Parquet Files
- Loading Data Programmatically
- Partition Discovery
- Schema Merging
- Hive metastore Parquet table conversion
- Columnar Encryption
- Data Source Option
Parquet is a columnar format that is supported by many other data processing systems. Spark SQL provides support for both reading and writing Parquet files that automatically preserves the schema of the original data. When reading Parquet files, all columns are automatically converted to be nullable for compatibility reasons.
Loading Data Programmatically
Using the data from the above example:
// Encoders for most common types are automatically provided by importing spark.implicits._
import spark.implicits._
val peopleDF = spark.read.json("examples/src/main/resources/people.json")
// DataFrames can be saved as Parquet files, maintaining the schema information
peopleDF.write.parquet("people.parquet")
// Read in the parquet file created above
// Parquet files are self-describing so the schema is preserved
// The result of loading a Parquet file is also a DataFrame
val parquetFileDF = spark.read.parquet("people.parquet")
// Parquet files can also be used to create a temporary view and then used in SQL statements
parquetFileDF.createOrReplaceTempView("parquetFile")
val namesDF = spark.sql("SELECT name FROM parquetFile WHERE age BETWEEN 13 AND 19")
namesDF.map(attributes => "Name: " + attributes(0)).show()
// +------------+
// | value|
// +------------+
// |Name: Justin|
// +------------+
import org.apache.spark.api.java.function.MapFunction;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
Dataset<Row> peopleDF = spark.read().json("examples/src/main/resources/people.json");
// DataFrames can be saved as Parquet files, maintaining the schema information
peopleDF.write().parquet("people.parquet");
// Read in the Parquet file created above.
// Parquet files are self-describing so the schema is preserved
// The result of loading a parquet file is also a DataFrame
Dataset<Row> parquetFileDF = spark.read().parquet("people.parquet");
// Parquet files can also be used to create a temporary view and then used in SQL statements
parquetFileDF.createOrReplaceTempView("parquetFile");
Dataset<Row> namesDF = spark.sql("SELECT name FROM parquetFile WHERE age BETWEEN 13 AND 19");
Dataset<String> namesDS = namesDF.map(
(MapFunction<Row, String>) row -> "Name: " + row.getString(0),
Encoders.STRING());
namesDS.show();
// +------------+
// | value|
// +------------+
// |Name: Justin|
// +------------+
peopleDF = spark.read.json("examples/src/main/resources/people.json")
# DataFrames can be saved as Parquet files, maintaining the schema information.
peopleDF.write.parquet("people.parquet")
# Read in the Parquet file created above.
# Parquet files are self-describing so the schema is preserved.
# The result of loading a parquet file is also a DataFrame.
parquetFile = spark.read.parquet("people.parquet")
# Parquet files can also be used to create a temporary view and then used in SQL statements.
parquetFile.createOrReplaceTempView("parquetFile")
teenagers = spark.sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19")
teenagers.show()
# +------+
# | name|
# +------+
# |Justin|
# +------+
df <- read.df("examples/src/main/resources/people.json", "json")
# SparkDataFrame can be saved as Parquet files, maintaining the schema information.
write.parquet(df, "people.parquet")
# Read in the Parquet file created above. Parquet files are self-describing so the schema is preserved.
# The result of loading a parquet file is also a DataFrame.
parquetFile <- read.parquet("people.parquet")
# Parquet files can also be used to create a temporary view and then used in SQL statements.
createOrReplaceTempView(parquetFile, "parquetFile")
teenagers <- sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19")
head(teenagers)
## name
## 1 Justin
# We can also run custom R-UDFs on Spark DataFrames. Here we prefix all the names with "Name:"
schema <- structType(structField("name", "string"))
teenNames <- dapply(df, function(p) { cbind(paste("Name:", p$name)) }, schema)
for (teenName in collect(teenNames)$name) {
cat(teenName, "\n")
}
## Name: Michael
## Name: Andy
## Name: Justin
Partition Discovery
Table partitioning is a common optimization approach used in systems like Hive. In a partitioned
table, data are usually stored in different directories, with partitioning column values encoded in
the path of each partition directory. All built-in file sources (including Text/CSV/JSON/ORC/Parquet)
are able to discover and infer partitioning information automatically.
For example, we can store all our previously used
population data into a partitioned table using the following directory structure, with two extra
columns, gender
and country
as partitioning columns:
By passing path/to/table
to either SparkSession.read.parquet
or SparkSession.read.load
, Spark SQL
will automatically extract the partitioning information from the paths.
