
Package ‘rtmpinv’
January 30, 2026

Type Package

Title Tabular Matrix Problems via Pseudoinverse Estimation

Version 0.2.0

Description The Tabular Matrix Problems via Pseudoinverse Estimation (TMPinv)
is a two-stage estimation method that reformulates structured table-based
systems - such as allocation problems, transaction matrices, and
input-output tables - as structured least-squares problems. Based on the
Convex Least Squares Programming (CLSP) framework, TMPinv solves systems
with row and column constraints, block structure, and optionally reduced
dimensionality by (1) constructing a canonical constraint form and applying
a pseudoinverse-based projection, followed by (2) a convex-programming
refinement stage to improve fit, coherence, and regularization (e.g., via
Lasso, Ridge, or Elastic Net).

License MIT + file LICENSE

Encoding UTF-8

Language en-US

Depends R (>= 4.2)

Imports rclsp (>= 0.3.0)

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

URL https://github.com/econcz/rtmpinv

BugReports https://github.com/econcz/rtmpinv/issues

RoxygenNote 7.3.3

NeedsCompilation no

Author Ilya Bolotov [aut, cre] (ORCID:
<https://orcid.org/0000-0003-1148-7144>)

Maintainer Ilya Bolotov <ilya.bolotov@vse.cz>

Repository CRAN

Date/Publication 2026-01-30 20:10:02 UTC

1

https://github.com/econcz/rtmpinv
https://github.com/econcz/rtmpinv/issues
https://orcid.org/0000-0003-1148-7144

2 tmpinv

Contents
tmpinv . 2

Index 7

tmpinv Solve a tabular matrix estimation problem via Convex Least Squares
Programming (CLSP).

Description

Solve a tabular matrix estimation problem via Convex Least Squares Programming (CLSP).

Usage

tmpinv(
S = NULL,
M = NULL,
b_row = NULL,
b_col = NULL,
b_val = NULL,
i = 1L,
j = 1L,
zero_diagonal = FALSE,
reduced = NULL,
symmetric = FALSE,
bounds = NULL,
replace_value = NA_real_,
tolerance = sqrt(.Machine$double.eps),
iteration_limit = 50L,
r = 1L,
final = TRUE,
alpha = NULL,
...

)

Arguments

S numeric matrix of size (m + p) × (m + p), optional. A diagonal sign-slack
(surplus) matrix with entries in {0,±1}.

• 0 enforces equality (== b_row or b_col),
• 1 enforces a lower-than-or-equal (≤) condition,
• -1 enforces a greater-than-or-equal (≥) condition. The first m diagonal en-

tries correspond to row constraints, and the remaining p correspond to col-
umn constraints.

tmpinv 3

M numeric matrix of size k × (mp), optional. A model matrix, typically with
entries in {0, 1}. Each row defines a linear restriction on the flattened solution
matrix. The corresponding right-hand-side values must be supplied in b_val.
This block encodes known cell values.

b_row numeric vector of length m. Right-hand-side vector of row totals.
b_col numeric vector of length p. Right-hand-side vector of column totals.
b_val numeric vector of length k. Right-hand-side vector of known cell values.
i integer, default = 1. Number of row groups.
j integer, default = 1. Number of column groups.
zero_diagonal logical scalar, default = FALSE. If TRUE, enforces a structural zero diagonal.
reduced integer vector of length 2, optional. Dimensions of the reduced problem. If

supplied, estimation is performed block-wise on contiguous submatrices. For
example, reduced = c(6,6) yields 5 × 5 blocks with one slack row and one
slack column (edge blocks may be smaller).

symmetric logical scalar, default = FALSE. If TRUE, enforces symmetry of the estimated
matrix via x <- 0.5 * (x + t(x)). This applies to tmpinv$x only. For symmetry
in the model, add explicit symmetry rows to M instead of using this flag.

bounds NULL, numeric(2), or list of numeric(2). Bounds on cell values. If a single
pair c(low, high) is given, it is applied to all mp cells. Example: c(0, NA).

replace_value numeric scalar or NA, default = NA. Final replacement value for any cell that
violates the bounds by more than the given tolerance.

tolerance numeric scalar, default = sqrt(.Machine$double.eps). Convergence toler-
ance for bounds.

iteration_limit

integer, default = 50. Maximum number of iterations allowed in the refinement
loop.

r integer scalar, default = 1 Number of refinement iterations for the first step of
the CLSP estimator.

final logical scalar, default = TRUE If FALSE, only the first step of the CLSP estimator
is performed.

alpha numeric scalar, numeric vector, or NULL, Regularization parameter for the sec-
ond step of the CLSP estimator.

... Additional arguments passed to the rclsp solver.

Value

An object of class "tmpinv" containing the fitted CLSP model (tmpinv$model) and solution matrix
(tmpinv$x).

