To help reproduciblility, the output of toLatex(sessionInfo(), locale = FALSE) is stored in the
sessionInfo attribute.

Author(s)

Manuel Koller

44 processFit

processFit Process Fitted Objects

Description

Methods to process fitted objects and convert into a data structure that is useful in post-processing.

Usage

processFit(
obj,
all = FALSE,
coefs = TRUE,
stdErrors = all,
tValues = all,
sigma = TRUE,
thetas = TRUE,
b = all,
meanB = all,
meanAbsB = all,
residuals = all,
converged = TRUE,
numWarnings = all,
procTime = all,
...

)

S3 method for class 'lmerMod'
processFit(
obj,
all = FALSE,
coefs = TRUE,
stdErrors = all,
tValues = all,
sigma = TRUE,
thetas = TRUE,
b = all,
meanB = all,
meanAbsB = all,
residuals = all,
converged = TRUE,
numWarnings = all,
procTime = all,
...

)

S3 method for class 'rlmerMod'

processFit 45

processFit(
obj,
all = FALSE,
coefs = TRUE,
stdErrors = all,
tValues = all,
sigma = TRUE,
thetas = TRUE,
b = all,
meanB = all,
meanAbsB = all,
residuals = all,
converged = TRUE,
numWarnings = all,
procTime = all,
...

)

S3 method for class 'heavyLme'
processFit(
obj,
all = FALSE,
coefs = TRUE,
stdErrors = all,
tValues = all,
sigma = TRUE,
thetas = TRUE,
b = all,
meanB = all,
meanAbsB = all,
residuals = all,
converged = TRUE,
numWarnings = all,
procTime = all,
...

)

S3 method for class 'lqmm'
processFit(
obj,
all = FALSE,
coefs = TRUE,
stdErrors = all,
tValues = all,
sigma = TRUE,
thetas = TRUE,
b = all,
meanB = all,

46 processFit

meanAbsB = all,
residuals = all,
converged = TRUE,
numWarnings = all,
procTime = all,
...

)

S3 method for class 'rlme'
processFit(
obj,
all = FALSE,
coefs = TRUE,
stdErrors = all,
tValues = all,
sigma = TRUE,
thetas = TRUE,
b = all,
meanB = all,
meanAbsB = all,
residuals = all,
converged = TRUE,
numWarnings = all,
procTime = all,
...

)

S3 method for class 'varComprob'
processFit(
obj,
all = FALSE,
coefs = TRUE,
stdErrors = all,
tValues = all,
sigma = TRUE,
thetas = TRUE,
b = all,
meanB = all,
meanAbsB = all,
residuals = all,
converged = TRUE,
numWarnings = all,
procTime = all,
isInterceptCorrelationSlopeModel,
...

)

processFit 47

Arguments

obj object returned by the fitting method.

all logical, shorthand to enable all exports.

coefs logical, if true coefficients are added to export.

stdErrors logical, if true, standard errors are added to export.

tValues logical, if true, t-values are added to export.

sigma logical, if true, sigma is added to export.

thetas logical, if true, thetas are added to export.

b scalar logical or index vector, if true, all random effects are added to export. If
an index vector is given, then only the corresponding random effects are added
to the export. The same order as in lmer is used for all methods.

meanB logical, if true, the mean of the random effects is added to the export.

meanAbsB logical, if true, the mean of the absolute value of the random effects is added to
the export.

residuals scalar logical or index vector, similar to argument b, just returning the residuals.

converged logical, if true, convergence code is added to export.

numWarnings logical, if true, the number of warnings generated during the fitting process is
added to export.

procTime logical, if true, time needed to fit object is added to export.

... optional parameters used for some implementations.
isInterceptCorrelationSlopeModel

optional logical, can be used to override the assumption that a model with three
variance components can be interpreted as having intercept, correlation and
slope.

Details

Warning. processFit.varComprob uses simplistic logic to convert from the parameterisation used
in the robustvarComp package to theta as used in lmer and rlmer. If there are three variance
components, the code assumes that they are intercept, correlation and slope. Otherwise the code
assumes that the variance components are independent. Exports b and residuals are not supported.