Now the schema of the returned DataFrame becomes:
Notice that the data types of the partitioning columns are automatically inferred. Currently,
numeric data types, date, timestamp and string type are supported. Sometimes users may not want
to automatically infer the data types of the partitioning columns. For these use cases, the
automatic type inference can be configured by
spark.sql.sources.partitionColumnTypeInference.enabled
, which is default to true
. When type
inference is disabled, string type will be used for the partitioning columns.
Starting from Spark 1.6.0, partition discovery only finds partitions under the given paths
by default. For the above example, if users pass path/to/table/gender=male
to either
SparkSession.read.parquet
or SparkSession.read.load
, gender
will not be considered as a
partitioning column. If users need to specify the base path that partition discovery
should start with, they can set basePath
in the data source options. For example,
when path/to/table/gender=male
is the path of the data and
users set basePath
to path/to/table/
, gender
will be a partitioning column.
Schema Merging
Like Protocol Buffer, Avro, and Thrift, Parquet also supports schema evolution. Users can start with a simple schema, and gradually add more columns to the schema as needed. In this way, users may end up with multiple Parquet files with different but mutually compatible schemas. The Parquet data source is now able to automatically detect this case and merge schemas of all these files.
Since schema merging is a relatively expensive operation, and is not a necessity in most cases, we turned it off by default starting from 1.5.0. You may enable it by
- setting data source option
mergeSchema
totrue
when reading Parquet files (as shown in the examples below), or - setting the global SQL option
spark.sql.parquet.mergeSchema
totrue
.
// This is used to implicitly convert an RDD to a DataFrame.
import spark.implicits._
// Create a simple DataFrame, store into a partition directory
val squaresDF = spark.sparkContext.makeRDD(1 to 5).map(i => (i, i * i)).toDF("value", "square")
squaresDF.write.parquet("data/test_table/key=1")
// Create another DataFrame in a new partition directory,
// adding a new column and dropping an existing column
val cubesDF = spark.sparkContext.makeRDD(6 to 10).map(i => (i, i * i * i)).toDF("value", "cube")
cubesDF.write.parquet("data/test_table/key=2")
// Read the partitioned table
val mergedDF = spark.read.option("mergeSchema", "true").parquet("data/test_table")
mergedDF.printSchema()
// The final schema consists of all 3 columns in the Parquet files together
// with the partitioning column appeared in the partition directory paths
// root
// |-- value: int (nullable = true)
// |-- square: int (nullable = true)
// |-- cube: int (nullable = true)
// |-- key: int (nullable = true)
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
public static class Square implements Serializable {
private int value;
private int square;
// Getters and setters...
}
public static class Cube implements Serializable {
private int value;
private int cube;
// Getters and setters...
}
List<Square> squares = new ArrayList<>();
for (int value = 1; value <= 5; value++) {
Square square = new Square();
square.setValue(value);
square.setSquare(value * value);
squares.add(square);
}
// Create a simple DataFrame, store into a partition directory
Dataset<Row> squaresDF = spark.createDataFrame(squares, Square.class);
squaresDF.write().parquet("data/test_table/key=1");
List<Cube> cubes = new ArrayList<>();
for (int value = 6; value <= 10; value++) {
Cube cube = new Cube();
cube.setValue(value);
cube.setCube(value * value * value);
cubes.add(cube);
}
// Create another DataFrame in a new partition directory,
// adding a new column and dropping an existing column
Dataset<Row> cubesDF = spark.createDataFrame(cubes, Cube.class);
cubesDF.write().parquet("data/test_table/key=2");
// Read the partitioned table
Dataset<Row> mergedDF = spark.read().option("mergeSchema", true).parquet("data/test_table");
mergedDF.printSchema();
// The final schema consists of all 3 columns in the Parquet files together
// with the partitioning column appeared in the partition directory paths
// root
// |-- value: int (nullable = true)
// |-- square: int (nullable = true)
// |-- cube: int (nullable = true)
// |-- key: int (nullable = true)
from pyspark.sql import Row
# spark is from the previous example.
# Create a simple DataFrame, stored into a partition directory
sc = spark.sparkContext
squaresDF = spark.createDataFrame(sc.parallelize(range(1, 6))
.map(lambda i: Row(single=i, double=i ** 2)))
squaresDF.write.parquet("data/test_table/key=1")
# Create another DataFrame in a new partition directory,
# adding a new column and dropping an existing column
cubesDF = spark.createDataFrame(sc.parallelize(range(6, 11))
.map(lambda i: Row(single=i, triple=i ** 3)))
cubesDF.write.parquet("data/test_table/key=2")
# Read the partitioned table
mergedDF = spark.read.option("mergeSchema", "true").parquet("data/test_table")
mergedDF.printSchema()
