pyspark.sql.DataFrameWriter.csv¶
-
DataFrameWriter.
csv
(path: str, mode: Optional[str] = None, compression: Optional[str] = None, sep: Optional[str] = None, quote: Optional[str] = None, escape: Optional[str] = None, header: Union[bool, str, None] = None, nullValue: Optional[str] = None, escapeQuotes: Union[bool, str, None] = None, quoteAll: Union[bool, str, None] = None, dateFormat: Optional[str] = None, timestampFormat: Optional[str] = None, ignoreLeadingWhiteSpace: Union[bool, str, None] = None, ignoreTrailingWhiteSpace: Union[bool, str, None] = None, charToEscapeQuoteEscaping: Optional[str] = None, encoding: Optional[str] = None, emptyValue: Optional[str] = None, lineSep: Optional[str] = None) → None[source]¶ Saves the content of the
DataFrame
in CSV format at the specified path.New in version 2.0.0.
Changed in version 3.4.0: Supports Spark Connect.
- Parameters
- pathstr
the path in any Hadoop supported file system
- modestr, optional
specifies the behavior of the save operation when data already exists.
append
: Append contents of thisDataFrame
to existing data.overwrite
: Overwrite existing data.ignore
: Silently ignore this operation if data already exists.error
orerrorifexists
(default case): Throw an exception if data alreadyexists.
- Other Parameters
- Extra options
For the extra options, refer to Data Source Option for the version you use.
Examples
Write a DataFrame into a CSV file and read it back.
>>> import tempfile >>> with tempfile.TemporaryDirectory() as d: ... # Write a DataFrame into a CSV file ... df = spark.createDataFrame([{"age": 100, "name": "Hyukjin Kwon"}]) ... df.write.csv(d, mode="overwrite") ... ... # Read the CSV file as a DataFrame with 'nullValue' option set to 'Hyukjin Kwon'. ... spark.read.schema(df.schema).format("csv").option( ... "nullValue", "Hyukjin Kwon").load(d).show() +---+----+ |age|name| +---+----+ |100|NULL| +---+----+