Package ‘tind’

February 2, 2026
Title A Common Representation of Time Indices of Different Types
Version 0.2.4
Date 2026-02-02

Description Provides an easy-to-use tind class representing time indices
of different types (years, quarters, months, ISO 8601 weeks, dates,
time of day, date-time, and arbitrary integer/numeric indices).
Includes an extensive collection of functions for calendrical computations
(including business applications), index conversions, index parsing,
and other operations. Auxiliary classes representing time differences and
time intervals (with set operations and index matching functionality) are
also provided. All routines have been optimised for speed in order
to facilitate computations on large datasets. More details regarding
calendars in general and calendrical algorithms can be found in
**Calendar FAQ" by Claus Tgndering <https://www.tondering.dk/claus/calendar.html>.

Depends R (>=3.6.0)

Suggests crayon, methods, stats, testthat, knitr, rmarkdown, fansi,
htmltools

Enhances utils, graphics, ggplot2, zoo, timeDate, chron, data.table,
hms

Collate base-utils.R base-in.R base-yqmwd.R base-tz.R base-th.R
base-res.R base-pretty.R base-locale.R base-types.R
base-parse.R tind.R format.R parse.R coercion.R methods.R
tdiff.R tinterval.R types.R resolution.R tzone.R tspan.R
print_summ_str.R ops.R setops_match.R round.R cut.R seq.R
ord_reg.R calendar.R other.R calendars.R business.R merge.R
pretty.R plot-scales.R package.R

License GPL-3
URL https://github.com/dever-pl/tind

BugReports https://github.com/dever-pl/tind/issues
Encoding UTF-8

NeedsCompilation yes

VignetteBuilder knitr

https://www.tondering.dk/claus/calendar.html
https://github.com/dever-pl/tind
https://github.com/dever-pl/tind/issues

2 Contents

RoxygenNote 7.3.3

Author Grzegorz Klima [aut, cre, cph]
Maintainer Grzegorz Klima <dever@post.pl>
Repository CRAN

Date/Publication 2026-02-02 21:10:02 UTC

Contents
tind-package 3
as.tind L e e 4
ASAZONE . . . o v o e e e e e e e e e e e e e e e e e e e 7
axis.tind L. e e 9
AXIS_ T . e e e 10
bizday e 11
calendar-names e e e e e e e 14
calendars L. e e e 15
calendrical-computations 0oL 20
current-date-time e e e e e e e e e e e 22
CUL . . v v e e e e e e e e e e e 23
date2num L e e e e e e e e e 25
date_time e e e 26
daycount_frac L e 27
diff . . . 29
format e e e 30
JAN L e e 33
match_ t 35
METZE .« v v v e v e 36
ODPS . o o e 38
ordered-regular 41
PATSE_t . o o ot e e e e e e e e e e 43
PIEtty . . . o e 45
resolution_t e 47
rounding e e e e e e 48
scale_tind e 51
SEQ « v e e e e e e e e e e 54
SEL-OPS « v v o e e e e e e e e e e e e e e e e 55
tdiff . . e 58
time-index-Components oot e e e e 61
time-indeX-propertieso e e e e e e e e e 63
tind e 65
tiNd-COBTCION i i e e e e e e e e e 67
tind-methods L e 69
tind-other e e 71
tinterval L L e e e e e 73
L_LYPEe . o o o o e e e 76

tind-package 3

17270 1 1< 79
LUNIE . . L e e e e 82
year_frac e e e 83
Index 85
tind-package A Common Representation of Time Indices of Different Types
Description

The goal of tind project is to provide users with a single class capable of representing time indices
of different types. Currently, these include: years, quarters, months, ISO 8601 weeks, dates, time
of day, date-time, and arbitrary integer/numeric indices. tind provides a unified interface and a
collection of methods, which can be used with all supported index types.

The package provides an extensive collection of functions for calendrical computations (including
business applications), index conversions, index parsing, and other operations. Examples of use of
tind functions and methods can be found in their documentation and in package vignettes.

All routines have been optimised for speed in order to facilitate computations on large datasets.

Details

Options Controlling tind Behaviour

tind.abbr.year.start is a number in range 0-99 determining how two-digit years are interpreted
during parsing. By default (69), two-digit numbers smaller than 69 are interpreted as years in 2000s
and equal or greater than 69 as years in 1900s.

tind.warn.diff.tz is a logical value (TRUE by default) determining whether warnings should
be raised when performing computations involving date-time indices with different time zone at-
tributes.

Implementation

The code structure is hierarchical by design. The first layer consists of low-level C and R functions
working with particular time index types and converting between them. The second layer consists
of exported (user-accessible) functions, which are responsible for argument checks and dispatching
to the 1st layer functions.

Computations with tind for types other than date-time are implemented in C from scratch. Many al-
gorithms were taken from Calendar FAQ by Claus Tgndering. For date-time computations, tind par-
tially relies on base R infrastructure (POSIX1t class), that is on conversion as.POSIX1t.numeric.

Author(s)

Grzegorz Klima <dever @post.pl>

References

Claus Tgndering, Calendar FAQ, https://www.tondering.dk/claus/calendar.html.

https://www.tondering.dk/claus/calendar.html

4 as.tind

as.tind Conversion to tind Class

Description

as.tind method allows for conversion of numeric and character vectors as well as objects of Date,
POSIXct, and POSIX1t classes to tind objects to tind.

as.tind method for tind class allows to change the type of index of an object of tind class. Con-
venience functions as.year, as.quarter, as.month, as.week, as.date, as.date_time, as. time
allow to quickly convert argument to the indicated type.

Usage

as.tind(x, ...)

S3 method for class 'numeric'
as.tind(x, type = NULL, tz = NULL, ...)

S3 method for class 'character'

as.tind(
X,
type = NULL,
format = NULL,
order = NULL,
locale = NULL,
tz = NULL,

)

S3 method for class 'Date'’
as.tind(x, ...)

S3 method for class 'POSIXct'
as.tind(x, tz = NULL, digits = oL, ...)

S3 method for class 'POSIX1t'
as.tind(x, tz = NULL, digits = 0L, ...)

S3 method for class 'data.frame'
as.tind(x, ...)

S3 method for class 'tind'
as.tind(x, type = NULL, tz = NULL, ...)

as.year(x, ...)

as.quarter(x, ...)

as.tind 5

as.month(x, ...)

as.week(x, ...)

as.date(x, ...)

as.date_time(x, tz = NULL, ...)

as.time(x, ...)

Arguments

X an R object (e.g., a numeric vector, a character vector, a Date or POSIXct ob-
ject).
further arguments passed to or from other methods.

type a character determining time index type or NULL.

tz (optional) a character value determining the time zone (the default NULL is inter-
preted as the system time zone). See tzone documentation for information on
time zones.

format a character determining input format(s) as in strptind. (or NULL).

order a character determining order(s) of time index components in the input as in
parse_t (or NULL).

locale (optional) a character value determining locale or NULL (the default, interpreted
as the current system locale), see calendar-names for information on locale set-
tings.

digits an integer value (0-6) determining the number of decimal places for seconds to

be preserved during conversion (0 by default).

Details

Numeric vectors

The following numeric representations are automatically recognised (between year 1800 and 2199):
YYYY (years), YYYYQ (quarters), YYYYMM (months), and YYYYMMDD (dates). Conversion from numeric
vectors to other index types requires type specification via type argument.

Date-time indices are represented as number of seconds since the Epoch (1970-01-01 00:00 UTC).
Time of day is represented as the number of seconds since midnight.

Character vectors

as.tind automatically recognises many different formats. If automatic recognition fails, type
argument could help identify the format. For less standard formats / representations, one can use
either format argument (which is forwarded to strptind) or order argument (which is forwarded
to parse_t).

Data frames

If a data frame has one column, it is converted using appropriate method depending on the column
type. In case there are two or more columns, the approach depends on column types. If there are

6 as.tind

two columns representing dates and times (time of day) either as tinds or other classes recognised
by the package, date-time indices are constructed using date_time function. When all columns are
numeric, the method forwards to tind constructor. order argument has to be provided (via .. .)
indicating order of time index components in the columns. In the general case, all columns are
pasted (with spaces separating them) and the resulting character vector is parsed. This will again
require order argument (or type, or format). Due to pasting and subsequent parsing, this may not
be computationally efficient for larger datasets.

Date and POSIXt classes

Conversion of Date objects returns time index of type "d" (date). POSIXct and POSIX1t classes are
converted to index of type "t" (date-time). If time zone attribute is not set for the argument, system
time zone is assumed.

Other classes representing time indices

For conversions between tind class and other classes (from packages other than base), see tind-other.

Value

An object of tind class of length equal to the length of the argument. For data frame version the
length of the result is equal to the number of rows in the data frame.

See Also

tind constructor, strptind function for format specifications, parse_t function for order speci-
fications, tind-coercion for conversions from tind, and tind-other for conversions between tind
class and other classes (from packages other than base).

Examples

numeric and character arguments

years

as.tind(1999)

as.tind("1999")

quarters

as.tind(20043)

as.tind("20043")

months

as.tind(200109)

as.tind("2001-09")

as.tind("200109")

need proper locale to recognise English month names
as.tind("Sep 2001", locale = "C")

weeks (ISO 8601)

numeric YYYYWW representation is not automatically recognised, need type
as.tind (200936, "w")

as.tind("2009-W36")

dates

as.tind(20200726)

as.tind("2020-07-26")

need proper locale to recognise English month names
as.tind("Jul 26, 2020", locale = "C")
as.tind("07/26/20")

as.tzone 7

date-time

as.tind("2000-08-16 ©8:17:38")

time

as.tind("08:17:38")

as.tind(08 * 3600 + 17 * 60 + 38, type = "h")

conversion from Date and POSIXct
as.tind(Sys.Date())
as.tind(Sys.time())

as.year, ..., as.time
today

(x <= today())
as.year(x)
as.quarter(x)
as.month(x)
as.week(x)

midnight
as.date_time(x)
current time
(x <= now())
as.year(x)
as.quarter(x)
as.month(x)
as.week(x)
as.date(x)
as.time(x)

as.tzone Get the Same Date and Time in a Different Time Zone

Description
This method allows to determine time index representing the same date and time in a different time
zone.

Usage

as.tzone(x, tz)

S3 method for class 'tind'
as.tzone(x, tz)

S3 method for class 'POSIXct'
as.tzone(x, tz)

S3 method for class 'POSIX1t'
as.tzone(x, tz)

8 as.tzone

S3 method for class 'tinterval'
as.tzone(x, tz)

Arguments
X an object of tind class or of POSIXct/POSIX1t classes (or of other class for
which the method was implemented).
tz a character value determining the new time zone. See tzone documentation for
information on time zones.
Details

The underlying time (as measured by number of seconds since the Unix epoch in UTC) will change
so that the date-time components in the new and old time zones are the same. For tind arguments,
if (due to DST time changes or UTC offset changes) date-time indices do not occur in the new time
zone, NAs are introduced with a warning. For tinterval arguments, the result is adjusted with a
warning, in order not to create open-ended time intervals.

The method is implemented for objects of tind class of type "t" (date-time), objects of tinterval
class of type "t" (time intervals), as well as base POSIXct and POSIX1t classes.

List of time zones supported by the particular R installation can be obtained via a call to 01sonNames
function.

Value

An object of the same class and length as x with adjusted underlying date-time representation and
time zone set to tz.

See Also

tzone method and date_time for construction od date-time indices from its components.

Examples

if (all(c("Europe/Warsaw”, "America/New_York") %in% OlsonNames())) {
check time in one time zone

print(nw <- now(tz = "Europe/Warsaw"))

the same date-time in a new time zone

print(nw2 <- as.tzone(nw, "America/New_York"))

note the time difference (equal to the difference of UTC offsets)
warning on different time zones will be issued
print(suppressWarnings(nw2 - nw))

try(nw2 - nw)

3

axis.tind 9

axis.tind Add Time Axis — Plotting with graphics Package

Description

axis.tind adds time axis to a plot. Axes will be added automatically by graphics, but the default
behaviour can be overridden by plotting without axis and then calling axis. tind, see Examples.

Usage

axis.tind(
side,
X,
at,
format
locale = NULL,
labels = TRUE,
n.breaks = 5L,

NULL,

)
Arguments
side see axis.
X time indices for which an axis is to be created.
at (optional) time indices at which manual tick-marks and labels should be placed.
format (optional) a character string determining label format or a formatting function,
see format.
locale (optional) a character string determining locale to be used for formatting labels,
see calendar-names for information on locale settings.
labels a logical value determining whether automatic labels should be placed at tick-
marks or a character vector of labels.
n.breaks an integer value, desired number of breaks.
further arguments passed to axis.
Value

Same as for axis, used for its side effect, which is to add time axis to an existing plot.

See Also

pretty for computing pretty breakpoints, axis_t for calculating axis parameters, scale_tind for
creating axes with ggplot2.

10 axis_t

Examples

load graphics

library(graphics)

artificial data

N <- 100

df <- data.frame(d = today() + (-N + 1):0, y = cumsum(rnorm(N)))

default axis

plot(df$d, dfsy, type = "1")

custom date format with potentially more breaks and a smaller font
plot(dfd, dfy, type = "1", xaxt = "n")

axis.tind(1, df$d, format = "%m/%d/%y", n.breaks = 7L, cex.axis = .9)

axis_t Compute Time Axis Parameters for Plotting

Description

Auxiliary function axis_t returns a six-element list with axis limits (in Cartesian coordinates),
tick-mark positions (in Cartesian coordinates), tick-mark labels (character vector), positioning of
minor tick-marks (in Cartesian coordinates), resolution of indices (in Cartesian coordinates), and
limits argument converted to a tinterval of the same index type as x. The results can be used
for manual creation of axes in plots.

Usage

axis_t(
X,
limits = NULL,
format = NULL,
locale = NULL,
expand = FALSE,
n.breaks = 5L

)
Arguments

X time indices for which an axis is to be created.

limits NULL for automatic limits, tinterval of length 1 or tind of length 2.

format (optional) a character string determining label format (see format) or a custom
formatting function.

locale (optional) a character string determining locale to be used for formatting labels,
see calendar-names for information on locale settings.

expand a logical value. If TRUE, limits are expanded by 3% on both sides.

n.breaks an integer value, desired number of breaks.

bizday 11

Value

A six-element list with scale limits (1im), vector of tick-mark positions (at), character vector with
tick-mark labels (labels), vector of minor tick-mark positions (minor), resolution (in Cartesian
coordinates) of time indices (resolution), and 1imits argument converted to a tinterval of the
same index type as x (1imits).

See Also

pretty for computing pretty breakpoints, axis.tind for creating axes with graphics package,
scale_tind for creating axes with ggplot2.

Examples

load graphics

library(graphics)

artificial data

N <- 180

df <- data.frame(d = today() + (-N + 1):0, y = cumsum(rnorm(N)))
(axt <- axis_t(df$d, format = "%m/%d/%y", n.breaks = 6L))

custom time axis with minor breaks

plot(dfd, dfy, xlim = axt$lim, type = "1", xaxt = "n", xaxs = "i")
axis(1, at = axt$lim, labels = FALSE, 1lwd = 1, lwd.ticks = @)
axis(1, at = axt$at, labels = axt$labels, lwd = @, lwd.ticks = .7)
axis(1, at = axt$minor, labels = FALSE, 1lwd = @, lwd.ticks = .4)

bizday Business Days

Description

bizday computes the nearest business day from the date given a calendar function and one of the
date rolling conventions (see Details).

bizday_advance advances date(s) by n business days.
next_bizdays determines the following n business days after a date.

first_bizday_in_month/quarter and last_bizday_in_month/quarter determine the first and
the last business day in a month and a quarter.

bizdays_in_month, bizdays_in_quarter, and bizdays_in_year return the number of business
days in particular time period.

bizday_diff computes the number of business days between two dates.

12

Usage

bizday

bizday(d, convention, calendar)

bizday_advance(d, n = 1L, calendar)

next_bizdays(d, n = 1L, calendar)

first_bizday_in_month(m, calendar)

last_bizday_in_month(m, calendar)

first_bizday_in_quarter(q, calendar)

last_bizday_in_quarter(q, calendar)

bizdays_in_month(m, calendar)

bizdays_in_quarter(q, calendar)

bizdays_in_year(y, calendar)

bizday_diff(d1, d2, calendar, start.incl = TRUE, end.incl = FALSE)

Arguments

d
convention
calendar

n

m

q

y
di

d2

start.incl

end.incl

Details

an object of tind class or an R object coercible to it, dates.
a character value determining date rolling convention, see Details.
a function determining working days and holidays (see Details) or NULL.

an integer vector (for bizday_advance) or integer value (for next_bizdays),
numebr of business days.

an object of tind class or an R object coercible to it, months.
an object of tind class or an R object coercible to it, quarters.
an object of tind class or an R object coercible to it, years.

an object of tind class or an R object coercible to it, start dates.
an object of tind class or an R object coercible to it, end dates.

a logical value, if TRUE, the starting date is included in computation of the num-
ber of business days between two dates (TRUE by default).

a logical value, if TRUE, the end date is included in computation of the number
of business days between two dates (FALSE by default).