Value

List with extracted values, most items can be suppressed to save disk space.

label: Name of fitting method used to create the fit

datasetIndex: Index of the dataset in the dataset list

coefficients: Vector of estimated fixed-effects coefficients of the fitted model
standardErrors:

Vector of estimated standard errors of the fixed-effects coefficients

tValues: Vector of t-Values (or z-Values depending on fitting method) of the fixed-effects
coefficients

48 psi-functions

sigma: Estimated residual standard error

thetas: Vector of random-effects parameter estimates. As parameterized as by lmer and
rlmer.

b: Vector of requested predicted random-effects.

meanB: Vector of means of the predicted random-effects.

meanAbsB: Vector of means of the absolute values of the predicted random-effects.

residuals: Vector of requested residuals.

converged: Convergence status as reported by the fitting method. 0 means converged. If not
available, NA is used. Other values are to be interpreted carefully as codes vary
from method to method.

numberOfWarnings:

the number of warnings generated during the fitting process.

proc.time: Vector of times (user, system, elapsed) as reported by proc.time required to fit
the model.

Examples

set.seed(1)
oneWay <- generateAnovaDatasets(1, 1, 10, 4,

lmeFormula = y ~ 1,
heavyLmeRandom = ~ 1,
heavyLmeGroups = ~ Var2,
lqmmRandom = ~ 1,
lqmmGroup = "Var2",
groups = cbind(rep(1:4, each = 10), rep(1:10, 4)),
varcov = matrix(1, 4, 4),
lower = 0)

processFit(fitDatasets_lmer(oneWay)[[1]], all = TRUE)
processFit(fitDatasets_rlmer_DASvar(oneWay)[[1]], all = TRUE)
Not run:

processFit(fitDatasets_heavyLme(oneWay)[[1]], all = TRUE)

End(Not run)
if (require(lqmm)) {
processFit(fitDatasets_lqmm(oneWay)[[1]], all = TRUE)

}
Not run:

processFit(fitDatasets_varComprob_compositeTau(oneWay)[[1]], all = TRUE)

End(Not run)

psi-functions Classical, Huber and smoothed Huber psi- or rho-functions

psi2propII 49

Description

ψ-functions are used by rlmer in the estimating equations and to compute robustness weights.
Change tuning parameters using chgDefaults and convert to squared robustness weights using the
psi2propII function.

Usage

see examples

Details

The “classical” ψ-function cPsi can be used to get a non-robust, i.e., classical, fit. The psi slot
equals the identity function, and the rho slot equals quadratic function. Accordingly, the robustness
weights will always be 1 when using cPsi.

The Huber ψ-function huberPsi is identical to the one in the package robustbase. The psi slot
equals the identity function within ±k (where k is the tuning parameter). Outside this interval it is
equal to ±k. The rho slot equals the quadratic function within ±k and a linear function outside.

The smoothed Huber ψ-function is very similar to the regular Huber ψ-function. Instead of a
sharp bend like the Huber function, the smoothed Huber function bends smoothly. The first tuning
contant, k, can be compared to the tuning constant of the original Huber function. The second
tuning constant, s, determines the smoothness of the bend.

See Also

chgDefaults and psi2propII for changing tuning parameters; psi_func-class for a more de-
tailed description of the slots;

Examples

plot(cPsi)
plot(huberPsiRcpp)
plot(smoothPsi)
curve(cPsi@psi(x), 0, 3, col="blue")
curve(smoothPsi@psi(x), 0, 3, add=TRUE)
curve(huberPsiRcpp@psi(x), 0, 3, add=TRUE, col="green")

psi2propII Convert to Proposal 2 weight function

Description

Converts the psi_func object into a function that corresponds to Proposal 2, i.e., a function of the
squared weights. The other elements of the psi_func object are adapted accordingly.

50 residuals.rlmerMod

Usage

psi2propII(object, ..., adjust = FALSE)

S4 method for signature 'psi_func_rcpp'
psi2propII(object, ..., adjust = FALSE)

Arguments

object instance of Rcpp_PsiFunction class to convert

... optional, new default arguments passed to chgDefaults.

adjust logical, whether tuning parameters should be adjusted automatically, such that
the scale estimate has the same asymptotic efficiency as the location estimate.