# The final schema consists of all 3 columns in the Parquet files together
# with the partitioning column appeared in the partition directory paths.
# root
# |-- double: long (nullable = true)
# |-- single: long (nullable = true)
# |-- triple: long (nullable = true)
# |-- key: integer (nullable = true)
df1 <- createDataFrame(data.frame(single=c(12, 29), double=c(19, 23)))
df2 <- createDataFrame(data.frame(double=c(19, 23), triple=c(23, 18)))
# Create a simple DataFrame, stored into a partition directory
write.df(df1, "data/test_table/key=1", "parquet", "overwrite")
# Create another DataFrame in a new partition directory,
# adding a new column and dropping an existing column
write.df(df2, "data/test_table/key=2", "parquet", "overwrite")
# Read the partitioned table
df3 <- read.df("data/test_table", "parquet", mergeSchema = "true")
printSchema(df3)
# The final schema consists of all 3 columns in the Parquet files together
# with the partitioning column appeared in the partition directory paths
## root
## |-- single: double (nullable = true)
## |-- double: double (nullable = true)
## |-- triple: double (nullable = true)
## |-- key: integer (nullable = true)
Hive metastore Parquet table conversion
When reading from Hive metastore Parquet tables and writing to non-partitioned Hive metastore
Parquet tables, Spark SQL will try to use its own Parquet support instead of Hive SerDe for
better performance. This behavior is controlled by the spark.sql.hive.convertMetastoreParquet
configuration, and is turned on by default.
Hive/Parquet Schema Reconciliation
There are two key differences between Hive and Parquet from the perspective of table schema processing.
- Hive is case insensitive, while Parquet is not
- Hive considers all columns nullable, while nullability in Parquet is significant
Due to this reason, we must reconcile Hive metastore schema with Parquet schema when converting a Hive metastore Parquet table to a Spark SQL Parquet table. The reconciliation rules are:
-
Fields that have the same name in both schema must have the same data type regardless of nullability. The reconciled field should have the data type of the Parquet side, so that nullability is respected.
-
The reconciled schema contains exactly those fields defined in Hive metastore schema.
- Any fields that only appear in the Parquet schema are dropped in the reconciled schema.
- Any fields that only appear in the Hive metastore schema are added as nullable field in the reconciled schema.
Metadata Refreshing
Spark SQL caches Parquet metadata for better performance. When Hive metastore Parquet table conversion is enabled, metadata of those converted tables are also cached. If these tables are updated by Hive or other external tools, you need to refresh them manually to ensure consistent metadata.
Columnar Encryption
Since Spark 3.2, columnar encryption is supported for Parquet tables with Apache Parquet 1.12+.
Parquet uses the envelope encryption practice, where file parts are encrypted with “data encryption keys” (DEKs), and the DEKs are encrypted with “master encryption keys” (MEKs). The DEKs are randomly generated by Parquet for each encrypted file/column. The MEKs are generated, stored and managed in a Key Management Service (KMS) of user’s choice. The Parquet Maven repository has a jar with a mock KMS implementation that allows to run column encryption and decryption using a spark-shell only, without deploying a KMS server (download the parquet-hadoop-tests.jar
file and place it in the Spark jars
folder):
KMS Client
The InMemoryKMS class is provided only for illustration and simple demonstration of Parquet encryption functionality. It should not be used in a real deployment. The master encryption keys must be kept and managed in a production-grade KMS system, deployed in user’s organization. Rollout of Spark with Parquet encryption requires implementation of a client class for the KMS server. Parquet provides a plug-in interface for development of such classes,
An example of such class for an open source KMS can be found in the parquet-mr repository. The production KMS client should be designed in cooperation with organization’s security administrators, and built by developers with an experience in access control management. Once such class is created, it can be passed to applications via the parquet.encryption.kms.client.class
parameter and leveraged by general Spark users as shown in the encrypted dataframe write/read sample above.
Note: By default, Parquet implements a “double envelope encryption” mode, that minimizes the interaction of Spark executors with a KMS server. In this mode, the DEKs are encrypted with “key encryption keys” (KEKs, randomly generated by Parquet). The KEKs are encrypted with MEKs in KMS; the result and the KEK itself are cached in Spark executor memory. Users interested in regular envelope encryption, can switch to it by setting the parquet.encryption.double.wrapping
parameter to false
. For more details on Parquet encryption parameters, visit the parquet-hadoop configuration page.