The vectorised implementations of bizday, bizday_advance, and next_bizdays work under the
assumption of at least one business day in a week and could return NAs for pathological calendar

functions.

bizday 13

bizday_advance with increment O will adjust the date to the first preceding business day if it is not
a business day (will act as bizday(d, "p", *)).

next_bizdays accepts negative arguments and returns an increasing sequence of business dates
prior to d of length abs(n).

Conventions
The following date rolling conventions are supported (applied when the day is not a business day):

n.n

p" preceding, the previous business day,
"f" following, the next business day,

"mp"” modified preceding, the previous business day unless it falls in the previous month, in which
case the next business day is chosen,

"mf" modified following, the next business day unless it falls in the next month, in which case the
the previous business day is chosen,

"mf2" modified following bimonthly, the next business day unless it falls in the next month or the
next half of the month (after 15th), in which case the the previous business day is chosen.

Calendar Functions

Calendar function should take a vector of days as an argument and return a logical vector of the
same length marking business days (as TRUE) or a list of two or three logical vectors of the same
length with the first marking business days. See also calendars for real-life examples of calendar
functions. When calendar function is not supplied, Monday-Friday are marked as business days.

Value

bizday and first/last_bizday_in_month/quarter return vectors of dates of the same length as
their first argument.

bizday_advance returns a vector of dates of length equal to length of the longer of the first two
arguments (d and n).

next_bizdays returns a vector of dates of length abs(n).

bizday_diff and bizdays_in_month/quarter/year return integer vectors.

See Also

calendars for examples of calendar functions, daycount_frac for computations of day count
fractions / accrual factors.

Examples

a trivial calendar function (Mon-Fri)
monfri <- function(d) (day_of_week(d) <= 5L)
2022-10-01 was Saturday
calendar("”2022-10", monfri)

(d <- as.date("2022-10-01"))

bizday(d, "p", monfri)

bizday(d, "mp"”, monfri)

bizday(d, "f", monfri)

bizday(d, "mf"”, monfri)

14

bizday(d, "mf2", monfri)

2022-10-15 was Saturday again
calendar(”2022-10", monfri)

(d <- as.date("2022-10-15"))
bizday(d, "p", monfri)
bizday(d, "mp"”, monfri)
bizday(d, "f", monfri)
bizday(d, "mf", monfri)
bizday(d, "mf2", monfri)

2022-12-31 was also Saturday
calendar("2022-12", monfri)

(d <- as.date("2022-12-31"))
bizday(d, "p"”, monfri)
bizday(d, "mp"”, monfri)
bizday(d, "f", monfri)
bizday(d, "mf", monfri)
bizday(d, "mf2", monfri)

calendar-names

calendar-names

Calendar Names

Description

These three functions return (abbreviated and full) names of months and days of week as well as
AM/PM indicators in the current or user-provided locale.

How the month and weekday names are actually returned depends both on the selected locale and

character set / code page setting.

Usage

month_names(locale = NULL, abbreviate

TRUE)

weekday_names(locale = NULL, abbreviate = TRUE)

ampm_indicators(locale = NULL)

A character vector of length 12, 7, or 2.

Arguments
locale a character value determining locale or NULL (default, interpreted as the current
system locale).
abbreviate a logical value, if TRUE, abbreviated names are returned; if FALSE, full names
are returned. TRUE by default.
Value

calendars 15

Locale Settings

Unfortunately, locale and character set naming were not standardised across different operating
systems for many years. On modern operating systems, however, locale is usually of the form
xx_XX (xx for language, XX for country) optionally followed by a dot and a character set identifier,
for example, UTF-8.

"C" is a special locale that should always be available and defaults to American English.

See Also

format for formatting objects of tind class.

Examples

current system locale
month_names()
weekday_names ()

try(

ampm_indicators()

)

try({
English abbreviated month names

print(month_names("en_GB"))

French month names
print(month_names("fr_FR.UTF-8", FALSE))
German abbreviated month names
print(month_names("de_DE.UTF-8"))

Polish abbreviated month names
print(month_names("pl_PL.UTF-8"))

English weekday names
print(weekday_names("en_GB", FALSE))

French abbreviated weekday names
print(weekday_names("fr_FR.UTF-8"))

German weekday names
print(weekday_names("de_DE.UTF-8", FALSE))
Polish abbreviated weekday names
print(weekday_names("pl_PL.UTF-8"))

US am/pm indicators
print(ampm_indicators("en_US"))

UK am/pm indicators
print(ampm_indicators("en_GB"))

b

calendars Working with Custom Calendars

16 calendars

Description

tind package provides an extensive collection of functions for calendrical computations allowing
users to write custom calendar functions that can be used to mark business days, holidays, and
other observances. See Writing custom calendar functions for an introduction to such functions and
Examples for two real-life examples. These functions can later be used for pretty printing calendars
on the console (using calendar function), quick identification of business days, holidays, and other
observances (using eval_calendar function) and business day computations (see bizday).

calendar pretty prints a calendar for year(s) or month(s) on the console using user-provided calen-
dar function determining business days and holidays.

eval_calendar applies user-provided calendar function to a sequence of dates. It is designed to be
used by developers who wish to implement new applications of custom calendars.

Usage

calendar(ym, calendar = NULL, name = NULL, locale = NULL)

eval_calendar(d, calendar)

Arguments
ym an object of tind class or an R object coercible to it determining the year or
month for which calendar is to be printed, current month (and preceding or
following months) is the default.
calendar a function determining working days and holidays (see Details), or NULL.
name (optional) a character value (a short string) to be printed beside the year or month
(or NULL).
locale (optional) a character value determining locale or NULL (the default, interpreted
as the current system locale), see calendar-names for information on locale set-
tings.
d an object of tind class or an R object coercible to it representing consecutive
dates.
Details

calendar uses crayon package (when available) for highlighting dates. When calendar function
(calendar argument) is not provided, Monday-Friday are marked as working days. Current date is
marked by square brackets ([]).

For months, calendar additionally prints information about observances in a month provided that
values in the list returned by the function passed as calendar argument are named.

Value

calendar returns invisible NULL and is used for its side effects. eval_calendar returns a 3-element
list of tind objects representing business days ($bizdays), holidays ($holidays), and other obser-
vances ($otherobs).

calendars 17

Writing Custom Calendar Functions

Calendar function should take a vector of dates as an argument and return logical vector of the same
length marking business days (as TRUE) or a list of two or three logical vectors of the same length
with the first marking business days (as TRUE), the second marking holidays (as TRUE), and the third
marking other observances / events (as TRUE). The second and the third returned logical vectors can
be named indicating which observances are marked.

The 4 basic functions to be used when writing calendars are: year, month, day, and day_of_week.
These can be used to mark fixed observances and weekends.

nth_dw_in_month and last_dw_in_month can be used to determine dates of movable observances
falling on the nth or the last occurrence of a day of week in a particular month.

easter function can be used to determine date of Easter in a year as well as of other movable
observances with a fixed distance from Easter.

Two examples of calendar functions are provided below. These two functions can be used as tem-
plates for developing custom calendar functions. In the examples, one will also find a programming
trick to easily name holidays and other observances.

A Note on the Design

One could argue that a design in which calendar functions should return logical vectors or lists of
logical vectors is not intuitive and tind (vectors of dates) should be returned instead (thus making
eval_calendar function redundant). Firstly, logical vectors are easy and fast to work with. By
definition, a business day or a holiday must satisfy some conditions, which leads to logical val-
ues. Secondly, in some applications (for example counting business days) one would have to use
matching to get integers or logical values back from time indices.

Note

tind package does not provide a calendar for any country, region, or market. Instead, it gives users
all the tools necessary to create customised calendars. See Examples section below for real-life
examples of calendar functions, which could be used as templates.

See Also

time-index-components, calendrical-computations, Ops, bizday.

Examples

US (federal) calendar with holiday names
calendar_US <- function(dd)
{
dd <- as.tind(dd)
y <- year(dd)
m <- month(dd)
d <- day(dd)
newyear <- (m == 1) & (d == 1)
martinlking <- (y >= 2000) & (m == 1) & (dd == nth_dw_in_month(3, 1, dd))
presidentsday <- (m == 2) & (dd == nth_dw_in_month(3, 1, dd))
memorialday <- (m == 5) & (dd == last_dw_in_month(1, dd))
juneteenth <- (y >= 2021) & (m == 6) & (d == 19)
independence <- (m == 7) & (d == 4)

18

}

Polish calendar from 1990 on with holiday names as well as other

labor <- (m ==
columbus <- (m
veterans <- (m
thanksgiving <-
christmas <- (m

names of holnms should be the same as names of logical vectors above

== nth_dw_in_month(1, 1, dd))
(dd == nth_dw_in_month(2, 1, dd))

9) & (dd

== 10) &

== 11) & (d == 11)
(m == 11) & (dd

== nth_dw_in_month(4, 4, dd))

12) & (d == 25)

holiday <- newyear | martinlking | presidentsday |
memorialday | juneteenth | independence |
labor | columbus | veterans | thanksgiving |
christmas

holiday names - a programming trick

names(holiday) <- rep("", length(holiday))
holnms <- c(newyear = "New Year's Day",

martinlking = "Birthday of Martin Luther King, Jr.",

presidentsday = "Washington's Birthday”,

memorialday = "Memorial Day"”,

juneteenth = "Juneteenth National Independence Day",
independence = "Independence Day”,

labor = "Labor Day”,

columbus = "Columbus Day",

veterans = "Veterans Day",

thanksgiving = "Thanksgiving Day",

christmas = "Christmas Day")

lapply(names(holnms), function(nm) names(holiday)[get(nm)] <<- holnms[nm])

business days

business <- !holiday & (day_of_week(dd) %in% 1:5)
return (list(bizdays = business, holiday = holiday))

observances named
calendar_PL <- function(dd)

{

dd <- as.tind(d
y <- year(dd)

m <- month(dd)
d <- day(dd)

d)

public holidays

newyear <- (m == 1L) & (d == 1L)
epiphany <- (y >= 2011L) & (m

easterd <- easter(dd) == dd
eastermon <- easter(dd) + 1L == dd
labour <- (m == 5L) & (d == 1L)
== 5L) & (d == 3L)
pentecost <- easter(dd) + 49L == dd
corpuschristi <- easter(dd) + 60L == dd
assumption <- (m == 8L) & (d

constitution <-

allsaints <- (m
independence <-
christmaseve <-
christmas <- (m

(m

(m
(m

11L) & (d
= 11L) &
== 12L) &
12L) & (d

(
(d

1L) & (d == 6L)

15L)

L)

== 11L)

== 24L) & (y >= 2025)
25L)

christmas2 <- (m == 12L) & (d == 26L)
holiday <- newyear | epiphany |

calendars

calendars 19

easterd | eastermon |
labour | constitution |
pentecost | corpuschristi |
assumption |
allsaints | independence |
christmaseve | christmas | christmas2
holiday names
names(holiday) <- rep(""”, length(holiday))

holnms <- c(newyear = "New Year"”, epiphany = "Epiphany”,
easterd = "Easter"”, eastermon = "Easter Monday”,
labour = "Labour Day"”, constitution = "Constitution Day”,
pentecost = "Pentecost”, corpuschristi = "Corpus Christi”,
assumption = "Assumption of Mary”,
allsaints = "All Saints Day"”, independence = "Independence Day",
christmaseve = "Christmas Eve”,
christmas = "Christmas”, christmas2 = "Christmas (2nd day)")

lapply(names(holnms), function(nm) names(holiday)[get(nm)] <<- holnms[nm])
working/business days
work <- !holiday & (day_of_week(dd) <= 5L)
other observances
fatthursday <- easter(dd) - 52L == dd
shrovetuesday <- easter(dd) - 47L == dd
ashwednesday <- easter(dd) - 46L == dd
goodfriday <- easter(dd) - 2L == dd
primaaprilis <- (m == 4L) & (d == 1L)
flagday <- (m == 5L) & (d == 2L)
mothersday <- (m == 5L) & (d == 26L)
childrensday <- (m == 6L) & (d == 1L)
saintjohnseve <- (m == 6L) & (d == 23L)
allsoulsday <- (m == 11L) & (d == 2L)
saintandrewseve <- (m == 11L) & (d == 29L)
saintnicholasday <- (m == 12L) & (d == 6L)
christmaseve <- (m == 12L) & (d == 24L) & (y < 2025)
newyeareve <- (m == 12L) & (d == 31L)
other <- fatthursday | shrovetuesday | ashwednesday |
goodfriday |
primaaprilis |
flagday |
mothersday | childrensday | saintjohnseve |
allsoulsday |
saintandrewseve |
saintnicholasday | christmaseve |
newyeareve
names(other) <- rep(""”, length(other))
othernms <- c(fatthursday = "Fat Thursday”,
shrovetuesday = "Shrove Tuesday”,
ashwednesday = "Ash Wednesday”,
goodfriday = "Good Friday",
primaaprilis = "All Fool's Day"”,
flagday = "Flag Day",
mothersday = "Mother's Day"”,
childrensday = "Children's Day”,
saintjohnseve = "Saint John's Eve”,

20

allsoulsday = "All Souls' Day",

saintandrewseve = "Saint Andrew's Eve”,
saintnicholasday = "Saint Nicholas Day",
christmaseve = "Christmas Eve",
newyeareve = "New Year's Eve")

calendrical-computations

lapply(names(othernms), function(nm) names(other)[get(nm)] <<- othernms[nm])

return (list(work = work, holiday = holiday, other = other))

}

print the calendar for the current and the previous/next month and the current year
(Mon-Fri marked as working days)

calendar()

calendar(as.year(today()))

print Polish and US calendars for 2020 and the current year
calendar (2020, calendar = calendar_PL)

calendar (2020, calendar = calendar_US)
calendar(as.year(today()), calendar = calendar_PL)
calendar(as.year(today()), calendar = calendar_US)

print Polish and US calendars for 2020-01 and the current and the previous/next month

calendar("2020-01",
calendar(”2020-01",
calendar(calendar =
calendar(calendar =

calendar = calendar_PL)
calendar = calendar_US)
calendar_PL)
calendar_uUS)

get list of business days, holidays for 2020-01 and the current month
using Polish and US calendars

d202001 <- seq(as.date("2020-01-01"), "2020-01-31")
dcurrmnth <- seq(floor_t(today(), "m"), last_day_in_month(today()))
eval_calendar(d202001, calendar_PL)
eval_calendar(d202001, calendar_US)
eval_calendar(dcurrmnth, calendar_PL)
eval_calendar(dcurrmnth, calendar_US)

print calendars with names

calendar(calendar =
calendar(calendar =

calendar_PL, name = "PL")
calendar_US, name = "US (federal)")

print Polish calendar using Polish locale

try(
calendar(calendar =

)

calendar_PL, locale = "pl_PL.UTF-8")

calendrical-computations

Calendrical Computations in tind Package

calendrical-computations 21

Description

The following functions can be used for calendrical computations, especially determining dates of
movable observances. All function are vectorised.

nth_day_of_year returns the date of the nth day of a year.

last_day_in_month and last_day_in_quarter return the date of the last day in a month or a
quarter.

nth_dw_in_month returns the date of the nth day of week in a month.
last_dw_in_month returns the date of the last day of week in a month.

nth_dw_after and nth_dw_before calculate the nth occurrence of a day of week after or before
given date.

easter returns the date of Easter in a year.

Usage

nth_day_of_year(nth, y)
last_day_in_month(m)
last_day_in_quarter(q)
nth_dw_in_month(nth, dw, m)
last_dw_in_month(dw, m)
nth_dw_after(nth, dw, d)

nth_dw_before(nth, dw, d)

easter(y)
Arguments
nth a numeric value or vector of indices (1-366 for nth_day_of_year, 1-5 for
nth_dw_in_month). A positive integer (vector) for nth_dw_after and nth_dw_before.
y, g, m, d an object of tind class or an R object coercible to it.
dw a numeric value or vector of days of week (values in range 1-7 with Monday as
the 1st day).
Value

An object of tind class with dates (type "d").

See Also

time-index-components, time-index-properties, Ops. Further examples of application of these func-
tions can be found in calendar documentation. For calendrical computations involving business
days see bizday.

22 current-date-time

Examples

Thanksgiving in the US is observed on the fourth Thursday of November,
which in 2019 was on:

nth_dw_in_month(4, 4, 201911)

and Black Friday?

nth_dw_in_month(4, 4, 201911) + 1

Daylight Saving Time in the EU in 2019 began on the last Sunday in March,
which was on:
last_dw_in_month(7, 201903)

International Monetary Market dates in 2022 - 3rd Wednesday
of March, June, September, and December
nth_dw_in_month(3, 3, tind(y = 2022, m = 3 % 1:4))

determine frequencies of Easter months over the last 100 years
Easter months
em <- month(easter(as.year(today()) + (-99:0)), labels = TRUE)
table and barplot
table(em) / length(em) * 100
if (require(”graphics”, quietly = TRUE)) {
barplot(table(em) / length(em) * 100, ylim = c(@, 100), col = "#faf@6d")
3

current-date-time Current Date and Time

Description

today returns the current date and now returns the current date and time (in the system time zone or
the time zone provided by the user).