Examples

par(mfrow=c(2,1))
plot(smoothPsi)
plot(psi2propII(smoothPsi))

residuals.rlmerMod Get residuals

Description

The per-observation residuals are returned, i.e., the difference of the observation and the fitted value
including random effects. With type one can specify whether the weights should be used or not.

Usage

S3 method for class 'rlmerMod'
residuals(object, type = c("response", "weighted"), scaled = FALSE, ...)

Arguments

object rlmerMod object

type type of residuals

scaled scale residuals by residual standard deviation (=scale parameter)?

... ignored

Examples

Not run:
fm <- rlmer(Yield ~ (1|Batch), Dyestuff)
stopifnot(all.equal(resid(fm, type="weighted"),

resid(fm) * getME(fm, "w_e")))

End(Not run)

rlmer 51

rlmer Robust Scoring Equations Estimator for Linear Mixed Models

Description

Robust estimation of linear mixed effects models, for hierarchical nested and non-nested, e.g.,
crossed, datasets.

Usage

rlmer(
formula,
data,
...,
method = c("DAStau", "DASvar"),
setting,
rho.e,
rho.b,
rho.sigma.e,
rho.sigma.b,
rel.tol = 1e-08,
max.iter = 40 * (r + 1)^2,
verbose = 0,
doFit = TRUE,
init

)

lmerNoFit(formula, data = NULL, ..., initTheta)

Arguments

formula a two-sided linear formula object describing the fixed-effects part of the model,
with the response on the left of a ~ operator and the terms, separated by + oper-
ators, on the right. The vertical bar character "|" separates an expression for a
model matrix and a grouping factor.

data an optional data frame containing the variables named in formula. By default
the variables are taken from the environment from which lmer is called.

... Additional parameters passed to lmer to find the initial estimates. See lmer.

method method to be used for estimation of theta and sigma, see Details.

setting a string specifying suggested choices for the arguments rho.e, rho.sigma.e,
rho.b and rho.sigma.b. Use "RSEn" (the default) or "RSEa". Both use smoothPsi
for all the “rho” arguments. For rho.sigma.e, squared robustness weights are
used (see psi2propII). "RSEn" uses the same tuning parameter as for rho.e,
which leads to higher robustness but lower efficiency. "RSEa" adjusts the tun-
ing parameter for higher asymptotic efficiency which results in lower robustness
(k = 2.28 for default rho.e). For diagonal random effects covariance matrices,

52 rlmer

rho.sigma.b is treated exactly as rho.sigma.e. For block diagonal random
effects covariance matrices (with correlation terms), regular robustness weights
are used for rho.sigma.b, not squared ones, as they’re not needed. But the tun-
ing parameters are adjusted for both rho.b and rho.sigma.b according to the
dimensions of the blocks (for both "RSEn" or "RSEa"). For a block of dimension
2 (e.g., correlated random intercept and slope) k = 5.14 is used.

rho.e object of class psi_func, specifying the functions to use for the huberization of
the residuals.

rho.b object of class psi_func or list of such objects (see Details), specifying the func-
tions to use for the huberization of the random effects.

rho.sigma.e object of class psi_func, specifying the weight functions to use for the hu-
berization of the residuals when estimating the variance components, use the
psi2propII function to specify squared weights and custom tuning parameters.

rho.sigma.b (optional) object of class psi_func or list of such objects, specifying the weight
functions to use for the huberization of the random effects when estimating the
variance components (see Details). Use psi2propII to specify squared weights
and custom tuning parameters or chgDefaults for regular weights for variance
components including correlation parameters.

rel.tol relative tolerance used as criteria in the fitting process.

max.iter maximum number of iterations allowed.

verbose verbosity of output. Ranges from 0 (none) to 3 (a lot of output)

doFit logical scalar. When doFit = FALSE the model is not fit but instead a structure
with the model matrices for the random-effects terms is returned (used to speed
up tests). When doFit = TRUE, the default, the model is fit immediately.

init optional lmerMod- or rlmerMod-object to use for starting values, a list with ele-
ments ‘fixef’, ‘u’, ‘sigma’, ‘theta’, or a function producing an lmerMod object.

initTheta parameter to initialize theta with (optional)

Details

Overview: This function implements the Robust Scoring Equations estimator for linear mixed ef-
fect models. It can be used much like the function lmer in the package lme4. The supported
models are the same as for lmer (gaussian family only). The robust approach used is based on
the robustification of the scoring equations and an application of the Design Adaptive Scale
approach.
Example analyses and theoretical details on the method are available in the vignette (see
vignette("rlmer")).
Models are specified using the formula argument, using the same syntax as for lmer. Ad-
ditionally, one also needs to specify what robust scoring or weight functions are to be used
(arguments starting with rho.). By default a smoothed version of the Huber function is used.
Furthermore, the method argument can be used to speed up computations at the expense of
accuracy of the results.