Note

1. In the reduced model, S is ignored. Slack behaviour is inferred from block-wise marginal
totals. Likewise, M must be a unique row subset of an identity matrix (diagonal-only). Non-
diagonal model matrices cannot be mapped into reduced blocks.

2. Internal keyword arguments b_lim and C_lim are passed to .tmpinv.instance() and contain
cell-value bounds. These arguments are ignored in the reduced model.

4 tmpinv

See Also

clsp

CVXR-package

Examples

Example 1: AP/TM reconstruction on a symmetric 20x20 matrix
(10 percent known entries)

RNGkind("L'Ecuyer-CMRG")
set.seed(123456789)

m <- 20L
p <- 20L

sample (dataset)
X_true <- abs(matrix(rnorm(m * p), nrow = m, ncol = p))
X_true <- 0.5 * (X_true + t(X_true)) # symmetric

idx <- sample.int(
m * p,
size = max(1L, floor(0.1 * (m * p))), # 10 percent known
replace = FALSE

)

M <- diag(m * p)[idx, , drop = FALSE]
b_row <- rowSums(X_true)
b_col <- colSums(X_true)
b_val <- matrix(as.numeric(X_true)[idx], ncol = 1L)

model (unique MNBLUE estimator)
result <- tmpinv(

M = M,
b_row = b_row,
b_col = b_col,
b_val = b_val,
bounds = c(0, NA), # non-negativity
symmetric = TRUE,
r = 1L,
alpha = 1.0

)

coefficients
print("true X:")
print(round(X_true, 4))

print("X_hat:")
print(round(result$x, 4))

numerical stability
print("\nNumerical stability:")
print(paste(" kappaC :", result$model$kappaC))

tmpinv 5

print(paste(" kappaB :", result$model$kappaB))
print(paste(" kappaA :", result$model$kappaA))

diagnostics
print("\nGoodness-of-fit:")
print(paste(" NRMSE :", result$model$nrmse))
print(paste(" Diagnostic band (min):", min(result$model$x_lower)))
print(paste(" Diagnostic band (max):", max(result$model$x_upper)))

bootstrap NRMSE t-test
tt <- rclsp::ttest(

result$model,
sample_size = 30L,
seed = 123456789L,
distribution = rnorm,
partial = TRUE

)
print("\nBootstrap t-test:")
print(tt)

Example 2: AP/TM reconstruction on a 40x40 matrix
with zero diagonal and reduced (20,20) submodels
(20 percent known entries)

RNGkind("L'Ecuyer-CMRG")
set.seed(123456789)

m <- 40L
p <- 40L

sample (dataset)
X_true <- abs(matrix(rnorm(m * p), nrow = m, ncol = p))
diag(X_true) <- 0 # zero diagonal

idx <- sample.int(
m * p,
size = max(1L, floor(0.2 * (m * p))), # 20 percent known
replace = FALSE

)

M <- diag(m * p)[idx, , drop = FALSE]
b_row <- rowSums(X_true)
b_col <- colSums(X_true)
b_val <- matrix(as.numeric(X_true)[idx], ncol = 1L)

model (reduced models of size 20x20)
result <- tmpinv(

M = M,
b_row = b_row,
b_col = b_col,
b_val = b_val,
zero_diagonal = TRUE,
reduced = c(20L, 20L),

6 tmpinv

bounds = c(0, NA),
r = 1L,
alpha = 1.0

)

print("true X:")
print(round(X_true, 4))

print("X_hat:")
print(round(result$x, 4))

numerical stability across submodels
kC <- sapply(result$model, function(CLSP) CLSP$kappaC)
kB <- sapply(result$model, function(CLSP) CLSP$kappaB)
kA <- sapply(result$model, function(CLSP) CLSP$kappaA)

print("\nNumerical stability (min-max across models):")
print(paste(" kappaC :", range(kC)))
print(paste(" kappaB :", range(kB)))
print(paste(" kappaA :", range(kA)))

diagnostics (min-max)
nrmse <- sapply(result$model, function(CLSP) CLSP$nrmse)
x_low <- unlist(lapply(result$model, function(CLSP) CLSP$x_lower))
x_up <- unlist(lapply(result$model, function(CLSP) CLSP$x_upper))

print("\nGoodness-of-fit (min-max across models):")
print(paste(" NRMSE :", range(nrmse)))
print(paste(" Diagnostic band (min):", range(x_low)))
print(paste(" Diagnostic band (max):", range(x_up)))

bootstrap t-tests across all block models
print("\nBootstrap t-tests:")
tests <- lapply(

result$model,
function(CLSP) rclsp::ttest(

CLSP,
sample_size = 30L,
seed = 123456789L,
distribution = rnorm,
partial = TRUE

)
)
print(tests)

Index

clsp, 4
CVXR-package, 4

tmpinv, 2

7

	tmpinv
	Index