Usage

today(tz = NULL)

now(tz = NULL, digits = @)

Arguments
tz (optional) a character value determining the time zone (the default NULL is inter-
preted as the system time zone). See tzone documentation for information on
time zones.
digits an integer value giving the number of decimal places for seconds (0-6, 0 by

default).

cut 23

Value

today and now return an object of class tind of length 1 and type "d" (date) and "t" (date-time),
respectively.

Examples

today ()

now()

millisecond accuracy

now(digits = 3)

check current date and time in different time zones
if ("Asia/Tokyo" %in% OlsonNames()) {
now("Asia/Tokyo")

today("Asia/Tokyo")

3

if ("Europe/Warsaw” %in% OlsonNames()) {
now("Europe/Warsaw”)

today("Europe/Warsaw™)

3

if ("America/New_York” %in% OlsonNames()) {
now("America/New_York")
today("America/New_York")

3

cut Group Time Indices into Periods / Convert to a Factor

Description

cut method for objects of tind class allows to map / group time indices into periods. The periods
can be determined based on indices provided by the user or by (multiples of) units of time.

Usage
S3 method for class 'tind'
cut(x, breaks, labels = TRUE, right = FALSE, ...)
Arguments
X an object of tind class.
breaks a numeric value or a character string determining intervals, or an object of tind

class with cut points, see Details.

labels a logical value controlling the return type, which can be a factor (if TRUE, the
default), integer vector, or a 2-element list.

right a logical value determing whether indices should be matched to the closest left
cut point or to the closest right cut point, see Details.

(ignored) further arguments passed to or from other methods.

24 cut

Details

breaks argument controls how indices are grouped. It can be a number or a character string de-
termining resolution (or an object of tdiff class). Alternatively, breaks can be an object of tind
class with cut points.

When breaks determines resolution, only selected multiples of units are allowed, similarly to
floor_t function. Documentation of admissible units and multiples can be found in Details section
of resolution_t method documentation. If selected resolution corresponds to an index of different
type (for example grouping dates to 2-month periods), conversion takes place.

This method differs from cut.POSIXt and cut.Date in two aspects. Firstly, the periods are selected
differently, they are always aligned to resolution, see Examples. Secondly, as it does not rely on
seq but rounding of indices, the levels may be discontinuous. If users want to replicate behaviour of
cut from base, they should provide tind constructed via seq. tind method as breaks argument.

When breaks is a tind object, it is expected to be sorted without NAs. By default, indices in x
are matched to the closest index to the left (largest index that is not greater than the argument). If
right is set to TRUE, indices are matched to the closest index to the right (smallest index that is not
smaller than the argument). right cannot be set to TRUE if breaks is not a tind. It is acceptable
that breaks is of lower resolution than x provided that x is convertible to it. In such situations,
right cannot be set to TRUE.

By default, cut. tind returns a factor with levels created using as.character method. If labels
argument is set to FALSE, only the integer vector (of the same length as argument) of mappings
to intervals is returned (as in base method). If set to NA, a 2-element list is returned, with integer
vector of mappings as the first element and time indices determining intervals (grouping, levels) as
the second. labels can only take TRUE/FALSE/NA values.

Value

A factor if labels is TRUE, an integer vector if FALSE, and a 2-element list if NA, see Details.

See Also

rounding and resolution_t for description of admissible units and multiples that can be used for
breaks argument. match_t for matching time indices to other indices and time intervals.

Examples

basic use
(d <- seq.tind("2023-09-14", "2023-12-16"))

cut(d, "15d")
cut(d, "m")
cut(d, "2m")

tind given as breaks

cut(d, as.date(c("2023-09-01", "2023-11-16", "2023-12-16")))
cut(d, seq.tind("2023-01", "2023-12"))

random order with NAs

(d <- sample(c(d, NA)))

cut(d, "15d")

cut(d, "m")

cut(d, "2m")

dateZ2num 25

different behaviour of cut for tind and Date (alignment to 2 month resolution,
which means Jan, Mar, May, Jul, Sep, Nov)
(d <- seq.tind("2023-12-16", "2024-03-01"))
cut(d, "2 months")
cut(as.Date(d), "2 months")
replicate behviour of cut.Date by providing sequence of months
cut(d, seq.tind("2023-12", "2024-03", by = "2m"))
same
cut(d, seq.tind(as.month(min(d)), as.month(max(d)), by = "2m"))
check
all.equal(cut(as.Date(d), "2 months”, labels = FALSE),
cut(d, seq.tind("2023-12", "2024-03", by = "2m"), labels = FALSE))

date2num Conversion between Dates and Their Integer Representations

Description

date2num and num2date support conversion between tind dates and integer representations of
dates (days since ...) found in different software packages.

Usage

date2num(x, format)

num2date(x, format)

Arguments
X a tind with dates or an integer vector.
format a character value determing numeric representation of date; currently, the fol-
lowing are supproted: "R", "MATLAB", "Excel”, "SAS", "JDN" (Julian Day
Number).
Value

date2num returns an integer vector and num2date returns tind representing dates.

See Also

jdn for description of Julian Day Numbers.

Examples

(td <- today())

fmts <- c("R"”, "MATLAB”, "Excel”, "SAS", "JDN")

(n <- sapply(fmts, function(fmt) date2num(td, fmt)))
lapply(fmts, function(fmt) num2date(n[fmt], fmt))

26 date_time

date_time Construct Date-Time Indices from Date and Time Components

Description

date_time can be used to create date-time indices from its components: date and time of day (hour,
minute, and second).

date_time_split performs the opposite computation: given date-time indices, it returns a two-
element list with vectors of dates and times.

Usage
date_time(d, H, M, S, tz = NULL, grid = FALSE)

date_time_split(x)

Arguments
d an object of tind class of type date (type "d") or an R object coercible to it.
H a numeric vector with hour values or an R object coercible to time index of
time-of-day type (type "h").
M (optional) a numeric vector with minutes.
S (optional) a numeric vector with seconds.
tz (optional) a character value determining the time zone (the default NULL is inter-
preted as the system time zone). See tzone documentation for information on
time zones.
grid a logical value, if TRUE date-time indices are constructed from all combinations
of dates and times (FALSE by default).
X an object of tind class of type date-time (type "t") or an R object coercible to
it.
Details

If arguments of date_time are of different length, they are recycled.

When grid is set to TRUE, date-time indices are constructed from all combinations of dates and
times in a way similar to how functions expand.grid and kronecker work, see Examples.

If H argument is numeric, time of day is constructed from H, M, and S arguments. In the last step date
and time are combined in order to construct date-time index. If H is not numeric, M and S should not
be supplied and time of day is constructed from H argument only.

When provided without H argument date_time behaves just like as.date_time i.e. returns the
beginning of a day.

When an hour occurs twice in a day (due to DST/UTC offset changes), the second occurrence is
selected with a warning. When hour is missing (for the same reason), NA is returned with a warning.
See Examples.

daycount_frac 27

Value

date_time returns an object of tind class with date-time indices (type "t"). date_time_split
returns a two-element list with vectors of dates ($date) and times ($time).

See Also

tind constructor, time-index-components, tzone.

Examples

date_time(today()
date_time(today()
date_time(today()
date_time(today()
date_time(today()
date_time(today()
date_time(today()
date_time(today() @:1), "11")

date_time(today() 0:1), 11)

date_time(today() + (0:1))

using 'grid' argument

date_time(today() + 0:2, c(8, 12, 16))
date_time(today() + 0:2, c(8, 12, 16), grid = TRUE)

(@:1), "11:25:20.75")

(0:1), as.time("11:25:20.75"))
(0:1), 11, 25, 20.75)

(@:1), "11:25:20")

(0:1), 11, 25, 20)

(@:1), "11:25")

(0:1), 11, 25)

+ 4+ + 4+ + o+ o+ o+

split date-time
(nw <= now())
date_time_split(nw)

corner cases (with warnings)
if ("Europe/Warsaw” %in% OlsonNames()) try({
2020-10-25 had 25h with 02:00 repeated
date_time("2020-10-25", 0:2, tz = "Europe/Warsaw")
»
if ("Europe/Warsaw”" %in% OlsonNames()) try({
2021-03-28 had 23h with 02:00 missing
date_time("2021-03-28", 0:2, tz = "Europe/Warsaw")
»

daycount_frac Differences Between Dates as Year Fractions / Accrual Factors

Description

This function computes difference between two dates as year fraction given day count convention.

Usage

daycount_frac(dl, d2, convention)

28 daycount_frac

Arguments
di an object of tind class representing start date(s) or an R object coercible to it.
d2 an object of tind class representing end date(s) or an R object coercible to it.
convention a chacter string determining day count convention to be used, see Details.
Details

Currently, the following day count conventions are supported:

30/360 also known as 30/360 Bond Basis or 360/360, described in ISDA 2006 Section 4.16(f).
The formula is as follows:
360(1}2 — yl) + 30(m2 — ml) + (dQ — dl)
360 ’

where y denotes year, m month, d day of month. Dates are adjusted accoring to the following
rules: if d; is 31, it is changed to 30, if d2 is 31 and d; is 30 or 31, d5 is changed to 30.

30E/360 also known as Eurobond basis, 30/360 ICMA or 30/360 ISMA, described in ICMA Rule
251.1(1i), 251.2 and ISDA 2006 Section 4.16(g). The formula used is the same as above but
the adjustment of dates is different: if d; or ds is 31, it is changed to 30.

ACT/ACT also known as Actual/Actual and Actual/Actual ISDA, described in ISDA 2006 Section
4.16(b). Days between the dates (start included, end excluded) are divided into two groups:
falling in leap and non-leap years. The number of days in leap years is divided by 366, the
number of days in non-leap years is divided by 365. Finally, the two fractions are added.

ACT/365F also known as Actual/365 Fixed, described in ISDA 2006 Section 4.16(d). Difference in
days between dates divided by 365.

ACT/360 also known as Actual/360, described in ISDA 2006 Section 4.16(e). Difference in days
between dates divided by 360.

Value

A numeric vector.

References

International Swaps and Derivatives Association, Inc., 2006 ISDA Definitions, New York, 2006.

See Also

year_frac, bizday.

Examples

daycount_frac("2023-01-29", "2023-03-31", "30/360")
1/6 + 2/360

daycount_frac("2023-01-29", "2023-03-31", "30E/360")
1/6 + 1/360

daycount_frac(”2023-01-29", "2023-03-31", "ACT/ACT")
61 / 365

diff

29

daycount_frac("2024-01-29", "2024-03-31", "ACT/ACT")

62 / 366

daycount_frac(”2023-01-29", "2023-03-31", "ACT/365F")

61 / 365

daycount_frac("2024-01-29", "2024-03-31", "ACT/365F")

62 / 365

daycount_frac("2023-01-29", "2023-03-31", "ACT/360")

61 / 360

daycount_frac(”2024-01-29", "2024-03-31", "ACT/360")

62 / 360

diff Lagged Differences for tind and tdiff Objects

Description

diff method for tind and tdiff works in a standard way. For all index types except for integer
and numeric indices, differences of time indices are retuned as objects of tdiff class.

Usage

S3 method for class 'tind'

diff(x, lag = 1L, differences

L, ...)

S3 method for class 'tdiff'

diff(x, lag = 1L, differences

Arguments

X
lag

differences

Value

i, ...)

an object of tind class or tdiff class.
an integer value.
an integer value.

(ignored) further arguments passed to or from other methods.

nin

An object of tdiff class, except for x argument of tind class of type "i"” or "n" (integer/numeric
indices), in which case an integer or numeric vector is returned.

See Also

Ops.

30 format

Examples

(nn <- sample(1:10))

(x <= today() + nn)

all 3 should be the same
diff(x, 2, 2)
as.tdiff(diff(nn, 2, 2), "d")
diff(as.tdiff(nn, "d"), 2, 2)

format Conversion between Objects of tind Class and Character Vectors

Description

format method converts objects of tind class to character vectors given format and locale infor-
mation. strptind function accepts character vector with time indices and parses to create object of
tind class.

Usage

S3 method for class 'tind'
format(x, format, locale = NULL, ...)

strptind(x, format, locale = NULL, type = NULL, tz = NULL)

Arguments
X an object to be converted, a character vector for strptind, an object of tind
class for format.
format a character string or character vector determining string format(s) (see Details).
locale a character value determining locale to be used for %a, %A, %b, %B, and %p spec-
ifiers (month names, weekday names, and AM/PM indicators) or NULL (default,
interpreted as the current system locale), see calendar-names for information on
locale settings.
(ignored) further arguments passed to or from other methods.
type (optional) a character value determining time index type.
tz (optional) a character value determining the time zone (the default NULL is inter-
preted as the system time zone). See tzone documentation for information on
time zones.
Details

Names of accepted format specifiers except for %q are conformant with those used by format.Date,
format.Date and strptime. Accepted specifiers are listed below:

%a Abbreviated weekday name.

format

%A
%b
%B
%d
%e
%D
%F
%g
%G
%H
%1
%p
%]
%m
%M

%N

31

Weekday name.

Abbreviated month name.

Month name.

Day of month (01-31).

Day of month (1-31) with a leading space for a single-digit number.
American/C99 date representation %m/%d/%y.
ISO 8601 date %Y-%m-%d.

The last two digits of the week-based year.
The week-based year.

Hour (00-23).

Hour, 12-hour clock (1-12).

AM/PM indicator.

Day of year (001-366).

Month (01-12).

Minute (00-59).

Newline.

%0S[n] Second with n (0-6) decimal places.

%0S Second with up to 6 decimal places (automatically detected precision during parsing).

%q
%R
%S
%t
%T
%U
%V
AY
%Y

%z

%L

(Not supported by base R.) Quarter (1-4).

Same as %H: %M.

Second (00-59), leap seconds are not accepted on input.

Tab or whitespace.

Same as %H:%M: %S.

Weekday (1-7) with Monday as the first day in a week (ISO 8601).
Week (01-53) as defined in ISO 8601.

2-digit year (00-99), values 00-68 are prefixed by 20 and 69-99 by 19.
4-digit year (0-9999), 0 is allowed by ISO 8601.

Signed offset in hours and minutes from UTC, accepted input formats are +-HHMM, +-HH, +-HH: MM,
and letter Z for UTC.

Time zone abbreviation (also supported on input).

On very rare occasions (the need to use formats unsupported by strptind) users will have to call
strptime and then as. tind method or perform some regex preprocessing before calling strptind.

type argument is optional as strptind automatically determines index type from components.
However, it can be set as a safeguard against format misspecifications.

Value

strptime returns an object of tind class, format returns a character vector.

32 format

Note

The following strptime specifiers (as well as some others) are not supported (most often because
they are locale specific or do not comply with ISO 8601):

%c Locale-specific date and time.

%C Century (00-99).

%h Equivalent to %b.

%r 12-hour clock time using AM/PM indicator.
%U Week of the year (US convention).

%w Weekday (0-06).

%W Week of the year (UK convention).

%x Locale-specific date.

%X Locale-specific time.

See Also

parse_t for easier to use index parsing requiring order specification only, calendar-names for in-
formation on locale settings.

Examples

years

four-digit year

(ti <- strptind(as.character(1998:2002), "%Y"))

format(ti, "%Y")

two-digit year

(ti <= strptind(c(”98"”, "99", "@@", "01", "@2"), "%y"))
format(ti, "%y")

mixture of four-digit and two-digit years
strptind(c(”1998", "1999", "@@", "01", "@02"), c("%Y", "%y"))

quarters

(ti <- strptind(c(”2020Q1", "2020Q2", "2020Q3", "2020Q4"), "%YQ%Q"))
format(ti, "%YQ%q")

format(ti, "%Yq%q")

format(ti, "%Y.%q")

months

(ti <- strptind(c(”2020-03", "2020-06", "2020-09", "2020-12"), "%Y-%m"))
format(ti, "%Y-%m")

(ti <- strptind(c("03/20", "06/20", "@9/20", "12/20"), "%m/%y"))
format(ti, "%m/%y")

format(ti, "%b '%y")

weeks

(ti <- strptind(c(”2020-W01", "2020-WQ5", "2020-W@9", "2020-W13"), "%G-W%V"))
format(ti, "%G-W%V")

format(ti, "%G, week: %V")

strptind(c("2020, week: 13"), "%G, week: %V")

jdn

33

dates
ISO format
(ti <~ strptind(c(”2025-03-19", "2025-06-18", "2025-09-17", "2025-12-17"), "%F"))
format(ti, "%F")
strptind(c("2025-03-19", "2025-06-18", "2025-09-17", "2025-12-17"), "%Y-%m-%d")
format(ti, "%Y-%m-%d")
US format
strptind(c(”@3/19/25", "@6/18/25", "@9/17/25", "12/17/25"), "%D")
format(ti, "#%D")
strptind(c("@3/19/25", "06/18/25", "@9/17/25", "12/17/25"), "%m/%d/%y")
format(ti, "%m/%d/%y")
European format
strptind(c(”19.03.2025", "18.06.2025", "17.09.2025", "17.12.2025"), "%d.%m.%Y")
format(ti, "%d.%m.%Y")
mixed formats
strptind(c("@3/19/25", "06/18/25", "17.09.2025", "17.12.2025"),
c("%m/%d/%y", "%d.%m.%Y"))
strptind(c(”@3/19/25", "06/18/25", "2025-09-17", "2025-12-17"),
c("%w", "%F"))

time of day

(ti <- strptind("13:03:34.534", "%H:%M:%0S"))
format(ti, "%H:%M:%0S3")

format(ti, "%H:%M:%0S2")

format(ti, "%H:%M:%0S1")
strptind(”13:03:34", "%H:%M:%S")
format(ti, "%H:%M:%S")
strptind(”13:03", "%H:%M")

format(ti, "%H:%M")

strptind(”13", "%H")

format(ti, "%H")

strptind(”01:03:44 pm", "%I:%M:%S %p")
format(ti, "%I:%M:%S %p")
strptind(”1:03:44 pm", "%I:%M:%S %p")
strptind(c(”1am”, "1pm"), "%I%p")

date-time

(ti <- strptind("”2025-02-01 13:03:34.534", "%F %H:%M:%0S"))
format(ti, "%F %H:%M:%S")

format(ti, "%F %H:%M:%0S2")

format(ti, "%F %H:%M:%S%z")

format(ti, "%F %H:%M:%0S2 %Z")

strptind("02/01/25 01:03:34pm", "%D %I:%M:%0S%p")

jdn Date and Date-Time Conversion to and from Julian Day Number

(JDN)

34 Jjdn

Description
jdn computes the JDNs for dates or date-time indices and jdn2tind returns dates or date-time
indices given JDNs.