Computation methods: Currently, there are two different methods available for fitting models.
They only differ in how the consistency factors for the Design Adaptive Scale estimates are
computed. Available fitting methods for theta and sigma.e:

rlmer 53

• DAStau (default): For this method, the consistency factors are computed using numerical
quadrature. This is slower but yields more accurate results. This is the direct analogue to
the DAS-estimate in robust linear regression.

• DASvar: This method computes the consistency factors using a direct approximation
which is faster but less accurate. For complex models with correlated random effects
with more than one correlation term, this is the only method available.

Weight functions: The tuning parameters of the weight functions “rho” can be used to adjust ro-
bustness and efficiency of the resulting estimates (arguments rho.e, rho.b, rho.sigma.e and
rho.sigma.b). Better robustness will lead to a decrease of the efficiency. With the default set-
ting, setting = "RSEn", the tuning parameters are set to yield estimates with approximately
95% efficiency for the fixed effects. The variance components are estimated with a lower
efficiency but better robustness properties.
One has to use different weight functions and tuning parameters for simple variance compo-
nents and for such including correlation parameters. By default, they are chosen appropriately
to the model at hand. However, when using the rho.sigma.e and rho.sigma.b arguments, it
is up to the user to specify the appropriate function. See asymptoticEfficiency for methods
to find tuning parameters that yield a given asymptotic efficiency.

• For simple variance components and the residual error scale use the function psi2propII
to change the tuning parameters. This is similar to Proposal 2 in the location-scale prob-
lem (i.e., using the squared robustness weights of the location estimate for the scale esti-
mate; otherwise the scale estimate is not robust).

• For multi-dimensional blocks of random effects modeled, e.g., a model with correlated
random intercept and slope, (referred to as block diagonal case below), use the chgDefaults
function to change the tuning parameters. The parameter estimation problem is multi-
variate, unlike the case without correlation where the problem was univariate. For the
employed estimator, this amounts to switching from simple scale estimates to estimating
correlation matrices. Therefore different weight functions have to be used. Squaring of
the weights (using the function psi2propII) is no longer necessary. To yield estimates
with the same efficiency, the tuning parameters for the block diagonal are larger than for
the simple case. Tables of tuning parameters are given in Table 2 and 3 of the vignette
(vignette("rlmer")).

Recommended tuning parameters: For a more robust estimate, use setting = "RSEn" (the de-
fault). For higher efficiency, use setting = "RSEa". The settings described in the following
paragraph are used when setting = "RSEa" is specified.
For the smoothed Huber function the tuning parameters to get approximately 95% efficiency
are k = 1.345 for rho.e and k = 2.28 for rho.sigma.e (using the squared version). For
simple variance components, the same can be used for rho.b and rho.sigma.b. For variance
components including correlation parameters, use k = 5.14 for both rho.b and rho.sigma.b.
Tables of tuning parameter are given in Table 2 and 3 of the vignette (vignette("rlmer")).

Specifying (multiple) weight functions: If custom weight functions are specified using the ar-
gument rho.b (rho.e) but the argument rho.sigma.b (rho.sigma.e) is missing, then the
squared weights are used for simple variance components and the regular weights are used for
variance components including correlation parameters. The same tuning parameters will be
used when setting = "RSEn" is used. To get higher efficiency either use setting = "RSEa"
(and only set arguments rho.e and rho.b). Or specify the tuning parameters by hand using
the psi2propII and chgDefaults functions.

54 rlmer

To specify separate weight functions rho.b and rho.sigma.b for different variance compo-
nents, it is possible to pass a list instead of a psi_func object. The list entries correspond to
the groups as shown by VarCorr(.) when applied to the model fitted with lmer. A set of
correlated random effects count as just one group.

lmerNoFit: The lmerNoFit function can be used to get trivial starting values. This is mainly used
to verify the algorithms to reproduce the fit by lmer when starting from trivial initial values.