Data Source Option
Data source options of Parquet can be set via:
- the
.option
/.options
methods ofDataFrameReader
DataFrameWriter
DataStreamReader
DataStreamWriter
OPTIONS
clause at CREATE TABLE USING DATA_SOURCE
Property Name | Default | Meaning | Scope |
---|---|---|---|
datetimeRebaseMode |
(value of spark.sql.parquet.datetimeRebaseModeInRead configuration) |
The datetimeRebaseMode option allows to specify the rebasing mode for the values of the DATE , TIMESTAMP_MILLIS , TIMESTAMP_MICROS logical types from the Julian to Proleptic Gregorian calendar.Currently supported modes are:
|
read |
int96RebaseMode |
(value of spark.sql.parquet.int96RebaseModeInRead configuration) |
The int96RebaseMode option allows to specify the rebasing mode for INT96 timestamps from the Julian to Proleptic Gregorian calendar.Currently supported modes are:
|
read |
mergeSchema |
(value of spark.sql.parquet.mergeSchema configuration) |
Sets whether we should merge schemas collected from all Parquet part-files. This will override spark.sql.parquet.mergeSchema . |
read |
compression |
snappy |
Compression codec to use when saving to file. This can be one of the known case-insensitive shorten names (none, uncompressed, snappy, gzip, lzo, brotli, lz4, and zstd). This will override spark.sql.parquet.compression.codec . |
write |
Other generic options can be found in Generic Files Source Options
Configuration
Configuration of Parquet can be done using the setConf
method on SparkSession
or by running
SET key=value
commands using SQL.
Property Name | Default | Meaning | Since Version |
---|---|---|---|
spark.sql.parquet.binaryAsString |
false | Some other Parquet-producing systems, in particular Impala, Hive, and older versions of Spark SQL, do not differentiate between binary data and strings when writing out the Parquet schema. This flag tells Spark SQL to interpret binary data as a string to provide compatibility with these systems. | 1.1.1 |
spark.sql.parquet.int96AsTimestamp |
true | Some Parquet-producing systems, in particular Impala and Hive, store Timestamp into INT96. This flag tells Spark SQL to interpret INT96 data as a timestamp to provide compatibility with these systems. | 1.3.0 |
spark.sql.parquet.compression.codec |
snappy |
Sets the compression codec used when writing Parquet files. If either compression or
parquet.compression is specified in the table-specific options/properties, the precedence would be
compression , parquet.compression , spark.sql.parquet.compression.codec . Acceptable values include:
none, uncompressed, snappy, gzip, lzo, brotli, lz4, zstd.
Note that zstd requires ZStandardCodec to be installed before Hadoop 2.9.0, brotli requires
BrotliCodec to be installed.
|
1.1.1 |
spark.sql.parquet.filterPushdown |
true | Enables Parquet filter push-down optimization when set to true. | 1.2.0 |
spark.sql.hive.convertMetastoreParquet |
true | When set to false, Spark SQL will use the Hive SerDe for parquet tables instead of the built in support. | 1.1.1 |
spark.sql.parquet.mergeSchema |
false |
When true, the Parquet data source merges schemas collected from all data files, otherwise the schema is picked from the summary file or a random data file if no summary file is available. |
1.5.0 |
spark.sql.parquet.writeLegacyFormat |
false | If true, data will be written in a way of Spark 1.4 and earlier. For example, decimal values will be written in Apache Parquet's fixed-length byte array format, which other systems such as Apache Hive and Apache Impala use. If false, the newer format in Parquet will be used. For example, decimals will be written in int-based format. If Parquet output is intended for use with systems that do not support this newer format, set to true. | 1.6.0 |
spark.sql.parquet.datetimeRebaseModeInRead | EXCEPTION |
The rebasing mode for the values of the DATE , TIMESTAMP_MILLIS , TIMESTAMP_MICROS logical types from the Julian to Proleptic Gregorian calendar:
|
3.0.0 |
spark.sql.parquet.datetimeRebaseModeInWrite | EXCEPTION |
The rebasing mode for the values of the DATE , TIMESTAMP_MILLIS , TIMESTAMP_MICROS logical types from the Proleptic Gregorian to Julian calendar:
|
3.0.0 |
spark.sql.parquet.int96RebaseModeInRead | EXCEPTION |
The rebasing mode for the values of the INT96 timestamp type from the Julian to Proleptic Gregorian calendar:
|
3.1.0 |
spark.sql.parquet.int96RebaseModeInWrite | EXCEPTION |
The rebasing mode for the values of the INT96 timestamp type from the Proleptic Gregorian to Julian calendar:
|
3.1.0 |