For date arguments jdn returns the numbers of days since November 24, 4714 BC in the proleptic
Gregorian calendar as an integer vector. For date-time arguments day fraction in UTC is computed
and the return value is a numeric vector.

For integer arguments jdn2tind return tind of type "d" (date), for non-integer arguments — tind
of type "t" (date-time). If tz argument is provided the return value is always of type "t" (date-
time).

Usage
jdn(x)

jdn2tind(x, tz = NULL)

Arguments
X an object of tind class or an R object coercible to it for jdn, an integer or
numeric vector for jdn2tind.
tz (optional) a character value determining the time zone (the default NULL is inter-
preted as the system time zone). See tzone documentation for information on
time zones.
Value

An integer or numeric vector for jdn, an object of tind class (type "d"” or "t") for jdn2tind.

Note

For date-time indices JDN is computed based on day fraction since noon UTC and not midnight, so
0.5 offset will be observable.

See Also

date2num for conversion between dates and their integer representations found different software
packages.

Examples

JDN of 2000-01-01 is 2451545

jdn("2000-01-01")

jdn2tind(2451545)

JDN today, now?

jdn(today())

jdn(now())

notice the .5 offset

jdn(today(tz = "UTC"))

format(jdn(as.date_time(today(tz = "UTC"), tz = "UTC")), digits = 8)

match_t 35

match_t Matching Time Indices

Description

match_t and %in_t% allow for matching time indices to time intervals and to other sets of time
indices including cases when table argument is of different type than x (of lower resolution).

Usage

match_t(x, table, nomatch = NA_integer_)

X %in_t% table

Arguments

X an object of tind class.

table an object of tinterval or tind class.

nomatch an integer value to be returned when no match is found.
Details

%1in_t% always returns TRUE/FALSE. NAs in x argument are never matched (FALSE is returned).

Value

match_t and %in_t% return integer and logical vectors, respectively. The length of the result equals
length of x.

Note

Since match and %in% are not implemented in base as S3 generics, new functions had to be imple-
mented.

Examples

match dates to months

(x <- as.date("2025-03-02") + 15 * (0@:5))

(table <- as.month("2025-03") + -1:1)

match_t(x, table)

match dates to time intervals representing months
(table <- (as.date("2025-03-01") %--% as.date("”2025-03-31")) %+tm% (-1:1))
match_t(x, table)

are dates in March 2025?

X %in_t% "2025-03"

NAs are _never_ matched

(x <- as.date("2025-03-02") + c(NA, 15 % (0:5)))
(table <- as.month("2025-03") + c(NA, -1:1))

36 merge

match_t(x, table)
X %in_t% table

merge Merging Time-indexed Data

Description

merge method for tind allows to join two (or more) time-indexed datasets also in cases when the
indices are of different types. The method is intended for advanced users.

The method takes two tind vectors (x and y) and returns a three-element list containing resulting
indices and mappings (integer indices) from the original indices to the final ones allowing to select
appropriate rows from dataset indexed by x and y, see Examples.

Usage

S3 method for class 'tind'

merge(x, y, ..., all = FALSE, all.x = all, all.y = all)
Arguments

X,y an object of tind class.

(optional) further time indices.

all a logical value, equivalent to setting both all.x and all.y to the same value.
Alternatively, a logical vector in case of more than 2 arguments. See Details.
all.x a logical value, if TRUE, all x observations are included in the result even if there
are no corresponding time indices in y.
all.y a logical value, analogous to all.x.
Details

By default (all = FALSE), inner join is performed. x and y can be indices of different types but
conversion of the higher resolution to the lower should be possible.

If all.x = TRUE, left join is performed. All indices from x are preserved. y can then be of the same
or lower resolution than x.

If all.y = TRUE, right join is performed. All indices from y are preserved. x can then be of the
same or lower resolution than y.

If all = TRUE, outer join is performed. All indices from x and y are preserved. Indices in x and y
have to be of the same type in this case.

Setting all argument silently overrides both all.x and all.y.
NAs are never matched.

The method is optimized in case both indices are strictly increasing without NAs (time series appli-
cations). In other cases, it employs merge method for specially constructed data frames.

merge 37

The method also accepts more than two arguments (time indices). In this case, it is expected that all
are strictly increasing without NAs (time series applications only). all.x and all.y cannot be used
with more than two arguments.

all can be a vector of logical values indicating which indices have to always be included in the re-
sult (TRUE) and which have to be matched (FALSE). In 2-argument case, for example, all = c(TRUE,
FALSE) is equivalent to all.x = TRUE and all = c(FALSE, TRUE) to all.y = TRUE.

Value

A three-element list with the first element (index) containing the final time indices, and the remain-
ing two (xi and yi) mappings from x and y to these indices. If additional time indices are provided,
the length of the returned list equals the number of all arguments (including x and y) plus one (for
the final index at the beginning of the list).

See Also

match_t for matching time indices.

Examples

construct sample data frames
(dates1 <- tind(y = 2023, m = rep(1:4, each = 2), d = c(1, 16)))
(dates2 <- datesl %+m% 1)
(mnths <- as.month("2022-12") + 0:3)
(df1 <- data.frame(dates1, ndl = as.numeric(dates1),
downame = day_of_week(dates1, labels = TRUE, abbreviate = FALSE)))
(df2 <- data.frame(dates2, nd2 = as.numeric(dates2), dow = day_of_week(dates2)))
(df3 <- data.frame(mnths, nm = as.numeric(mnths),
mname = month(mnths, labels = TRUE, abbreviate = FALSE)))
inner join - dates
(mti <- merge(df1[[1L]], df2[[1L1D]))
data.frame(index = mti[[1L]],
df1[mti[[2L]], -1L, drop = FALSE],
df2[mti[[3L]], -1L, drop = FALSE])
inner join - dates and months
(mti <- merge(df1[[1L]1], df3[[1L11))
data.frame(index = mti[[1L]],
df1[mtif[2L]], -1L, drop
df3[mti[[3L]1], -1L, drop
left join - dates
(mti <- merge(df1[[1L]], df2[[1L]], all.x = TRUE))
data.frame(index = mti[[1L]],
df1[mti[[2L]], -1L, drop
df2[mti[[3L]]1, -1L, drop
left join - dates and months
(mti <- merge(df1[[1L]], df3[[1L]1], all.x = TRUE))
data.frame(index = mti[[1L]],
df1[mti[[2L]], -1L, drop = FALSE],
df3[mti[[3L]], -1L, drop = FALSE])
right join - dates
(mti <- merge(df1[[1L]], df2[[1L]], all.y = TRUE))

FALSE],
FALSED)

FALSE],
FALSE])

38

Ops

data.frame(index = mti[[1L]],
df1[mti[[2L]], -1L, drop = FALSE],
df2[mti[[3L]], -1L, drop = FALSEI)
right join - months and dates
(mti <- merge(df3[[1L]], df2[[1L]], all.y = TRUE))
data.frame(index = mti[[1L]],
df3[mti[[2L]], -1L, drop = FALSE],
df2[mti[[3L]], -1L, drop = FALSEI)
outer join - dates
(mti <- merge(df1[[1L]], df2[[1L]1], all = TRUE))
data.frame(index = mti[[1L]],
df1[mti[[2L]], -1L, drop = FALSE],
df2[mti[[3L]], -1L, drop = FALSE])

Ops Operations Involving Time Indices, Time Differences, and Time Inter-
vals

Description

Basic arithmetic and comparison operators are implemented for time indices, time differences, and
time intervals where applicable.

Operators + and - allow for shifting time indices and computing differences between two indices.
Time intervals can be shifted using these, too. When the second operand in + and - is numeric the
underlying time unit is used. For time of day and date-time indices this is always a second.
Convenience operators %+y%, %-y%, %+a%, %—q%, %+mdk, %—mdk, %+wkh, %-wk, %+d%, %-d%, %+h%, %—h%,
%+tmin%, %-min%, %+s%, and %-s% can used to shift time indices (and intervals) by years, quarters,
months, weeks, days, hours minutes, and seconds. See Details for their behaviour in corner cases.

For all index types except for integer and numeric indices differences between time indices are
retuned as objects of tdiff class.

Comparison operators are available for time indices (tind) and time differences (tdiff).

Usage

S3 method for class 'tind'
Ops(el, e2)

el %ty% e2
el %-y% e2
el %+tq% e2
el %-q% e2

el %tm% e2

Ops 39

el %-m% e2
el %+wx e2
el %-wk e2
el %+d% e2
el %-d% e2
el %+h% e2
el %-h% e2
el %+min% e2
el %-min% e2
el %+s% e2
el %-s% e2

Arguments

el, e2 atind, tdiff, tinterval, or a numeric vector.

Details

One can only subtract from time indices and divide time differences.
Unary + and - operators are supported for tdiff only.

Results of arithmetic operations are always validated and can become NAs (when out of range) or
be rounded, for example, when dividing time differences in days by numbers that are not divisors.

Shifting time intervals beyond valid index ranges can lead to spurious results as beginnings or ends
of time intervals become NAs and intervals can become entire line.

== and != operators for time indices only accept same types of indices. The remaining comparison
operators accept different types provided that conversion can be performed.

Corner Cases

When shifting dates by months one is faced with a dilemma: should month after March 31st be
April 30th or May 1st? The convention in tind is that the result of %+m% n always falls in the nth
month after the month in which a given date falls and in corner cases the last day in the resulting
month is returned. Similar logic is applied to shifts by years and quarters as well as shifts of weeks
by years (some years have 53 weeks). See Examples.

Shifting date-time indices by days can also be problematic in front of DST changes, when the
resulting date has 23 hours (one hour missing) or 25 hours (one hour repeated). When hour is
missing, the next hour is selected (no NA is returned). When hour is doubled, the second occurrence
is selected. See Examples.

40

Value

Comparison operators and ! return logical vectors.

Ops

Differences of time indices are returned as objects of tdiff class, except for arguments of type "i”

or "n" (integer/numeric indices), in which case an integer or numeric vector is returned.

Shifting time indices and time intervals produces time indices and time intervals, respectively.

Operations involving time differences return time differences.

See Also

tind class and its constructor, calendrical-computations for calendrical computations.

Examples

list the last 10 days including today
today() + (-9:0)

how many days have passed since the beginning of the year?

today() - floor_t(today(), "y")
same but the result is not tdiff
day_of_year(today()) - 1

single time interval

X <- "2024-06-01 08:00" %--% "2024-06-01 16:00"
shift by @, 1, ..., 5 days

X %td% 0:5

are we in or after 20267
today() >= 2026

are we after 20257
today() > 2025

corner cases - ends of months and shifts by months

as.date("2024-01-31") %+m% 0:5
same
as.date("2024-01-31") + mnths(0:5)

corner cases - 53rd week of year
as.week(202053) %-y% 0:5

corner cases - DST changes and shifts by days

if ("Europe/Warsaw” %in% OlsonNames()) {
2020-10-25 had 25h with 02:00 repeated
print(as.date_time("2020-10-24 02:00", tz =
print(as.date_time("2020-10-24 02:00", tz =
print(as.date_time("2020-10-26 02:00", tz =
print(as.date_time("2020-10-26 02:00", tz =
2021-03-28 had 23h with 02:00 missing
print(as.date_time("”2021-03-27 02:00", tz =
print(as.date_time("2021-03-27 02:00", tz =
print(as.date_time("2021-03-29 02:00", tz =
print(as.date_time("”2021-03-29 02:00", tz =

"Europe/Warsaw")
"Europe/Warsaw")
"Europe/Warsaw")
"Europe/Warsaw")

"Europe/Warsaw")
"Europe/Warsaw")
"Europe/Warsaw")
"Europe/Warsaw")

%+h%
%+d%
%=-h%
%-d%

%+h%
%+d%
%=-h%
%=d%

23:26)
1)
26:23)
1)

22:25)
1)
25:22)
1)

ordered-regular 41

ordered-regular Working with Ordered and Regularly Spaced Time Indices

Description

is.ordered_t method checks if time indices form a strictly increasing sequence without NA values.

is.regular method checks if time indices form a strictly increasing, regularly spaced sequence
without NA values.

as.regular returns regularly spaced sequence of time indices based on strictly increasing time
indices provided.

extend_regular extends strictly increasing sequence of time indices by n points after the last
taking into account the resolution of the sequence provided.

Usage

is.ordered_t(x)

S3 method for class 'tind'
is.ordered_t(x)

is.regular(x)

S3 method for class 'tind'
is.regular(x)

as.regular(x, ...)

S3 method for class 'tind'
as.regular(x, ...)

extend_regular(x, n)

Arguments
X an object of tind class or of other time index class supported by tind package.
further arguments passed to or from other methods.
n an integer value, number of time stamps to be added, see Details.
Details

n argument of extend_regular can be negative. In that case -n points are added before the first
index. The function may fail in corner cases (if the result would be out of range).

Creating regular date-time sequences in front of DST/UTC offset changes can be impossible. If the
algorithm fails, an error is issued. In general, this should not be a problem when DST change is by
1 hour and the resolution of the indices is 1 hour or higher.

42 ordered-regular

Value

A logical value for is.ordered_t and is.regular. An object of tind class for as.regular and
extend_regular.

See Also

resolution_t method.

Examples

months, resulution 2m
(ms <- tind(y = 2023, m
is.regular(ms)
extend_regular(ms, 3)
(ms <- tind(y = 2023, m
is.regular(ms)
as.regular(ms)

date, resulution 15d
(ds <- tind(y = 2024, m
is.regular(ds)
extend_regular(ds, -4)
(ds <- ds[-2L])
is.regular(ds)
as.regular(ds)

1+ 2 % (0:5)))

c(1, 3, 5, 9N

rep(1:3, each = 2), d = c(1, 16)))

corner cases
tz <- "Europe/Warsaw”
if (tz %in% OlsonNames()) {
switch to DST
print(hours_in_day("2025-03-30", tz = tz))
this will work with step from lam to 3am
tt <- date_time("”2025-03-30", H = c(0Q, 4:8), tz = tz)
print(resolution_t(tt))
as.regular(tt)
3
if (tz %in% OlsonNames()) {
this will fail due to missing 2am
tt <- date_time("2025-03-30", H = c(@, 4, 6, 8), tz = tz)
print(resolution_t(tt))
try(as.regular(tt))
3
if (tz %in% OlsonNames()) {
this will work again (step by 4h)
tt <- date_time("”2025-03-30", H = c(0, 4, 12), tz = tz)
print(resolution_t(tt))
as.regular(tt)

parse_t 43

parse_t Parse Character Representation of Time Indices Given the Order of
Components

Description
parse_t parses character vector to create an object of tind class based on provided order(s) of time
index components. Index type is inferred from components given.

Usage

parse_t(x, order, locale = NULL, type = NULL, tz = NULL)

Arguments
X a character vector of time indices to be parsed.
order a character string or a character vector describing order(s) of time index compo-
nents in the input (x), see Details.
locale (optional) a character value determining locale or NULL (the default, interpreted
as the current system locale), see calendar-names for information on locale set-
tings.
type (optional) a character value determining time index type.
tz (optional) a character value determining the time zone (the default NULL is inter-
preted as the system time zone). See tzone documentation for information on
time zones.
Details

Accepted names of components are:

year.
quarter.

month, number (1-12) or name.

o 3 O <

day.

day of year.

week (01-53) as defined in ISO 8601.

day of week, number (1-7 with Monday as the first day, ISO 8601) or name.

.

=

hour.
hour, 12-hour clock.
AM/PM indicator.

minute.

»w X T H I C<C

second.

44

parse_t

z UTC offset (+-HHMM, +-HH, +-HH:MM, or letter Z for UTC) or time zone abbreviation (like CET or
CEST).