Value

object of class rlmerMod.

Author(s)

Manuel Koller, with thanks to Vanda Lourenço for improvements.

See Also

lmer, vignette("rlmer")

Examples

dropping of VC
system.time(print(rlmer(Yield ~ (1|Batch), Dyestuff2, method="DASvar")))

Not run:
Default method "DAStau"
system.time(rfm.DAStau <- rlmer(Yield ~ (1|Batch), Dyestuff))
summary(rfm.DAStau)
DASvar method (faster, less accurate)
system.time(rfm.DASvar <- rlmer(Yield ~ (1|Batch), Dyestuff,

method="DASvar"))
compare the two
compare(rfm.DAStau, rfm.DASvar)

Fit variance components with higher efficiency
psi2propII yields squared weights to get robust estimates
this is the same as using rlmer's argument `setting = "RSEa"`
rlmer(diameter ~ 1 + (1|plate) + (1|sample), Penicillin,

rho.sigma.e = psi2propII(smoothPsi, k = 2.28),
rho.sigma.b = psi2propII(smoothPsi, k = 2.28))

use chgDefaults for variance components including
correlation terms (regular, non squared weights suffice)
this is the same as using rlmer's argument `setting = "RSEa"`
rlmer(Reaction ~ Days + (Days|Subject), sleepstudy,

rho.sigma.e = psi2propII(smoothPsi, k = 2.28),
rho.b = chgDefaults(smoothPsi, k = 5.14, s=10),
rho.sigma.b = chgDefaults(smoothPsi, k = 5.14, s=10))

End(Not run)

Not run:

rlmerMod-class 55

start from lmer's initial estimate, not its fit
rlmer(Yield ~ (1|Batch), Dyestuff, init = lmerNoFit)

End(Not run)

rlmerMod-class rlmerMod Class

Description

Class "rlmerMod" of Robustly Fitted Mixed-Effect Models

Details

A robust mixed-effects model as returned by rlmer.

Objects from the Class

Objects are created by calls to rlmer.

Methods

Almost all methods available from objects returned from lmer are also available for objects returned
by rlmer. They usage is the same.

It follows a list of some the methods that are exported by this package:

• coef

• deviance (disabled, see below)

• extractAIC (disabled, see below)

• family

• fitted

• fixef

• formula

• getInfo

• isGLMM

• isLMM

• isNLMM

• isREML

• logLik (disabled, see below)

• model.frame

• model.matrix

• nobs

• plot

56 saveDatasets

• predict

• ranef (only partially implemented)

• residuals

• sigma

• summary

• terms

• update

• VarCorr

• vcov

• weights

Disabled methods

A log likelihood or even a pseudo log likelihood is not defined for the robust estimates returned by
rlmer. Methods that depend on the log likelihood are therefore not available. For this reason the
methods deviance, extractAIC and logLik stop with an error if they are called.

See Also

rlmer; corresponding class in package lme4: merMod

Examples

showClass("rlmerMod")

convert an object of type 'lmerMod' to 'rlmerMod'
to use the methods provided by robustlmm
fm <- lmer(Yield ~ (1|Batch), Dyestuff)
rfm <- as(fm, "rlmerMod")
compare(fm, rfm)

saveDatasets Save datasets

Description

Saves dataset to one or more files.

Usage

saveDatasets(datasets, path = getwd(), file, chunkSize)

shortenLabelsKS2022 57

Arguments

datasets dataset list generated by one of the generate functions.

path path to save the datasets to.

file filename to use, without extension.

chunkSize if provided, datasets are split into chunkSize chunks and then saved.

Details

The file will be saved to path/filename.Rdata.

If chunkSize is not missing, the filename is interpreted as format specifier and passed onto sprintf.
One argument is given, the index of the chunk.

Value

filename or vector of filenames.

Author(s)

Manuel Koller

shortenLabelsKS2022 Shorten Labels

Description

Shorten labels created by the various fitDatasets functions, for use in plotting, etc.

Usage

shortenLabelsKS2022(labels)

Arguments

labels vector of labels as assigned by fitDatasets

Details

The labels are shortened as they are in the simulation study published in Koller and Stahel (2022).

