pyspark.sql.GroupedData.pivot¶
-
GroupedData.
pivot
(pivot_col: str, values: Optional[List[LiteralType]] = None) → GroupedData[source]¶ Pivots a column of the current
DataFrame
and perform the specified aggregation. There are two versions of the pivot function: one that requires the caller to specify the list of distinct values to pivot on, and one that does not. The latter is more concise but less efficient, because Spark needs to first compute the list of distinct values internally.New in version 1.6.0.
Changed in version 3.4.0: Supports Spark Connect.
- Parameters
- pivot_colstr
Name of the column to pivot.
- valueslist, optional
List of values that will be translated to columns in the output DataFrame.
Examples
>>> from pyspark.sql import Row >>> df1 = spark.createDataFrame([ ... Row(course="dotNET", year=2012, earnings=10000), ... Row(course="Java", year=2012, earnings=20000), ... Row(course="dotNET", year=2012, earnings=5000), ... Row(course="dotNET", year=2013, earnings=48000), ... Row(course="Java", year=2013, earnings=30000), ... ]) >>> df1.show() +------+----+--------+ |course|year|earnings| +------+----+--------+ |dotNET|2012| 10000| | Java|2012| 20000| |dotNET|2012| 5000| |dotNET|2013| 48000| | Java|2013| 30000| +------+----+--------+ >>> df2 = spark.createDataFrame([ ... Row(training="expert", sales=Row(course="dotNET", year=2012, earnings=10000)), ... Row(training="junior", sales=Row(course="Java", year=2012, earnings=20000)), ... Row(training="expert", sales=Row(course="dotNET", year=2012, earnings=5000)), ... Row(training="junior", sales=Row(course="dotNET", year=2013, earnings=48000)), ... Row(training="expert", sales=Row(course="Java", year=2013, earnings=30000)), ... ]) >>> df2.show() +--------+--------------------+ |training| sales| +--------+--------------------+ | expert|{dotNET, 2012, 10...| | junior| {Java, 2012, 20000}| | expert|{dotNET, 2012, 5000}| | junior|{dotNET, 2013, 48...| | expert| {Java, 2013, 30000}| +--------+--------------------+
Compute the sum of earnings for each year by course with each course as a separate column
>>> df1.groupBy("year").pivot("course", ["dotNET", "Java"]).sum("earnings").show() +----+------+-----+ |year|dotNET| Java| +----+------+-----+ |2012| 15000|20000| |2013| 48000|30000| +----+------+-----+
Or without specifying column values (less efficient)
>>> df1.groupBy("year").pivot("course").sum("earnings").show() +----+-----+------+ |year| Java|dotNET| +----+-----+------+ |2012|20000| 15000| |2013|30000| 48000| +----+-----+------+ >>> df2.groupBy("sales.year").pivot("sales.course").sum("sales.earnings").show() ... +----+-----+------+ |year| Java|dotNET| +----+-----+------+ |2012|20000| 15000| |2013|30000| 48000| +----+-----+------+