The following combinations of components (in any order) are accepted for different index types
(whitespace between specifiers is ignored):

year (type "y"): y.

quarter (type "q"): y and q.

month (type "m"”): y and m.

week (type "w"): y and w.

date (type "d"): y,m, and d; y, and j; y, w, and u.

time of day (type "h"): at least hour component with optional minutes and seconds.

date-time (type "t"): any valid combination for date and at least hour component with optional

minutes and seconds.

During parsing all non-digits are skipped in front of "y", "q", "w", "d", "j", "H", "I", "M", "S"
n n n n n n

specifiers and all non-alphanumeric characters are skipped in front of "m", "u"”, "p". Only whites-
pace is ignored in front of "z" specifier.

parse_t was inspired by ymd, mdy, etc. family of functions from package lubridate but indepen-
dently implemented from scratch (and is a bit faster).

Value

An object of tind class.

See Also

strptind for index parsing requiring strict format specification, calendar-names for information on
locale settings.

Examples

years

four-digit year
parse_t(as.character(1998:2002), "y")

two-digit year

parse_t(c("”98", "99", "@0", "01", "@2"), "y")

mixture of four-digit and two-digit years
parse_t(c(”1998", "1999", "@0", "01", "02"), "y")

quarters
parse_t(c("2020Q1", "2020Q2", "2020Q3", "2020Q4"), "yq")

months

parse_t(c("2020-03", "2020-06", "2020-09", "2020-12"), "ym")
parse_t(c("03/20", "06/20", "09/20", "12/20"), "my")

missing leading zeros are also handled

parse_t(c("3/20", "6/20", "9/20", "12/20"), "my")

pretty 45

weeks

standard format

parse_t(c("2020-Wo1", "2020-W@5", "2020-We9", "2020-W13"), "yw")

non-standard format

parse_t(c("2020, week: 01", "2020, week: 05", "2020, week: 09", "2020, week: 13"), "yw")
missing leading zeros are also handled

parse_t(c("2020, week: 1", "2020, week: 5", "2020, week: 9", "2020, week: 13"), "yw")

dates

ISO format

parse_t(c("2025-03-19", "2025-06-18", "2025-09-17", "2025-12-17"), "ymd")

US format

parse_t(c("03/19/25", "06/18/25", "@9/17/25", "12/17/25"), "mdy")

missing leading zeros are handled

parse_t(c("3/19/25", "6/18/25", "9/17/25", "12/17/25"), "mdy")

European format

parse_t(c("19.03.2025", "18.06.2025", "17.09.2025", "17.12.2025"), "dmy")

mixed formats

parse_t(c("03/19/25", "06/18/25", "17.09.2025", "17.12.2025"), c("mdy”, "dmy"))
parse_t(c("03/19/25", "06/18/25", "2025-09-17", "2025-12-17"), c("mdy", "ymd"))

time of day
parse_t("13:03:34.534", "HMS")
parse_t("13:03:34", "HMS")
parse_t("13:03", "HM")
parse_t("13", "H")
parse_t("1:03:44 pm”, "IMSp")
parse_t("1pm", "Ip")

date-time

parse_t("2025-02-01 13:03:34.534", "ymdHMS")
parse_t("2025-02-01 13:03:34.534", "ymdHMS", tz = "UTC")
parse_t("02/01/25 01:03:34pm”, "mdyIMSp")
parse_t("02/01/25 01:03:34pm"”, "mdyIMSp”, tz = "UTC")

pretty Pretty Breakpoints for Time Indices

Description

Determine locations of pretty breakpoints for time indices. pretty method for objects of tind class
employs separate algorithms for each type / resolution, see Details.

Usage

S3 method for class 'tind'
pretty(x, n = 5L, min.n = n%/%2L, ...)

46 pretty
Arguments
X an object of tind class.
n an integer value giving the expected number of intervals.
min.n an integer value giving the minimal number of intervals.
(ignored) further arguments passed to or from other methods
Details

Resolution of ticks (see resolution_t method) is always the same or lower than the resolution of
the argument and lower resolutions have to be multiples of the resolution of the argument. This
way, the ticks are never placed, for example, every 5 years for indices with a 2-year resolution.

For years, the tics are placed at powers of 10 times 1, 2, or 5.

For quarters, ticks are placed every quarter, every second quarter (I1st and 3rd), or on first the
quarters of years selected by separate procedure for years.

For months, ticks are placed every 1, 2, 3, 4, 6 months or on January of years selected by the
separate procedure for years.

For weeks, ticks are placed every 1, 2, 4, 13, 26 weeks or on the first weeks of years selected by the
separate procedure for years.

For dates, depending on the number of observations, ticks can be placed:

* every day,

 every Monday, Wednesday, and Friday,

* every Monday and Thursday,

* every Monday,

* every lst and 16th day of a month,

* on Ist days of months selected by the separate procedure for months.
For date-time and time of day, the placement of ticks depends on the resolution of indices. When
all indices are at full hours, ticks are placed at full hours only. Similar approach is taken for minutes
and seconds. Divisors of 24 are used for hours and divisors of 60 for minutes and seconds. For date-

time indices spanning more than a couple of days, ticks are placed on midnights of days selected by
the separate procedure for dates.

Due to the design of the algorithm, in some corner cases (esp. for time of day and weeks) the
number of intervals might differ significantly from the expected number n.

Value

An object of tind class.

See Also

resolution_t method, axis_t for computing time axis parameters for plotting, axis.tind for
creating axes with graphics package, scale_tind for creating axes with ggplot2.

resolution_t 47

Examples

(td <- tind(y = sample(2010:2018, 4, replace = TRUE),
m = sample(1:12, 4, replace = TRUE),
d = sample(1:2, 4, replace = TRUE)))
pretty(td)
pretty(td, 3)
pretty(td, 10)
(th <- tind(H = sample(@:23, 4, replace = TRUE),
M = sample(@:3 * 15, 4, replace = TRUE)))
pretty(th)
pretty(th, 3)
pretty(th, 10)
(tdt <- date_time(td[1], th))
pretty(tdt)
pretty(tdt, 3)
pretty(tdt, 10)

resolution_t Determine the Resolution of Time Indices

Description

resolution_t method determines resolution of time indices.

For time index types other than integer index ("i") and numeric index ("n"), resolution_t re-
turns an object of tdiff class. The following multiples of units can be returned by resolution_t
method:

"y" (years): 1, 2,5, 10, 20, 50, 100, 200, 500, 1000.

"q" (quarters): 1, 2.

"m"” (months): 1,2, 3,4,6.

"w" (weeks): 1,2,4,13,26.

"d" (days): 1, 15 (1st and 16th day of a month).

"h"” (hours): 1,2,3,4,6,8,12.

"min" (minutes): 1,2, 3,4, 5,6, 10, 12, 15, 20, 30.

"s" (seconds): 1,2,3,4,5,6, 10, 12, 15, 20, 30 and 1, 2, or 5 times negative powers of 10.

Basic resolution (1) for given type is always returned for vectors with 1 or no non-NA value.

An integer value is returned for type "i" (integer index) and a numeric value (possibly NA_real_)
for type "n" (numeric index).

Usage
resolution_t(x)

S3 method for class 'tind'
resolution_t(x)

48 rounding

Arguments

X an object of tind class or of other time index class supported by tind package.

Value

For all types except for integer index (”"i") and numeric index ("n") resolution_t returns an
object of tdiff class. An integer value for type "i" (integer index) and a numeric value (possibly
NA_real_) for type "n" (numeric index) are returned.

See Also

rounding for rounding time indices to specified resolution, is.regular method for checking if time
indices form a regular sequence, tspan method for determining time span of indices.

Examples

(ds <- tind(y = 2024, m = rep(1:3, each = 2), d = c(1, 16)))
resolution_t(ds)

(ms <- tind(y = 2023, m
resolution_t(ms)

(th <= tind(H = 13, M = (0:3) * 15))
resolution_t(th)

1+ 2 % (0:5)))

(dt <- tind(y = 2025, m=2, d =1, H =13, M= 27, S = (0:5) * 10))
resolution_t(dt)
rounding Rounding Time Indices

Description

Time indices can be rounded to different time units (depending on the type of time index at hand,
see Details).

trunc_t rounds the indices down to a given unit with change of index type where applicable.
floor_t rounds the indices down to a (multiple of a) unit.
ceiling_t rounds the indices up to a (multiple of a) unit.

round_t rounds the indices to the closest multiple of a unit, i.e. the result of floor_t or ceiling_t,
whichever is closer.

Usage

trunc_t(x, unit)
floor_t(x, unit)
ceiling_t(x, unit, ceiling = c("default”, "following”, "last"))

round_t(x, unit, ceiling = c("default”, "following", "last"))

rounding 49

Arguments
X an object of tind class (or an R object coercible to it).
unit a character string determining unit (expected by trunc_t), a number, an object
of tdiff class, or a character string with a number and unit name.
ceiling (optional) a character string determining the behaviour of ceiling_t (and round_t),
see Details.
Details

Units and Unit Multiples

For trunc_t, unit has to be a character string determining resolution / type to which indices should
be truncated. For the remaining functions, unit argument can be a number (the default unit for
index type will be used), a character string with unit name, an object of tdiff class, or a character
string with a number and unit name.

The following unit names are accepted:

n on

"year", "years" years,

non

”yll’
"q", "quarter”, "quarters"” quarters,
”mll’

n n o n

mon”, "month”, "months” months,

non

w", "week"”, "weeks" weeks,
”d”, ”day”, Hdaysll days’

"h", "hour", "hours" hours,

n o n n on

"min”, "minute”, "minutes” minutes,

nan o on non

s", "sec”, "second", "seconds"” seconds.

The default unit for date-time and time of day indices is a second.

The list of admissible multiples of units can be found in the documentation of resolution_t
method.

For time indices of types "i"” and "n" (integer and numeric indices) unit can be any finite, positive
integer / numeric value.

In case of a tie (x - floor_t(x, *) equal to ceiling_t(x, *) - x), round_t returns the result of
ceiling_t.

Controlling behaviour of ceiling_t (and round_t)

For non-instant time indices, i.e indices that actually represent periods of time (days weeks, months,
etc.) ceiling_t rounds to the first index in a period by default. For instance, when rounding dates
to months, the first day of a month will be unchanged and other days will be rounded to the first
day in the following month. This behaviour can be altered by setting ceiling argument. If set to
"following”, the first index (day in our example) in the following period will be returned. If set to
"last”, the last index (day in our example) in the period will be returned. See Examples.

Value

An object of tind class of the same type and length as x except for trunc_t, for which the type of
the result is determined based on unit argument.

50 rounding

Note

Methods floor, ceiling, round, and trunc are not implemented for tind class due to generics’
argument list limitations.

See Also

resolution_t method.

Examples

(d <- as.tind("2024-08-27"))
floor_t(d, "w")

trunc_t(d, "w")

ceiling_t(d, "w")

round_t(d, "w"
floor_t(d, "m")
trunc_t(d, "m")
ceiling_t(d, "m")

round_t(d, "m")
floor_t(d, "3m")
ceiling_t(d, "3m")
round_t(d, "3m")

(dt <- as.tind("2024-08-27 13:51:52"))
floor_t(dt, 10)
floor_t(dt, "10s")
ceiling_t(dt, "10s")
round_t(dt, "10s")
floor_t(dt, "min")
trunc_t(dt, "min")
ceiling_t(dt, "min")
round_t(dt, "min”
floor_t(dt, "h")
trunc_t(dt, "h")
ceiling_t(dt, "h")
round_t(dt, "h")
floor_t(dt, "2h")
ceiling_t(dt, "2h")
round_t(dt, "2h")
floor_t(dt, "d")
trunc_t(dt, "d")
ceiling_t(dt, "d")
round_t(dt, "d")

corner cases - DST change (02:00 missing)

(dt <- date_time("2025-03-30", H = c(@:1, 3:6)))
floor_t(dt, "2h")

ceiling_t(dt, "2h")

adjusting behaviour of ceiling_t for non-instant time indices
a short sequence of dates covering two months
(ds <- as.tind(”2023-01-01") + -2:2)

scale_tind

default behaviour

ceiling_t(ds, "2m")

ceiling_t(ds, "2m", ceiling = "default")

round up to the first day in the following 2-month period
ceiling_t(ds, "2m", ceiling = "following")

round up to the last day in the current 2-month period
ceiling_t(ds, "2m", ceiling = "last")

a corner case, note that we will get the next day as a result
ceiling_t(today(), "1d", ceiling = "following")

51

scale_tind Time Scales for Plotting with ggplot2

Description

These functions provide ggplot2 scales for tind. Scales will be added automatically by ggplot2,

but the default behaviour can be overridden by adding scale_*_tind to the plot.

Usage

scale_x_tind(
name = ggplot2::waiver(),
breaks = ggplot2::waiver(),
minor_breaks = ggplot2::waiver(),
n.breaks = 7L,
labels = ggplot2::waiver(),

limits = NULL,

expand = ggplot2::waiver(),
guide = ggplot2::waiver(),
position = "bottom”,

format = NULL,

locale = NULL

scale_y_tind(
name = ggplot2::waiver(),
breaks = ggplot2::waiver(),
minor_breaks = ggplot2::waiver(),
n.breaks = 7L,
labels = ggplot2::waiver(),
limits = NULL,
expand = ggplot2::waiver(),
guide = ggplot2::waiver(),
position = "left”,
format = NULL,
locale = NULL

52 scale_tind

Arguments
name a character string with axis name, waiver () for default name, or NULL for none.
breaks waiver() for default tick-marks, NULL for none, time indices at which tick-

marks should be placed (tind), or a tdiff / character string determining dis-
tance between breaks.

minor_breaks waiver() for default minor tick-marks, NULL for none, or time indices at which
minor tick-marks should be placed.

n.breaks an integer value, desired number of breaks.
labels waiver () for default labels, NULL for none, or a character vector of labels.
limits NULL for automatic limits, tinterval of length 1 or tind of length 2.

expand, guide see scale_continuous.

position a character string determining axis position, "bottom” or "top"” for scale_x_tind,
"left"” or "right"” for scale_y_tind.

format (optional) a character string determining label format (see format) or a format-
ting function.

locale (optional) a character string determining locale to be used for formatting labels,
see calendar-names for information on locale settings.

Details

The algorithm determining positioning of breaks and minor breaks always takes the resolution of
time indices (see resolution_t) into account. For example, for monthly data with breaks placed
every three months (January, April, July, October) minor breaks will never be placed in the middle
(mid of February, May, August, November) but rather every month. The algorithm overrides the
default approach of ggplot2 — axis limits are determined based on breaks and breaks on time
indices and their resolution, whereas ggplot2 starts with limits based on data and determines breaks
based on limits only (ignoring the resolution of time indices).

Argument list is a bit different from that of to scale_x_date and scale_*_datetime. Firstly,
n.breaks argument is supported, allowing users to set the expected number of breaks on time
axis. Secondly, labels cannot be a function. Formatting functions can be provided via format
argument, which also supports character string with format specification (see format) rendering
date_labels argument redundant. locale argument controls the language used for month and
weekday names, see calendar-names. breaks cannot be a function, but can be a tdiff / character
string determining distance between breaks rendering date_breaks argument redundant. limits
argument is expected to determine time interval and not limits in Cartesian coordinates. Open-ended
intervals are supported.

breaks, minor_breaks, and 1imits cannot be functions as ggplot2 assumes that breaks and limits
can be properly set based on (automatic) limits only without taking into account the resolution of
time indices, which is not true.

Secondary axes are not supported.

Value

A continuous scale as returned by continuous_scale.

scale_tind 53

Note

Due to the fact that 1imits method is currently (as of version 4.0.0) not exported, users cannot use
xlimand ylim with tind scales. Limits on time-indexed axes can be set using 1imits argument to
scale_*_tind.

See Also

pretty for computing pretty breakpoints, axis_t for computing time axis parameters, axis. tind
for creating axes with graphics package.

Examples

artificial data
d <- seq(floor_t(today(), "y"), ceiling_t(today(), "y", ceiling = "last"))
df <- data.frame(d = d, D = as.Date(d), y = cumsum(rnorm(length(d))),
q = paste@(”Q", quarter(d)))

load ggplot2
have_ggplot2 <- require("ggplot2”, quietly = FALSE)
default scale
if (have_ggplot2) {

ggplot(df) + geom_line(aes(x = d, y = y)) + theme_bw()
3
compare with the default scale for Date
if (have_ggplot2) {

ggplot(df) + geom_line(aes(x

D, vy =y)) + theme_bw()

3
change format
if (have_ggplot2) {
ggplot(df) + geom_line(aes(x = d, y = y)) + theme_bw() +
scale_x_tind(format = "%b '%y")
3
set breaks every 4 months
if (have_ggplot2) {
ggplot(df) + geom_line(aes(x = d, y = y)) + theme_bw() +
scale_x_tind(breaks = "4m")
3
set limits
if (have_ggplot2) {
ggplot(df) + geom_line(aes(x = d, y =y), na.rm = TRUE) + theme_bw() +
scale_x_tind(limits = c(today() %-m% 4, today()))
3
facets with custom formatting and reduced number of breaks
if (have_ggplot2) {
ggplot(df) + geom_line(aes(x =d, y =
scale_x_tind(n.breaks = 4, format
facet_wrap(~qg, scales = "free_x")

y)) + theme_bw() +
= ”%b l%yll) +

54 seq

seq Create a Sequence of Time Indices

Description

seq method for objects of tind class allows to easily construct sequences of time indices of all
supported types.