Value

Vector of shortened labels

Author(s)

Manuel Koller

58 splitDatasets

References

Koller M, Stahel WA (2022). "Robust Estimation of General Linear Mixed Effects Models.” In PM
Yi, PK Nordhausen (eds.), Robust and Multivariate Statistical Methods, Springer Nature Switzer-
land AG.

Examples

labels <- c("fitDatasets_lmer", "fitDatasets_rlmer_DAStau",
"fitDatasets_rlmer_DAStau_noAdj",
"fitDatasets_varComprob_compositeTau_OGK",
"fitDatasets_varComprob_S_OGK",
"fitDatasets_heavyLme",
"fitDatasets_lqmm")

shortenLabelsKS2022(labels)

splitDatasets Split Datasets Into Chunks

Description

Method that splits up dataset objects into smaller chunks, so that they can be processed separately.

Usage

splitDatasets(datasets, chunkSize = 50)

Arguments

datasets dataset object to split into chunks

chunkSize number of datasets to keep in one chunk

Value

list of dataset lists with generators and the contents of the original dataset. See prepareMixedEffectDataset
and generateAnovaDatasets for a description of the contents. There is one additional entry in the
list:

chunkIndex: index of the chunk

Author(s)

Manuel Koller

See Also

bindDatasets

viewCopyOfSimulationStudy 59

Examples

oneWay <- generateAnovaDatasets(18, 1, 5, 4)
datasetList <- splitDatasets(oneWay, 5)
data <- datasetList[[4]]$generateData(1)
stopifnot(all.equal(oneWay$generateData(16), datasetList[[4]]$generateData(1),

check.attributes = TRUE),
all.equal(oneWay$sphericalRandomEffects(16),

datasetList[[4]]$sphericalRandomEffects(1)),
all.equal(oneWay$createXMatrix(data), datasetList[[4]]$createXMatrix(data)),
all.equal(oneWay$createZMatrix(data), datasetList[[4]]$createZMatrix(data)))

viewCopyOfSimulationStudy

Access Simulation Study Code

Description

This is a convenience function to make it simple to access the simulation study script files that are
shipped with robustlmm.

Usage

viewCopyOfSimulationStudy(
study = c("sensitivityCurves.R", "consistencyAndEfficiencyDiagonal.R",
"consistencyAndEfficiencyBlockDiagonal.R", "breakdown.R", "convergence.R",
"robustnessDiagonal.R", "robustnessBlockDiagonal.R"),

destinationPath = getwd(),
overwrite = FALSE

)

Arguments

study Name of the script file, partial matching is supported via match.arg.
destinationPath

optional path to directory in which the copy of the script should be created. By
default the current working directory is used.

overwrite logical; should existing destination files be overwritten?

Details

The function creates a copy of the script file that can be safely edited without changing the original
file.

Examples

Not run:
viewCopyOfSimulationStudy("sensitivityCurves")

End(Not run)

Index

∗ classes
rlmerMod-class, 55

∗ methods
plot-methods, 35

∗ models
compare, 7
rlmer, 51

∗ utilities
chgDefaults, 6
compare, 7
getME, 27
other, 33
psi2propII, 49

arrange, 18
asymptoticEfficiency, 53
asymptoticEfficiency

(asymptoticVariance), 3
asymptoticVariance, 3

bindDatasets, 5, 9, 26, 58

character, 35
chgDefaults, 6, 11, 49, 52, 53
chgDefaults,psi_func_rcpp-method

(chgDefaults), 6
coef, 3, 55
coef.rlmerMod (rlmerMod-class), 55
compare, 7
cPsi (psi-functions), 48
createDatasetsFromList, 9, 19, 25
createRhoFunction, 10, 14

detectCores, 42
deviance, 55
deviance.rlmerMod (rlmerMod-class), 55
dgCMatrix, 28

extractAIC, 55
extractAIC.rlmerMod (rlmerMod-class), 55

extractPredefinedTuningParameter
(extractTuningParameter), 11

extractTuningParameter, 10, 11, 14

family, 55
family.rlmerMod (rlmerMod-class), 55
findTuningParameter

(asymptoticVariance), 3
fitDatasets, 9, 26, 27, 41, 43, 57
fitDatasets (fitDatasets_lmer), 12
fitDatasets_heavyLme