Usage

S3 method for class 'tind'

seq(from, to, by = 1, length.out = NULL, along.with = NULL, ...)
Arguments

from an object of tind class or an R object coercible to it.

to an object of tind class or an R object coercible to it.

by a numeric value, a tdiff, or a character string determining increment.

length.out an integer value, the desired length.

along.with any R object, length of this argument will be taken as the desired length.

(ignored) further arguments passed to or from other methods.

Details

seq method requires that exactly two of the three arguments from, to, and length.out are pro-
vided. If along.with is not NULL, its length is used as value of length.out.

by can be a number, an object of tdiff class (of length 1), or an object coercible to tdiff like
"3w" denoting step by three weeks. by cannot be NA and cannot be 0 when both from and to are
provided. Given both from and to, sign of by has to agree with the order of from and to. When by
is a number, the underlying unit of time is assumed. For time of day and date-time indices this is
always a second.

from and to can be of different types provided that conversion is possible. The result is of higher
resolution. This allows to easily construct series like from begging of the month to today, from
today till the end of next year, etc. See Examples.

seq. tind slightly differs from seq.Date in terms of interface and requirements with respect to
arguments. Firstly, from argument can be missing (provided that to and length.out are given).
Secondly, by has the default value of 1.

Both seq method for tind and seq. tind function are exported allowing for conversion to tind as
in seq. tind("2025-01", "2025-12").

Value

An object of tind class.

set-ops 55

Examples

sequences of dates by 1 and 2 months from now

(td <- today())

seq(td, by = "1m", length.out = 12)

seq(td, by = "2m"”, length.out = 6)

sequences of dates by 1 and 2 months to now

seq(to = td, by = "1m", length.out = 12)

seq(to = td, by = "2m", length.out = 6)

sequence of dates from the beginning of the month till today
seq(floor_t(td, "m"), td)

same

seq(as.month(td), td)

sequence of dates from today till the end of the next month
seq(td, as.month(td) + 1)

sequence of date-time from now to midnight by 1 hour

(nw <= now())

seq(nw, ceiling_t(nw, "1d"), by = "1h")

same

seq(nw, as.date(nw), by = "1h")

sequence (date-time) from full hour to now by 2 minutes
seq(floor_t(nw, "1h"), nw, by = "2min")

sequence (time of day) from full hour to now by 2 minutes
seq(floor_t(as.time(nw), "1h"), as.time(nw), by = "2min")

sequence (date-time) from now down to full hour by 2 minutes

seq(nw, floor_t(nw, "1h"), by = "-2min")
sequence (time of day) from now down to full hour by 2 minutes
seq(as.time(nw), floor_t(as.time(nw), "1h"), by = "-2min")

sequence (date-time) of length 10 from now down by 10 seconds

seq(nw, by = -10, length.out = 10)

sequence (time of day) of length 1@ from now down by 10 seconds

seq(as.time(nw), by = -10, length.out = 10)

explicit call to seq.tind with conversion

seq.tind("2025-01", "2025-12")

corner cases

from 2025-12-30 23:00 till end of 2025, note that 2025-12-31 24:00

(that is 2025-01-01 00:00) is excluded from the result as it is in the next year
seq(as.tind("2025-12-30 23:00", tz = "UTC"), "2025", by = "5h")

from end of 2025 down to 2025-12-30 23:00, note that 2025-12-31 24:00

(that is 2025-01-01 00:00) is excluded from the result as it is in the next year

seq(as.tind("2025"), as.tind("2025-12-30 23:00", tz = "UTC"), by = "-5h")
set-ops Set Operations on Time Intervals and Time Indices
Description

Time intervals can be thought of as subsets of time line (set of integers or real line, depending on
index type). The following functions perform operations on these sets.

56

set-ops

unique method for objects of tinterval class returns unique representation as ordered sum of
disjoint, non-adjacent intervals.

! (negation) operator for objects of tinterval class returns set-theoretical complement of the ar-
gument.

intersect_t, union_t, setdiff_t return intersection, union and (asymmetric) set difference.
These three functions accept both time intervals and time indices.

Behaviour of !, intersect_t, union_t, and setdiff_t is consistent with behaviour of %in_t%
operator. Consistency is also assured under type conversions.

For time indices, intersect_t, union_t, setdiff_t behave just like intersect, union, setdiff
from base (see sets) but preserve class attribute.

Usage

S3 method for class 'tinterval'
unique(x, ...)

S3 method for class 'tinterval'
Ix

intersect_t(x, y)
union_t(x, y)

setdiff_t(x, y)

Arguments
X an object of tinterval class for unique method and ! operator, tinterval or
tind for intersect_t, union_t, or setdiff_t.
(ignored) further arguments passed to or from other methods.
y an object of tinterval or tind class.
Details

For discrete time indices (represented as integers, i.e. years, quarters, months, weeks, dates, arbi-
trary integer indices) time intervals represent the following sets (ignoring empty, i.e. with a; > b;):

-
=1

unique returns the unique (canonical) representation of the set above:

{x:ai Smgbz}: U{ai,ai—i—lw.‘,bi—l,bi}.
1 i=1

C =

%

’
n

OA;: Udalaf +1,...,5) — 1,00}
1=1

=1

with aj < bj < aj,, — 1,i.e. as a sum of ordered, non-empty, non-adjacent intervals.

set-ops 57

For continuous time indices (representing point in time, i.e. date-time, time of day, arbitrary numeric
indices) time intervals represent the following sets (ignoring empty, i.e. with a; > b;):

U
i=1

unique returns unique representation of the set above:

n

Ulai, b).

i=1

’
n

U= Jiat)
=1

i=1
with a} < bj < aj,,,i.e. as a sum of ordered, non-empty, non-adjacent intervals.

Complement of a single interval for integer indices
{z:a<zxz<b}={a,a+1,...,b—1,b}
is:
{z:z<alW{z:z>b)={r:x<a-1}UW{z:z>b+1} ={...,a—2,a—1}U{b+1,b42, ...
Complement of a single interval for continuous indices
[a;b)
is:
(—o00,a) U [b,00).

Complement of a sum of intervals is the intersection of complements.

Set operations always return results in the canonical representation.

Value

An object of tinterval or tind class representing result of the set operation.

See Also

tinterval for an overview of time interval class, match_t for matching time indices

Examples

(x <- tinterval("2025-03-15", "2025-03-20") + c(@, 4, 14))
unique representation (non-overlapping intervals)
unique(x)

complement

Ix

binary set operations

(y <- tinterval("2025-03-01", "2025-03-31"))
intersect_t(x, y)

union_t(x, y)

setdiff_t(x, y)

setdiff_t(y, x)

}.

58 tdiff

different types of indices

(y <- tinterval("2025-W10", "2025-W11"))
intersect_t(x, y)

union_t(x, y)

setdiff_t(x, y)

setdiff_t(y, x)

check

(y <- as.tinterval(y, type = "d"))
intersect_t(x, y)

union_t(x, y)

setdiff_t(x, y)

setdiff_t(y, x)

tdiff Time Differences

Description

Objects of tdiff class represent time differences and are similar to difftime objects. tdiff
objects are created by subtracting two time indices (of types other than "i" and "n") or via calls
to as.tdiff method. An alternative way of constructing tdiff objects is to call years, grtrs,
mnths, weeks, days, hours, mins, and secs convenience functions.

The following units (argument unit) are supported:

"y" ("year", "years") differences in years,

"q" ("quarter”, "quarters"”) differences in quarters,

"m"” ("month”, "months"”) differences in months,

"w" ("week", "weeks") differences in weeks,

"d" ("day", "days") differences in days,

"h" ("hour", "hours") differences in hours,

"min” ("mins"”, "minute”, "minutes”) differences in minutes,
"s" ("secs", "second"”, "seconds") differences in seconds.

Standard methods for vectors and conversion from / to numeric and character vectors are imple-
mented for this class.

Usage
is.tdiff(x)

as.tdiff(x, ...)

S3 method for class 'numeric'
as.tdiff(x, unit, ...)

tdiff

S3 method for class 'character'
as.tdiff(x, ...)

S3 method for class 'difftime’
as.tdiff(x, ...)

years(x)
grtrs(x)
mnths (x)
weeks (x)
days(x)
hours(x)
mins(x)
secs(x)

S3 method for class 'tdiff'
as.character(x, ...)

S3 method for class 'tdiff'
format(x, ...)

S3 method for class 'tdiff'
as.data.frame(x, ...)

S3 method for class 'tdiff'
x[i]

S3 replacement method for class 'tdiff'
x[i] <- value

S3 method for class 'tdiff'
x[[i]1]

S3 replacement method for class 'tdiff'
x[[i]1] <- value

S3 method for class 'tdiff'
rep(x, ...)

S3 method for class 'tdiff'
c(...)

60 tdiff

S3 method for class 'tdiff'
Math(x, ...)

S3 method for class 'tdiff'
Summary(..., na.rm = FALSE)

S3 method for class 'tdiff'
mean(x, na.rm = FALSE, ...)

S3 method for class 'tdiff'
unique(x, ...)

S3 method for class 'tdiff'
print(x, ...)

S3 method for class 'tdiff'

summary(object, ...)
Arguments
X a numeric vector or any R object coercible to tdiff, for as.tdiff and years,

grtrs, etc.; an object of tdiff class for methods.

further arguments passed to or from other methods.

unit a character string, name of the time unit, see Details.
i an integer vector of indices or a logical vector indicating selection.
value replacement value.
na.rm a logical value indicating whether missing values should be removed.
object an object of tdiff class.

Details

tdiff objects are implemented as vectors of integers (for differences in years, quarters, months,
weeks, and days) or vectors of doubles (for time differences). Time differences are internally rep-
resented in seconds but when printing the actual time unit (hour, minute, second) is automatically
inferred and used.

Valid ranges for tdiff values depend on unit. These are defined by differences of the maximal and
minimal valid time indices of the type corresponding to the time unit.

Value

as.tdiff as well as convenience functions years, qrtrs, etc., return objects of tdiff class.
is.tdiff returns a logical value.
In general, methods for tdiff return objects of tdiff class.

as.character and format return character vectors.

time-index-components 61

as.data.frame returns a data frame with a single column and the number of rows equal to the
length of the argument.

print returns its argument invisibly and is used for its side effect.

summary returns an object of class c("summaryDefault”, "table").

Note

Since as.difftime is not implemented in base as an S3 generic, conversion from tdiff todifftime
is not provided.

See Also

Ops for operations on time indices and time differences.

Examples

how many days have passed since Jan 1, 20007?
today() - as.date("2000-01-01")

how many months have passed since Sep 2008?
as.month(today()) - as.month("2008-09")

create time differences in quarters
as.tdiff(-2:2, "q")

same

(x <= grtrs(-2:2))

add to today

today() + x

time-index-components Time Index Components (Years, Months, Days, ...)

Description

The following functions can be used to retrieve components of time indices.

year, quarter, month, week, day return year (0-9999), quarter (1-4), month (1-12), week (1-53,
ISO 8601), and day (1-31) indices as integers. When month is invoked with 1labels argument set
to TRUE, an ordered factor is returned.

day_of_week returns index (1-7) of weekday with Monday as the first day (as in ISO 8601). When
invoked with labels argument set to TRUE, an ordered factor is returned.

day_of_year returns index (1-366) of the day of year as integer.

hour, minute, second return hour (0-23), minute (0-59), and second (0-59,999999) indices as
integers and reals (for seconds). am and pm functions determine whether time falls in the first or
second half of the day.

Methods weekdays, months, and quarters from package base are implemented but users are en-
couraged to use functions from tind package.

62

Usage
year (x)

quarter(x)

time-index-components

S3 method for class 'tind'
quarters(x, abbreviate)

month(x, labels = FALSE, abbreviate = TRUE, locale = NULL)

S3 method for class 'tind'
months(x, abbreviate = FALSE)

week (x)

day (x)

day_of_year(x)

day_of_week(x, labels = FALSE, abbreviate = TRUE, locale = NULL)

S3 method for class 'tind'
weekdays(x, abbreviate = FALSE)

hour (x)
am(x)
pm(x)
minute (x)
second(x)

Arguments

X

abbreviate

labels

locale

Details

an object of tind class or an R object coercible to it.

a logical value, if TRUE, abbreviated names are returned; if FALSE, full names
are returned. TRUE by default.

a logical value, if TRUE month and weekday names are returned (as ordered
factors) instead of integer indices (FALSE by default).

(optional) a character value determining locale or NULL (the default, interpreted
as the current system locale), see calendar-names for information on locale set-
tings.

year for week arguments need not necessarily return the same value as for days within the week in

time-index-properties 63

question when the week is the first or the last in a year.

tind package does not provide replacement methods for time index components. In order to change,
say, month one can use tind constructor or %+m% operator (and similar operators), see Examples.

Value

All functions return integer vectors, except for second, which returns numeric vectors. Addition-
ally, month and day_of_week return ordered factors if invoked with argument labels set to TRUE.

See Also

tind class, Ops for index increments / decrements and index differences, and calendar-names for
names of months and days of weeks in the current locale. Further examples of use of these functions
can be found in calendar documentation.

Examples

current date and time

(nw <= now())

show current year, quarter, month,

year (nw)

quarter(nw)

month (nw)

month(nw, labels = TRUE)

month(nw, labels = TRUE, abbreviate = FALSE)
week (nw)

day (nw)

day_of_week(nw)

day_of_week(nw, labels = TRUE)
day_of_week(nw, labels = TRUE, abbreviate = FALSE)
day_of_year(nw)

hour (nw)

minute(nw)

second(nw)

alternatives to replacement, change month to December
(x <- as.date("2023-09-11"))

(x <= tind(y = year(x), m = 12, d = day(x)))

(x <- as.date("2023-09-11"))

(x <= x %tm% (12 - month(x)))

time-index-properties Time Index Properties (Leap Years, Period Lengths, DST)

64 time-index-properties

Description

The following functions can be used to determine whether years are leap years, compute the number
of subperiods within a period, and determine whether Daylight Saving Time is on for particular
date-time index. All function are vectorised.

is.leap_year returns TRUE for leap years and FALSE for non-leap ones.

days_in_year and weeks_in_year return the number of days (365-366) and the number of weeks
(52-53) in a year.

days_in_quarter and days_in_month return the number of days in a quarter (90-92) or a month
(28-31), respectively.

hours_in_day returns the number of hours in a day (24 most of the time, a different number during
DST/UTC offset changes).

is.dst returns TRUE when Daylight Saving Time is on and FALSE otherwise.
Usage

is.leap_year(x)

days_in_year(x)

weeks_in_year(x)

days_in_quarter(x)

days_in_month(x)

hours_in_day(x, tz = NULL)

is.dst(x)
Arguments
X an object of tind class or an R object coercible to it.
tz (optional) a character value determining the time zone (the default NULL is inter-
preted as the system time zone). See tzone documentation for information on
time zones.
Value

is.leap_year and is.dst return logical vectors. The remaining functions return integer vectors,
except for hours_in_day, which returns numeric vectors.

See Also

time-index-components, calendrical-computations, Ops, tzone, bizdays_in_month.

tind

65

tind

A Common Representation of Time Indices of Different Types

Description

tind is an S3 class representing time indices of different types (years, quarters, months, ISO 8601
weeks, dates, date-time, and arbitrary integer/numeric indices). Time indices are represented by
vectors of integers or doubles with type attribute and time zone attribute (date-time only). Objects
of tind behave like plain vectors and can be easily used in data frames.

A tind object would usually be created using as.tind method or using parse_t and strptind
functions. tind constructor allows to create time indices from components (like year, month, day)
and to create vectors of a given length filled with NA values.

is.tind function checks whether an object is of tind class.

Usage

tind(..., length = @L, type = NULL, tz = NULL)

is.tind(x)

Arguments

length
type

tz

components of time index to be constructed (in arbitrary order), the following
are accepted:

y year.
q quarter.

m month.

w week (ISO 8601).

d day.

j day of year.

u day of week (ISO 8601).
H hour.

M minute.

S second.
an integer value specifying the desired length.

a character value determining time index type (y - years, q - quarters, m - months,
w - weeks, d - dates, t - date-time, h - time of day, n - numeric value, i - integer
value).

(optional) a character value determining the time zone (the default NULL is inter-
preted as the system time zone). See tzone documentation for information on
time zones.

any R object.

66 tind

Details
tind class supports the following types of time indices:

years internal code "y".
quarters internal code "q".
months internal code "m".
weeks internal code "w".
dates internal code "d".
date-time internal code "t".
time of day internal code "h".

nsn

arbitrary integer index "i

n.n

arbitrary numeric index "n".
Valid ranges for time indices are:

years ("y") 0000-9999.

quarters ("q") 000091-9999q4.
months ("m") 0000-01-9999-12.
weeks ("w") 0000-W@1-9999-W52.
dates ("d") 0000-01-01-9999-12-31.

date-time ("t") from 0000-01-01 15:00:00Z to 9999-12-31 09:00:00Z (between -62167165200
and 253402246800 seconds since the Unix epoch).

time of day ("h") from 00:00 to 24:00 (between @ and 86400 seconds since midnight).