(fitDatasets_lmer), 12
fitDatasets_lmer, 12
fitDatasets_lmer_bobyqa

(fitDatasets_lmer), 12
fitDatasets_lmer_Nelder_Mead

(fitDatasets_lmer), 12
fitDatasets_lqmm (fitDatasets_lmer), 12
fitDatasets_rlme (fitDatasets_lmer), 12
fitDatasets_rlmer (fitDatasets_lmer), 12
fitDatasets_rlmer_DAStau

(fitDatasets_lmer), 12
fitDatasets_rlmer_DAStau_k_0_5

(fitDatasets_lmer), 12
fitDatasets_rlmer_DAStau_k_0_5_noAdj

(fitDatasets_lmer), 12
fitDatasets_rlmer_DAStau_k_2

(fitDatasets_lmer), 12
fitDatasets_rlmer_DAStau_k_2_noAdj

(fitDatasets_lmer), 12
fitDatasets_rlmer_DAStau_k_5

(fitDatasets_lmer), 12
fitDatasets_rlmer_DAStau_k_5_noAdj

(fitDatasets_lmer), 12
fitDatasets_rlmer_DAStau_lmerNoFit

(fitDatasets_lmer), 12
fitDatasets_rlmer_DAStau_noAdj

(fitDatasets_lmer), 12
fitDatasets_rlmer_DASvar

(fitDatasets_lmer), 12

60

INDEX 61

fitDatasets_varComprob
(fitDatasets_lmer), 12

fitDatasets_varComprob_compositeS
(fitDatasets_lmer), 12

fitDatasets_varComprob_compositeS_2SGS
(fitDatasets_lmer), 12

fitDatasets_varComprob_compositeS_OGK
(fitDatasets_lmer), 12

fitDatasets_varComprob_compositeTau
(fitDatasets_lmer), 12

fitDatasets_varComprob_compositeTau_2SGS
(fitDatasets_lmer), 12

fitDatasets_varComprob_compositeTau_OGK
(fitDatasets_lmer), 12

fitDatasets_varComprob_S
(fitDatasets_lmer), 12

fitDatasets_varComprob_S_2SGS
(fitDatasets_lmer), 12

fitDatasets_varComprob_S_OGK
(fitDatasets_lmer), 12

fitted, 55
fitted.rlmerMod (rlmerMod-class), 55
fixef, 28, 30, 55
fixef.rlmerMod (rlmerMod-class), 55
formula, 55
formula.rlmerMod (rlmerMod-class), 55

generateAnovaDatasets, 5, 9, 17, 23, 25, 27,
58

generateLongitudinalDatasets, 20, 39
generateMixedEffectDatasets, 9, 19, 23,

24, 40
generateSensitivityCurveDatasets, 26
geom_hline, 37
geom_qq_line, 37
getCall, 30
getInfo, 55
getInfo (compare), 7
getME, 27, 37, 40
ggplot, 37
glmer, 29
glmerControl, 29

huberPsiRcpp (psi-functions), 48

isGLMM, 55
isGLMM.rlmerMod (rlmerMod-class), 55
isLMM, 55
isLMM.rlmerMod (rlmerMod-class), 55

isNLMM, 55
isNLMM.rlmerMod (rlmerMod-class), 55
isREML, 55
isREML.rlmerMod (rlmerMod-class), 55

lapplyDatasets, 16, 31
legend, 35
list, 30
lme4, 3
lmer, 3, 14, 40, 47, 48, 51, 52, 54, 55
lmerNoFit, 15
lmerNoFit (rlmer), 51
loadAndMergePartialResults, 32, 42
logLik, 55
logLik.rlmerMod (rlmerMod-class), 55
lqmm, 16

makeCluster, 42
match.arg, 59
matplot, 35
mergeProcessedFits, 32, 33
merMod, 27, 56
model.frame, 55
model.frame.rlmerMod (rlmerMod-class),