Value

An object of tind class for tind or a logical value for is.tind.

See Also

as.tind for conversion to tind, parse_t and strptind functions for parsing character strings,
date_time for construction of date-time indices from date and time components, tind-methods for
basic methods.

Examples

years

tind(y = 2010:2020)

tind(type = "y")

tind(length = 11, type = "y")

quarters

tind(y = rep(2020:2023, each = 4), q = 1:4)
tind(q = 1:4, y = rep(2020:2023, each = 4))
tind(type = "q")

tind(length = 4, type = "q")

tind-coercion

month
tind(y
tind(m
tind(ty
tind(le

weeks
tind(y
tind(ty
tind(le

dates
tind(m
tind(y
tind(ty
tind(le

time
tind(H
tind(ty
tind(le

date-
systel
tind(y
tind(y
tind(y
time
tind(y
tind(ty
tind(ty
tind(le
tind(le

integ
(cann
tind(le
tind(le

s
= 2023, m=1:12)
=1:12, y = 2023)

pe = "m")

ngth = 12, type = "m")

= 2024, w=1+2 % (0:25))

<

pe = "w")

ngth = 13, type = "w")
=3,d=15, y = 2024)

= 2024, m = rep(1:3, each = 2), d
pe = "d")

ngth = 6, type = "d")

of day

=16, M = (0:3) x 15)

pe = "h")

ngth = 4, type = "h")

time

m time zone

= 2024, m =8, d =2, H=16,
= 2024, m =8, d =2, H=16,
= 2024, m =8, d =2, H =16,
zone explicitly provided

= 2024, m =8, d =2, H=16,
pe = Ntll)

pe = "t”, tz = "UTC")

ngth = 4, type = "t")

ngth = 4, type = "t", tz = "UTC")

er and numeric indices

= c(1, 15))

(0:3) % 15)
(0:3) % 15)
0, S =10 * (0:5))

(0:3) % 15, tz = "UTC")

ot be constructed from components like above)

ngth = 10, type = "i")
ngth = 10, type = "n")

67

tind-coercion

Conversion of Objects of tind Class

Description

Objects of tind class can be easily converted to built-in R classes inluding numeric, integer,
character, Date, POSIXct, POSIX1t, and data.frame.

68

tind-coercion

Usage
S3 method for class 'tind'
as.integer(x, ...)
S3 method for class 'tind'
as.double(x, ...)
S3 method for class 'tind'
as.character(x, ...)
S3 method for class 'tind'
as.Date(x, ...)
S3 method for class 'tind'
as.POSIXct(x, tz = NULL, ...)
S3 method for class 'tind'
as.POSIX1t(x, tz = NULL, ...)
S3 method for class 'tind'
as.data.frame(x, ...)
Arguments
X an object of tind class.
further arguments passed to or from other methods.
tz (optional) a character value determining the time zone (the default NULL is inter-
preted as the system time zone). See tzone documentation for information on
time zones.
Details
as.double and as.numeric return internal representation for particular time index type (seconds,

days, weeks etc. since ...).

For years, quarters, months, weeks, and dates, as. integer returns representation in the form YYYY,
YYYYQ, YYYYMM, YYYYWW, and YYYYMMDD, respectively. For other index types, as.integer returns
internal representation of time indices converted to integer.

as.

character returns character vector with standard (ISO 8601) representation of time indices.

For customisable output formats, see format.

as.

Date, as.POSIXct, and as.POSIX1t return objects of classes Date, POSIXct, and POSIX1t,

respectively.

as.

data.frame returns a 1-column data frame with time indices and allows to work with time

indices in data frames.

tind-methods 69

Value

as.xxx returns an object of xxx class of the same length as the argument. as.data. frame returns
a data frame with a single column and the number of rows equal to the length of the argument.

See Also

format for customisable character output formats, as. tind for conversion to tind. For conversions
between tind class and other classes (from packages other than base), see tind-other.

tind-methods Basic Methods for tind Class

Description
tind class supports all standard methods for vectors and and vector-based classes like Date or
POSIXct.
Usage
S3 method for class 'tind'
x[i]

S3 replacement method for class 'tind'
x[i] <- value

S3 method for class 'tind'
x[[il]

S3 replacement method for class 'tind'
x[[i]] <- value

S3 replacement method for class 'tind'
length(x) <- value

S3 method for class 'tind'
rep(x, ...)

S3 method for class 'tind'
c(...)

S3 method for class 'tind'
unique(x, ...)

S3 method for class 'tind'
print(x, ...)

S3 method for class 'tind'
summary (object, ...)

70 tind-methods

Arguments
X an object of tind class.
i an integer vector of indices or a logical vector indicating selection.
value replacement value.
objects of tind class (for c, min, max, and range) or additional arguments passed
to or from methods.
object an object of tind class.
Details

tind class supports standard indexing via [] and [[]] operators, as well as replacement, In re-
placement, it is expected that the right hand side is of the same type as the indexed object.

length, length<-, and rep methods work in a standard way.

rev, head, tail, as they are implemented using [] operator, are also available for objects of tind
class.

Concatenation method (c) works in a standard way. It is expected that all arguments are of the same
type. Arguments that are not of tind class are converted.

min, max, and range work in a standard way. If the results are not proper time indices (for example
maximum over a vector of length 0), NAs are returned.

unique, duplicated, order, sort, etc. work in a standard way.
print prints time indices on the console and invisibly returns its argument.

summary method returns summary information about time indices.

Value

In general, methods return objects of tind class.
print returns its argument invisibly and is used for its side effect.

summary returns an object of class ¢ ("summaryDefault”, "table").

See Also

format for formatting time indices, Ops for operations on time indices.

Examples

test sample

(dd <- as.tind(20210131) + sample((@:9), 15, replace = TRUE))
indexing

dd[1]

dd[[1]1]

dd[[1]1] <- dd[[1]1] + 1

dd

dd[2:3] <- dd[2:3] + 1

dd

this will generate an error
try(

tind-other 71

dd[10] <- now()

)

length, length<-
length(dd)
length(dd) <- 7

dd

rep, head, tail, rev
rep(dd, 2)

head(dd, 3)

tail(dd, -5)

rev(dd)

min, max, range
min(dd)

max(dd)

range (dd)

unique, duplicated
unique(dd)
duplicated(dd)

order, sort
order(dd)

sort(dd)

concatenation
c(dd, rev(dd))

attempt at concatenating different types will result in an error
try(

c(today(), now())

)

tind-other Conversion between tind and Other Time Index Representations

Description

Besides Date, POSIXct, and POSIX1t classes from package base, tind currently supports con-
version between tind and the following classes: yearmon, yearqgtr (both from package zoo),
timeDate (from package timeDate), chron, dates, times (from package chron), IDate, ITime
(from package data.table), and hms (from package hmes).

Usage
S3 method for class 'yearmon'
as.tind(x, ...)
as.yearmon(x, ...)

S3 method for class 'yearqtr'
as.tind(x, ...)

72

an R object to be converted.

as.yearqtr(x, ...)
S3 method for class
as.tind(x, digits = oL,
as.timeDate(x, ...)
S3 method for class
as.tind(x, digits = oL,
as.chron(x, ...)
S3 method for class
as.tind(x, ...)
as.dates(x, ...)
S3 method for class
as.tind(x, digits = oL,
as.times(x)
S3 method for class
as.tind(x, ...)
as.IDate(x, ...)
S3 method for class
as.tind(x, ...)
as.ITime(x)
S3 method for class
as.tind(x, ...)
as_hms(x)

Arguments
X
digits

Details

'timeDate'’

)

"chron'

'dates'

"times'

'IDate’

'ITime'

"hms

(ignored) further arguments passed to or from other methods.

tind-other

an integer value (0—6) determining the number of decimal places for seconds to
be preserved during conversion (0 by default).

Date-time indices resulting from conversion of chron objects always have time zone set to UTC.

Use tzone<- or as. tzone methods when necessary.

tinterval 73

Value

as . xxx returns an object of xxx class of the same length as the argument.

See Also

as. tind and tind-coercion for conversions to and from tind, date2num and num2date for conver-
sion between tind and integer representations of dates (days since ...) found in different software
packages.

tinterval Time Intervals

Description

Objects of auxiliary tinterval class represent time intervals as pairs of time indices (start and
end). Time intervals can be constructed via a call to tinterval function or using convenience
%--% operator. Open-ended intervals are supported. The main applications of this class are set
operations (see set-ops) and checking if a particular time index belongs to (one of) given interval(s)
(see match_t).

Usage
tinterval(start = NULL, end = NULL, ...)
start %--% end
is.tinterval(x)
as.tinterval(x, ...)

S3 method for class 'character'
as.tinterval(x, sep, ...)

S3 method for class 'tinterval'
as.tinterval(x, type = NULL, tz = NULL, ...)

S3 method for class 'list'
as.tinterval(x, ...)

S3 method for class 'data.frame'
as.tinterval(x, ...)

S3 method for class 'tinterval'
as.character(x, ...)

S3 method for class 'tinterval'
format(x, sep = " -= ", open = "...", aux = TRUE, empty = "-", ...)

74

S3 method for class 'tinterval'
as.list(x, ...)

S3 method for class 'tinterval'
as.data.frame(x, ...)

S3 method for class 'tinterval'
x[i]

S3 method for class 'tinterval'
x[[i]1]

S3 replacement method for class 'tinterval'

x[i] <- value

S3 replacement method for class 'tinterval'

x[[i]] <- value

S3 method for class 'tinterval'
c(...)

S3 method for class 'tinterval'
print(x, ...)

S3 method for class 'tinterval'

tinterval

summary (object, ...)
Arguments

start an object of tind class or an R object coercible to it, beginning of the interval(s).

end an object of tind class or an R object coercible to it, end of the interval(s).
objects of tinterval class to be concatenated by c or additional arguments
passed to or from methods.

X an object of tinterval class or an R object passed to as. tinterval.

sep a character string used as separator between start and end of an interval (" -- "
by default).

type a character determining time index type or NULL.

tz (optional) a character value determining the time zone (the default NULL is inter-
preted as the system time zone). See tzone documentation for information on
time zones.

open a character string used to print open interval ends (". . ." by default).

aux a logical value, if TRUE (the default), auxiliary information (time spans of inter-
vals) is added to the output.

empty a character string used to mark empty intervals ("-" by default).

an integer vector of indices or a logical vector indicating selection.

tinterval 75

value replacement value, should be coercible to tinterval.
object an object of tinterval class.
Details

tinterval constructor takes two arguments: beginnings and ends of intervals. Additional argu-
ments (passed via . . .) are forwarded to as. tind method. x %--% y is equivalent to tinterval(x,
).

as.tinterval can be used to construct time intervals from character strings, two-element lists, or
two-column data frames. Additionally, as. tinterval allows to convert time intervals represented
using one type of time indices to time intervals represented by time indices of higher resolution (for
example months to dates).

Internally, time intervals are represented by lists of two vectors. However, in operations they behave
like vectors with standard indexing and replacement operators implemented.

Interval limits can be accessed via $ operator: x$start returns vector of beginnings of intervals in
x and x$end vector of ends.

For discrete time indices (represented as integers, i.e. years, quarters, months, weeks, dates, arbi-
trary integer indices) time interval a %--% b represents all indices falling in a or after and in b or
before, i.e. the set: {z :a <z Az <b} ={a,a+1,...,b— 1,b}. For continuous time indices
(representing point in time, i.e. date-time, time of day, arbitrary numeric indices) time interval a
%--% b represents all indices starting with a and before b, i.e. the set: [a,b). The difference in in-
terpretations between discrete and continuous time indices assures consistency during conversions.
Consider time interval "2025-08-02" %--% "2025-08-03". This represents all date-time indices
falling on one of those two days, so exactly 2025-08-02 00:00 or after but before 2025-08-04
00:00.

Value

tinterval, %--%, and as. tinterval return objects of tinterval class.
is.tinterval returns a logical value.

In general, methods for tinterval return objects of tinterval class.
as.character and format return character vectors.

as.list and as.data. frame return a two-element list and a two-column data frame, respectively.
Names are set to c("start”, "end").

print returns its argument invisibly and is used for its side effect.

summary returns an object of class c(”summaryDefault”, "table").

See Also

set-ops for the description of set operations on time intervals, match_t for matching time indices to
time intervals.

76 ti_type

Examples

td <- today()

from today till the day after tomorrow

td %--% (td + 2)

from today till the end of next year

td %--% (as.year(td) + 1)

from the beginning of the year till today

as.year(td) %—-% td

#9 to 5

as.time("9am") %--% as.time("5pm")

7 to 9 and 4 to 6 via constructor...
tinterval(as.time(c("7am”, "4pm")), as.time(c("9am”, "6pm")))
... or more naturally via concatenation

c(as.time("7am") %--% as.time("”9am”), as.time("4pm") %--% as.time("6pm"))
automatic parsing

as.tinterval(c("2023-01 -- 2024-06", "2024-12 -- 2025-03"))
empty time interval

as.tinterval(c("2024-01 -- 2023-06"))

open time interval

"2024-01" %--% NULL

"2024-01" %--% as.month(NA)

as.tinterval(c("2024-01 -- ..."))

+/- operators

(x <- tinterval(td, td + 2))

x + c(0, 7, 14)

X %twh% 0:2

indexing

(x <= "2023-01" %--% "2024-06")

(x <= x %ty% c(0, 2, 4))

x[2:3]

x[-1]

beginnings and ends of intervals

x$start

x$end

conversion from interval represented by months to dates
(x <= "2025-07" %--% "2025-08")

as.tinterval(x, "d")

conversion from interval represented by dates to date-time (see Details)
(x <= "2025-08-02" %--% "2025-08-03")

as.tinterval(x, "t")

ti_type Get Time Index Type

Description

ti_type method returns time index type as a character value, either in short form (single letter,
code used internally) or long form (name).

ti_type 77

is.instant returns TRUE for continuous time indices representing points in time (date-time, time
of day, and numeric indices) and FALSE for time discrete indices that represent periods of time, for
example, days representing (usually) 24 hours, weeks, months, quarter, and years (as well as integer

indices).

Usage
ti_type(x, long = TRUE, valid = FALSE)
S3 method for class 'tind'
ti_type(x, long = TRUE, valid = FALSE)
S3 method for class 'Date'’
ti_type(x, long = TRUE, valid = FALSE)

S3 method for class 'POSIXt'
ti_type(x, long = TRUE, valid = FALSE)

is.instant(x)

Arguments
X an object of tind class or an object coercible to it.
long alogical value, if FALSE, internal single-character code of index type is returned;
if TRUE, long (human-readable) name is returned (TRUE by default).
valid a logical value, if TRUE, syntactically valid names will be returned (FALSE by
default).
Value

A character value for ti_type, a logical value for is.instant.

Note

Behaviour of is.instant differs from that of identically named function in lubridate package,
which returns TRUE for all time classes including dates.

See Also

t_unit.

Examples

ti_type(as.tind(1999))
ti_type(as.tind(1999), FALSE)
ti_type(as.tind("2001qg3"))
ti_type(as.tind("200193"), FALSE)
ti_type(as.tind("2003-11"))
ti_type(as.tind("2003-11"), FALSE)
ti_type(as.tind("2004-W53"))

78 tspan

ti_type(as.tind("2004-W53"), FALSE)
ti_type(as.tind("2020-02-29"))
ti_type(as.tind("2020-02-29"), FALSE)
ti_type(today())

ti_type(today(), FALSE)
is.instant(today())

ti_type(now())

ti_type(now(), FALSE)
is.instant(now())
ti_type(Sys.Date())
ti_type(Sys.Date(), FALSE)
is.instant(Sys.Date())
ti_type(Sys.time())
ti_type(Sys.time(), FALSE)
is.instant(Sys.time())

tspan Determine Time Span of Time Indices and Time Intervals

Description

tspan method determines the time span of time indices and time intervals.

Usage

tspan(x, ...)

Default S3 method:
tspan(x, ...)

S3 method for class 'tind'
tspan(x, na.rm = FALSE, ...)

S3 method for class 'tinterval'
tspan(x, ...)

Arguments

X an object of tind class (or of other time index class supported by tind package)
or an object of tinterval class.

further arguments passed to or from other methods.

na.rm a logical value indicating whether missing values should be removed.

tzone 79

Details

Given tind argument, tspan returns a single tdiff (or a single number for types "i"” and "n")
giving time span of indices.

tspan for tinterval argument returns a tdiff of the same length as the argument giving spans of
time intervals.

Time spans are determined differently for time indices representing periods of time (for example
days) and for time indices that represent points in time as determined by is.instant function.
A sequence of 3 consecutive dates has span of 3 days and a sequence of 5 consecutive integers
has span 5. On the other hand, a sequence of 3 consecutive hours will have span of 2 hours, the
difference between the last and the first hour, see Examples.