55
model.matrix, 55
model.matrix.rlmerMod (rlmerMod-class),

55

name, 30
nobs, 55
nobs.rlmerMod (rlmerMod-class), 55

other, 33

partialMoment_standardNormal, 34
plot, 35, 55
plot,Rcpp_HuberPsi-method

(plot-methods), 35
plot,Rcpp_PsiFunction-method

(plot-methods), 35
plot,Rcpp_PsiFunctionToPropIIPsiFunctionWrapper-method

(plot-methods), 35
plot,Rcpp_SmoothPsi-method

(plot-methods), 35
plot-methods, 35
plot.rlmerMod, 36
plotLongitudinalBySubject, 37
predict, 56

62 INDEX

predict.rlmerMod (rlmerMod-class), 55
prepareMixedEffectDataset, 5, 25, 39, 58
print.rlmerMod (rlmerMod-class), 55
print.rlmerMod_plots (plot.rlmerMod), 36
print.summary.rlmer (rlmerMod-class), 55
print.VarCorr.rlmerMod

(rlmerMod-class), 55
print.xtable, 8
print.xtable.comparison.table

(compare), 7
proc.time, 48
processDatasetsInParallel, 32, 41
processFile, 42, 42
processFit, 9, 26, 27, 33, 42, 43, 44
psi-functions, 48
psi2propII, 49, 49, 51–53
psi2propII,psi_func_rcpp-method

(psi2propII), 49
psi2propII,Rcpp_SmoothPsi (psi2propII),

49
PsiFunction, 10, 11
PsiFunction (psi-functions), 48

ranef, 30, 56
ranef.rlmerMod (rlmerMod-class), 55
resid, 3
resid.rlmerMod (rlmerMod-class), 55
residuals, 56
residuals.rlmerMod, 50
rlme, 16
rlmer, 3, 14, 15, 28, 38, 39, 47–49, 51, 55, 56
rlmerMod, 27, 28
rlmerMod-class, 55
robustlmm (robustlmm-package), 3
robustlmm-package, 3

saveDatasets, 42, 43, 56
shortenLabelsKS2022, 57
show (other), 33
show,Rcpp_HuberPsi-method (other), 33
show,Rcpp_PsiFunction-method (other), 33
show,Rcpp_PsiFunctionToPropIIPsiFunctionWrapper-method

(other), 33
show,Rcpp_SmoothPsi-method (other), 33
show,rlmerMod-method (rlmerMod-class),

55
show.rlmerMod (rlmerMod-class), 55
show.summary.rlmerMod (rlmerMod-class),

55

sigma, 56
sigma.rlmerMod (rlmerMod-class), 55
SmoothPsi (psi-functions), 48
smoothPsi, 15, 51
smoothPsi (psi-functions), 48
splitDatasets, 5, 9, 26, 58
sprintf, 57
summary, 3, 56
summary.rlmerMod (rlmerMod-class), 55
summary.summary.rlmerMod

(rlmerMod-class), 55

terms, 56
terms.rlmerMod (rlmerMod-class), 55
theta (getME), 27
title, 36

uniroot, 4
update, 56
update.rlmerMod (rlmerMod-class), 55

VarCorr, 56
VarCorr.rlmerMod (rlmerMod-class), 55
VarCorr.summary.rlmerMod

(rlmerMod-class), 55
vcov, 30, 56
vcov.rlmerMod (rlmerMod-class), 55
vcov.summary.rlmerMod (rlmerMod-class),

55
viewCopyOfSimulationStudy, 59

weights, 56
weights.rlmerMod (rlmerMod-class), 55

xtable, 7, 8
xtable.comparison.table (compare), 7

	robustlmm-package
	asymptoticVariance
	bindDatasets
	chgDefaults
	compare
	createDatasetsFromList
	createRhoFunction
	extractTuningParameter
	fitDatasets_lmer
	generateAnovaDatasets
	generateLongitudinalDatasets
	generateMixedEffectDatasets
	generateSensitivityCurveDatasets
	getME
	lapplyDatasets
	loadAndMergePartialResults
	mergeProcessedFits
	other
	partialMoment_standardNormal
	plot-methods
	plot.rlmerMod
	plotLongitudinalBySubject
	prepareMixedEffectDataset
	processDatasetsInParallel
	processFile
	processFit
	psi-functions
	psi2propII
	residuals.rlmerMod
	rlmer
	rlmerMod-class
	saveDatasets
	shortenLabelsKS2022
	splitDatasets
	viewCopyOfSimulationStudy
	Index