Value

A tdiff or a numeric vector (for integer and numeric indices).

See Also

tinterval class, is.instant function, resolution_t method for determining the resolution of
time indices, is.regular method for checking if time indices form a regular sequence.

Examples

4 consecutive days

(x <= today() + 0:3)
tspan(x)

10 consecutive integers
(x <= as.tind(1:10, "i"))
tspan(x)

4 consecutive hours

(x <= tind(H = 12:15))

span is 3 hours (not 4)
tspan(x)

the same

tind(H = 15) - tind(H = 12)

tzone Read or Set Time Zone for Date-Time Indices

Description

Date-time indices (objects of tind class of type "t") always have the time zone attribute set. The
time zone setting affects how time (measured relative to the Unix epoch in UTC) is translated to
local time. Objects of base POSIXct and POSIX1t classes also have an optional time zone attribute.
tzone method is also implemented for some other classes supported by the tind package.

List of time zones supported by a particular R installation can be obtained via a call to O1lsonNames
function, see Examples.

80 tzone
Usage

tzone(x)

tzone(x) <- value

S3 method for class 'tind'

tzone(x)

S3 replacement method for class 'tind'

tzone(x) <- value

S3 method for class 'tinterval'

tzone(x)

S3 replacement method for class 'tinterval'

tzone(x) <- value

S3 method for class 'POSIXct'

tzone(x)

S3 replacement method for class 'POSIXct'

tzone(x) <- value

S3 method for class 'POSIX1t'

tzone(x)

S3 replacement method for class 'POSIXIt'

tzone(x) <- value
Arguments

X an object of tind class or of POSIXct/POSIX1t classes (or of other class for

which the method was implemented).

value a character value, the new time zone attribute.

Details

If the provided name is not in the list of supported time zones, an attempt is made to identify it via

approximate match. If the result is a single time zone, it is accepted with a warning.

Unambiguous city names are automatically recognised, see Examples.

An attempt to set time zone attribute of a time index of different type than date-time ("t") will lead
to an error. In case of POSIXct/POSIX1t objects with no time zone attribute, the extractor returns

the system time zone.

Value

For the extractor, the time zone as a character value (or NULL for classes without time zone attribute).

For the replacement, the argument with the modified time zone.

tzone

See Also

as.tzone.

Examples

check time in the system time zone

(nw <= now())

get time zone

tzone(nw)

set time zone to UTC

tzone(nw) <- "UTC"

nw

tzone(nw)

check time in different time zones

if ("Asia/Tokyo" %in% OlsonNames()) {
tzone(nw) <- "Asia/Tokyo"

nw

3

if ("Europe/Warsaw” %in% OlsonNames()) {
tzone(nw) <- "Europe/Warsaw”

nw

3

if ("America/New_York" %in% OlsonNames()) {
tzone(nw) <- "America/New_York"

nw

3

try invalid time zone => error

try(

tzone(nw) <- "Hasdfg/Qwerty”

)

unambiguous city names are automatically recognised
tzone(nw) <- "Tokyo"

nw
tzone(nw) <- "Warsaw”
nw

tzone(nw) <- "New York"
nw

incomplete names and approximate matches are also recognised with a warning
if ("Europe/Warsaw” %in% OlsonNames()) try({

tzone(nw) <- "Warsa"

nw

»

if ("America/New_York"” %in% OlsonNames()) try({

tzone(nw) <- "NewYork”

nw

b

list first 6 supported time zones using base::0lsonNames
head(0lsonNames())

list first 6 supported time zones with string "Europe”
head(grep("Europe”, OlsonNames(), value = TRUE))

list first 6 supported time zones with string "Asia"

81

82 t_unit

head(grep("Asia"”, OlsonNames(), value = TRUE))

list first 6 supported time zones with string "Africa”
head(grep("Africa”, OlsonNames(), value = TRUE))

list first 6 supported time zones with string "America”
head(grep("America”, OlsonNames(), value = TRUE))

t_unit Get Time Unit

Description

t_unit method returns time unit of time difference object as a character value, either in short form
(most often single letter, code used internally) or long form (name).

units method for tdiff objects is equivalent to t_unit with x argument only.

Usage
t_unit(x, long = TRUE, valid = FALSE)

S3 method for class 'tdiff'
t_unit(x, long = TRUE, valid = FALSE)

S3 method for class 'difftime'
t_unit(x, long = TRUE, valid = FALSE)

S3 method for class 'tdiff'

units(x)
Arguments
X an object of tdiff class or an object coercible to it.
long a logical value, if FALSE, internal code of time unit is returned; if TRUE, long
(human-readable) name is returned (TRUE by default).
valid a logical value, if TRUE, syntactically valid names will be returned (FALSE by
default). Currently, has no impact as all unit names are syntactically valid.
Details

Time differences (for example differences between date-time indices) are internally represented
as number of seconds. However, the returned time unit is automatically determined based on the
resolution of the argument. If all time differences are full hours or full minutes, appropriate unit is
returned, see Examples. For time differences that contain zeros and missing values only, returned
unit is a second.

Value

A character value.

year_frac 83

See Also

tdiff, ti_type.

Examples

(x <= as.tdiff(1, "y"))
t_unit(x)

t_unit(x, FALSE)

(x <= as.tdiff(1, "q"))
t_unit(x)

t_unit(x, FALSE)

(x <= as.tdiff(1, "m"))
t_unit(x)

t_unit(x, FALSE)

(x <= as.tdiff (1, "w"))
t_unit(x)

t_unit(x, FALSE)

(x <= as.tdiff(1, "d"))
t_unit(x)

t_unit(x, FALSE)

(x <= as.tdiff(1, "h"))
t_unit(x)

t_unit(x, FALSE)

(x <= as.tdiff (1, "min"))
t_unit(x)

t_unit(x, FALSE)

(x <= as.tdiff(1, "s"))
t_unit(x)

t_unit(x, FALSE)

automatic unit determination
(x <- as.tdiff (600, "s")) # ten minutes
t_unit(x)

t_unit(x, FALSE)

(x <- as.tdiff (7200, "s")) # two hours
t_unit(x)

t_unit(x, FALSE)

year_frac Converting Time Indices to Year Fractions and Back

Description

year_frac computes year fraction corresponding to a time index. yf2tind performs the reverse
computation.

Usage

year_frac(x)

yf2tind(x, type = NULL, tz = NULL)

84 year_frac

Arguments
X an object of tind class or an R object coercible to it for year_frac, a numeric
vector for yf2tind.
type a character value determining time index type (y - years, q - quarters, m - months,
w - weeks, d - dates, t - date-time).
tz (optional) a character value determining the time zone (the default NULL is inter-
preted as the system time zone). See tzone documentation for information on
time zones.
Details

year_fraction returns numeric vector representing time indices in the form year + year frac-
tion. For years this is equivalent to as.numeric. Year fraction is determined based on the index
within particular year (minus 1 for all indices except for date-time) and the number of periods
within the year. E.g., 2001Q1 gives 2001 (2001 + (1 - 1) / 4), 2001Q3 — 2001.5 (2001 + (3 - 1)
/ 4), 2010-04 (April 2010) — 2010.25 (2010 + (4 - 1) / 12), 2000-02-29 (60th day in 2000) —
2000.1612 (2000 + (60 - 1) / 366, 2000 was a leap year).

Value

A numeric vector for year_frac and tind for yf2tind. Result is of the same length as argument.

Note

year_frac is not to be confused with a similarly called function (YEARFRAC) found in popu-
lar spreadsheet software. In order to compute differences between dates as year fractions use
daycount_frac function.

See Also

daycount_frac.

Examples

year_frac(today())
year_frac(now())
yf2tind(2023.5, "y"
yf2tind(2023.5,
yf2tind(2023.5,
yf2tind(2023.5, "
yf2tind(2023.5,
yf2tind(2023.5,

Index

! (Ops), 38 %-q% (Ops), 38
!'.tinterval (set-ops), 55 %-s% (Ops), 38
!=(Ops), 38 %-w% (Ops), 38
x package %-y% (Ops), 38
tind-package, 3 %/% (Ops), 38
* (Ops), 38 %% (0ps), 38
+(Ops), 38 %in_t% (match_t), 35
- (Ops), 38 %in_t%, 56
i Eggzjz gg am (tir}le—.index—components), 61
<= (Ops), 38 ampm_indicators (calendar-names), 14

== (Ops), 38 as.character.tdiff (tdiff), 58

> (Ops) ’38 as.character.tind (tind-coercion), 67

o= (Ops’) 38 as.character.tinterval (tinterval), 73
s as.chron (tind-other), 71

Ltdiff ff ’

E t‘;;d (t(::;_mi’tiids) . as.data. frame. tdiff (tdiff), 58

[.tinterval (tinterva71) 73 as.data.frame.tind (tind-coercion), 67

[;_ tdifF (tdiff), 58 ’ as.data.frame.tinterval (tinterval), 73

’ ’ .dat .tind), 4

[<-.tind (tind-methods), 69 as.date (a.s 1n.) . 6

[<-.tinterval (tinterval), 73 as.Date.tind (tind-coercion), 67

[’.cdiff (tdiff), 58 ’ as.date_time (as.tind), 4

: . as.dates (tind-other), 71
LL.tind (tind-methods), 69 as.double.tind (tind-coercion), 67

[[.tinterval (tinterval), 73 as.IDate (tind-other), 71
[[<-.tdiff (tdiff), 58
[[<-.tind (tind-methods), 69
[[<-.tinterval (tinterval), 73

as.integer.tind (tind-coercion), 67
as.ITime (tind-other), 71
as.list.tinterval (tinterval), 73

%+d% (Ops), 38 as.month (as.tind), 4

%+h% (Ops), 38 as.POSIXct.tind (tind-coercion), 67
%+m% (Ops), 38 as.POSIX1t.tind (tind-coercion), 67
%+min% (Ops), 38 as.quarter (as.tind), 4

%+q% (Ops), 38 as.regular (ordered-regular), 41
%+s% (Ops), 38 as.tdiff (tdiff), 58

%+w% (Ops), 38 as.time (as.tind), 4

%+y% (Ops), 38 as.timeDate (tind-other), 71

%=% (tinterval), 73 as.times (tind-other), 71

%-d% (Ops), 38 as.tind, 4, 65, 66, 69, 73

%-h% (Ops), 38 as.tind.chron (tind-other), 71

%-m% (Ops), 38 as.tind.dates (tind-other), 71
%-min% (Ops), 38 as.tind.hms (tind-other), 71

85

86

as.tind.IDate (tind-other), 71
as.tind.ITime (tind-other), 71
as.tind.timeDate (tind-other), 71
as.tind.times (tind-other), 71
as.tind.yearmon (tind-other), 71
as.tind.yearqtr (tind-other), 71
as.tinterval (tinterval), 73
as.tzone, 7,72, 81

as.week (as.tind), 4

as.year (as.tind), 4

as.yearmon (tind-other), 71
as.yearqtr (tind-other), 71
as_hms (tind-other), 71

axis, 9

axis.tind, 9, 11,46, 53
axis_t, 9, 10, 46, 53

bizday, 11, 16, 17, 21, 28
bizday_advance (bizday), 11
bizday_diff (bizday), 11
bizdays_in_month, 64
bizdays_in_month (bizday), 11
bizdays_in_quarter (bizday), 11
bizdays_in_year (bizday), 11

c.tdiff (tdiff), 58

c.tind (tind-methods), 69

c.tinterval (tinterval), 73

calendar, 21, 63

calendar (calendars), 15

calendar-names, 5, 9, 10, 14, 16, 30, 32,43
44, 52, 62, 63

calendars, 13, 15

calendrical-computations, 17, 20, 64

ceiling_t (rounding), 48

continuous_scale, 52

current-date-time, 22

cut, 23

cut.Date, 24

cut.POSIXt, 24

date2num, 25, 34, 73
date_time, 6, 8, 26, 66

date_time_split (date_time), 26

day, 17

day (time-index-components), 61
day_of_week, 17

day_of_week (time-index-components), 61
day_of_year (time-index-components), 61

INDEX

daycount_frac, 13,27, 84

days (tdiff), 58

days_in_month (time-index-properties),
63

days_in_quarter
(time-index-properties), 63

days_in_year (time-index-properties), 63

diff, 29

difftime, 58

easter, 17

easter (calendrical-computations), 20
eval_calendar (calendars), 15
extend_regular (ordered-regular), 41

first_bizday_in_month (bizday), 11
first_bizday_in_quarter (bizday), 11
floor_t (rounding), 48

format, 9, 10, 15, 30, 52, 6870
format.Date, 30

format.tdiff (tdiff), 58
format.tinterval (tinterval), 73

hour (time-index-components), 61
hours (tdiff), 58
hours_in_day (time-index-properties), 63

intersect_t (set-ops), 55

is.dst (time-index-properties), 63
is.instant, 79

is.instant (ti_type), 76
is.leap_year (time-index-properties), 63
is.ordered_t (ordered-regular), 41
is.regular, 48, 79

is.regular (ordered-regular), 41
is.tdiff (tdiff), 58

is.tind (tind), 65

is.tinterval (tinterval), 73

jdn, 25,33
jdn2tind (jdn), 33

last_bizday_in_month (bizday), 11
last_bizday_in_quarter (bizday), 11
last_day_in_month
(calendrical-computations), 20
last_day_in_quarter
(calendrical-computations), 20
last_dw_in_month, /7

INDEX

last_dw_in_month

(calendrical-computations), 20
length<-.tind (tind-methods), 69
limits, 53

match_t, 24, 35, 37,57,73,75
Math.tdiff (tdiff), 58

mean. tdiff (tdiff), 58

merge, 36, 36

mins (tdiff), 58

minute (time-index-components), 61
mnths (tdiff), 58

month, 17

month (time-index-components), 61
month_names (calendar-names), 14
months.tind (time-index-components), 61

next_bizdays (bizday), 11

now (current-date-time), 22

nth_day_of_year
(calendrical-computations), 20

nth_dw_after
(calendrical-computations), 20

nth_dw_before
(calendrical-computations), 20

nth_dw_in_month, /7

nth_dw_in_month
(calendrical-computations), 20

num2date, 73

num2date (date2num), 25

OlsonNames, 8, 79
Ops, 17,21, 29,38, 61, 63, 64, 70
ordered-regular, 41

parse_t, 5, 6, 32, 43, 65, 66

pm (time-index-components), 61
POSIX1t, 3

pretty, 9, 11,45, 53

print.tdiff (tdiff), 58
print.tind (tind-methods), 69
print.tinterval (tinterval), 73

grtrs (tdiff), 58

quarter (time-index-components), 61

quarters.tind (time-index-components),
61

rep.tdiff (tdiff), 58
rep.tind (tind-methods), 69

87

resolution_t, 24, 42, 46, 47, 49, 50, 52, 79
round_t (rounding), 48
rounding, 24, 48, 48

scale_continuous, 52
scale_tind, 9, 11, 46, 51
scale_x_tind (scale_tind), 51
scale_y_tind(scale_tind), 51
second (time-index-components), 61
secs (tdiff), 58

seq, 54

seq.Date, 54

seq.tind, 24

set-ops, 55,73,75

setdiff_t (set-ops), 55

sets, 56

strptime, 30-32
strptind, 5, 6,44, 65, 66

strptind (format), 30
Summary. tdiff (tdiff), 58
summary. tdiff (tdiff), 58
summary.tind (tind-methods), 69
summary.tinterval (tinterval), 73

t_unit, 77, 82

tdiff, 58, 83

ti_type, 76, 83

time-index-components, 17, 21,27, 61, 64

time-index-properties, 21, 63

tind, 6, 27, 40, 63, 65

tind-coercion, 6, 67, 73

tind-methods, 66, 69

tind-other, 69, 71

tind-package, 3

tinterval, 57,73, 79

today (current-date-time), 22

trunc_t (rounding), 48

tspan, 48, 78

tzone, 5, 8, 22, 26, 27, 30, 34, 43, 64, 65, 68,
74,79, 84

tzone<- (tzone), 79

union_t (set-ops), 55
unique.tdiff (tdiff), 58
unique.tind (tind-methods), 69
unique.tinterval (set-ops), 55
units, 82

units.tdiff (t_unit), 82

week (time-index-components), 61

88 INDEX

weekday_names (calendar-names), 14

weekdays. tind (time-index-components),
61

weeks (tdiff), 58

weeks_in_year (time-index-properties),
63

year, 17

year (time-index-components), 61
year_frac, 28, 83

years (tdiff), 58

yf2tind (year_frac), 83

	tind-package
	as.tind
	as.tzone
	axis.tind
	axis_t
	bizday
	calendar-names
	calendars
	calendrical-computations
	current-date-time
	cut
	date2num
	date_time
	daycount_frac
	diff
	format
	jdn
	match_t
	merge
	Ops
	ordered-regular
	parse_t
	pretty
	resolution_t
	rounding
	scale_tind
	seq
	set-ops
	tdiff
	time-index-components
	time-index-properties
	tind
	tind-coercion
	tind-methods
	tind-other
	tinterval
	ti_type
	tspan
	tzone
	t_unit
	year_frac
	Index

